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ABSTRACT In recent years, various convolutional neural network (CNN) based frameworks have been
presented to detect forged regions in images. However, most of the existing models can not obtain satisfactory
performance due to tampered areas with various sizes, especially for objects with large-scale. In order to
obtain an accurate object-level forgery localization result, we propose a novel hybrid transformer archi-
tecture, which exhibits both advantages of spatial dependencies and contextual information from different
scales, namely, TransU?-Net. Specifically, long-range semantic dependencies are captured by the last block
of encoder to locate large-scale tampered areas more completely. Meanwhile, non-semantic features are
filtered out by enhancing low-level features under the guidance of high-level semantic information in
the skip connections to achieve more refined spatial recovery. Therefore, our hybrid model can locate
spliced forgeries with various sizes without requiring large data set pre-training. Experimental results on
the Casia2.0 and Columbia datasets show that our framework achieves better performance over state-of-the-
art methods. On the Casia 2.0 dataset, F-measure improve by 8.4% compared to the previous method.

INDEX TERMS Image splicing forgery detection, tampered region localization, convolutional neural

network, self-attention, cross-attention.

I. INTRODUCTION

Digital image generation and transmission has become very
easy due to the rapid development of modern mobile devices.
Meanwhile, the operation of image editing software is sim-
ple, which makes it easy for anyone to modify the picture.
Generally speaking, people modify the image for the pur-
pose of beautification and entertainment. However, some
forged images may be abused maliciously, causing nega-
tive impact on the society and the country [1]. Therefore,
it has become increasingly important to detect image manip-
ulations. Among different image manipulations, splicing is
regarded as copying a part of an image and pasting into
another image to form a new image. As shown in Fig. 1,
an example of image splicing forgery is given, including
tampered image, authentic image and ground truth, where
white area in ground-truth image is tampered area. There exist
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intrinsic image discrepancies between the authentic and the
tampered regions named image fingerprints, which can be
used to determine whether an image has been tampered or not
and locate the tampered areas in the forged image. During the
last decade, two main categories of splicing forgery detection
methods have been proposed: traditional feature extraction
based methods and CNN-based detection methods.

Many traditional detection methods extract the particular
image fingerprints, such as color filter array interpolation [2],
sensor noise [3], particular photo-response non-uniformity
[4], [5], [6], etc. Some traditional detection methods have
problems in detecting tampered regions with rich complex
textures. In addition, traditional detection methods can only
have a certain effect on specific image fingerprints, but when
the specific fingerprints do not exist in the image, the detec-
tion results will be poor. Moreover, the specific image finger-
print will be affected by attack effects such as Gaussian noise
attacks, JPEG compression, resize attacks, which means that
the robustness of traditional detection methods is poor.
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FIGURE 1. Examples of image splicing forgery. (a) Modified the sky
background, (b) modified the object in the middle, (c) added animals to
the image.

Based on locality and translation invariance, CNN has
achieved tremendous success in computer vision, such as
classification [7], [8], [9], object detection [10] and seman-
tic segmentation [11]. As a result, many splicing detection
methods based on CNN have been proposed and demonstrate
better performance than traditional ones. These CNN-based
tamper detection methods can extract a variety of image
fingerprints simultaneously. By a huge margin, traditional
methods can only get a single image attribute and lacks
of generalization. For example, Zhou et al. [12] introduced
Faster Region-CNN using both RGB stream and noise stream
to detect the tampered regions of a manipulated image. They
extract noise features from the forged images using an SRM
filter layer that can capture noise inconsistencies between
tampered areas and real areas. Nonetheless, the limitation
of this method is that it can only achieve region-level tam-
per localization result. In order to achieve pixel-level result,
a possible solution is to use fully convolutional networks.
Bappy et al. [13] presented a hybrid CNN-LSTM model
to learn the spatial structure between those tampered and
non-tampered regions in the shared boundary. Chen et al. [14]
proposed an encoding and decoding framework that utilizes
both hybrid features and semantic reinforcement network
for image forgery detection. Particularly, resampled features
with long-short term memory is utilized to capture traces
from the image patches for finding manipulating artifacts.
However, all the above-mentioned methods [12], [13], [14]
perform image tamper detection by processing pictures in
patch first, which means they focus only on local areas and
ignore relationships between sub-regions, thus their localiza-
tion performance depends on the size of the patches.

To get around of this issue, some end-to-end networks
have been proposed, which regard the problem of pixel-level
forgery localization as an image segmentation or object
detection task. Bi et al. [15] presented an end-to-end
deep neural network that uses the residual-propagation and
residual-feedback modules to capture discriminative features
between manipulated and non-manipulated regions. How-
ever, the performance of the method is not yet satisfactory
especially for large-scale tampered areas, which may be
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caused by the insufficient consideration of global correla-
tions. Wu et al. [16] presented an end-to-end deep neural
architecture (ManTra-Net), which utilizes two structures to
classify forgery images and detect different forgeries such
as enhancement, splicing, copy-move, and even unknown
types. However, the performance of Mantra-Net is also poor
particularly on the dataset of Casia. Bi et al. [17] employed
an image forgery detection method based on dual-encoder
U-Net. This method utilizes a fixed encoder and an unfixed
encoder. The unfixed encoder learns the forensic features to
distinguish between the tampered and non-tampered areas.
And the fixed encoder uses DWT (Haar discrete wavelet
transform) to extract the direction information of the bound-
ary of the tampered area. In addition, a spatial pyramid
global-feature extraction module is designed to get global
feature. The results show that the method can effectively
improve the detection accuracy without pre-training or train-
ing on a large dataset. Bi et al. [18] proposed a multitask
wavelet corrected network (MWC-Net) which can generate
more comprehensive and representative features for image
splicing detection and localization. However, the method of
MWC-Net still does not take into account global features,
which leads to probably poor localization performance for
large-scale forgeries. Myung-Joon Kwon et al. [19] presented
CAT-Net, which is also an end-to-end fully convolutional
neural network including a RGB stream and a DCT stream.
CAT-Net effectively learn the forensic features remaining in
each domain through RGB stream and DCT stream. Each
stream takes different resolutions to handle tampered regions
of various sizes and shapes.

With the popularity of attention mechanism, some methods
add attention mechanism to CNN and achieve better perfor-
mance. Rao et al. [20] proposed a novel network that incor-
porates with multi-semantic CRF-based attention model. The
attention map generated by multi-semantic CRF-based atten-
tion model can suppress noise and highlight informative
regions to guide the network to extract more representative
features around forged boundaries. Liu et al. [21] devel-
oped a PSCC-Net for image forgery detection and localiza-
tion. PSCC-Net adopt HR-Net as backbone, and generate
manipulated regions in a coarse-to-fine fashion. Meanwhile,
a spatial-channel correlation module is proposed to perform
channel-wise attention and spatial attention on extracted fea-
tures, which can improve the detection accuracy and the
robustness of the network.

However, most prior works ignore that the size of the
tampered area is variant and encounter difficulties in locat-
ing tampered regions of different sizes. Due to the intrin-
sic locality of convolution operation, it is difficult for
CNN-based methods to learn explicit global semantic infor-
mation dependencies and have difficulties in leveraging local
and global features jointly. Therefore, most CNN-based
approaches can only deal with limited scale variation. In addi-
tion, these methods may cause incomplete localization or
high false detection rate in locating large-scale tampered
areas.
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In order to accurately locate forged areas with various
sizes, we introduce the TransU2-Net, a U-shape hybrid Trans-
former Network, which takes the advantages of convolu-
tion and attention for image splicing forgery detection and
localization. Firstly, in the process of encoding, we employ
mixed receptive fields to extract the features of tampered
images. Secondly, the self-attention module explicitly mod-
els the complete context information by using the global
interaction between the semantic features at the end of the
encoder. In addition, cross-attention is introduced in skip
connections to filter out non semantic features, so as to
achieve fine spatial recovery in TransU2-Net decoder, and
promote correctness of prediction results. Finally, we input
the feature maps after self-attention into the decoder for
decoding. In the decoding stage, we use the learned features
to estimate the final manipulation mask. Due to this design,
the final manipulation mask can obtain both local and global
feature.

The contributions of this work can be summarized as
follows:

« We propose a novel TransU?-Net, a U-shape hybrid
Transformer Network, which integrates both self- and
cross-attention into U2-Net. It is able to capture more
contextual information and spatial dependencies from
different scales.

o We design a new cross-attention module in skip con-
nection to filter out non semantic features, so as to
enhance the low-level feature maps that are passed
through the skip connections under the guidance of
high-level semantic information, and achieve fine spatial
recovery in decoder, so as to finally promote correctness
of prediction results.

« We introduce self-attention at the last block of encoder
to combine the strength from both self-attention mech-
anism and convolution. Therefore, the TransU2-Net
can avoid to rely heavily on large-scale pre-training,
and it has the ability of Transformer to learn explicit
long-range semantic information dependencies.

« The proposed TransU2-Net, which fuses convolution
and Transformer together, can locate spliced forgeries
with various sizes, thus achieve new state-of-the-art per-
formance on public datasets.

The remainder of this paper is organized as follows.
The second section presents the implementation details
of TransU%-Net model, including residual U-blocks, self-
attention mechanism and cross-attention module. The third
section describes the experimental results of the proposed
TransU2-Net and other detection methods for comparison on
different datasets. The conclusion of this paper is in the fourth
section.

Il. PROPOSED DETECTION METHOD

In this section, we present the details of our proposed
TransU2-Net, which aims to locate the tampered regions
at pixel level. Fig. 2 gives the general framework of our
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TransU2-Net. First, considering the powerful ability of
Transformer, we combine self-attention into the last block
of encoder to learn image fingerprints, which can better inte-
grate the advantages of Transformer and encoder network,
i.e., the ability of modeling global and long-range depen-
dencies and feature learning ability. Then, cross-attention is
used to enhance the low-level feature maps with the guidance
of high-level semantic information, filter out non-semantic
features between the encoding and decoding networks, thus
achieves finer spatial recovery in the decoder and promotes
correctness of prediction results. Finally, our decoder learns
to fusion all the feature maps from low- to high-resolution
and predicts the tampered area at pixel-level. Next,
we introduce our TransU2-Net in the following three parts:
encoding network, cross-attention module and decoding
network.

A. ENCODING NETWORK

Most deep learning models for image splicing forgery local-
ization use traditional encoder-decoder [22] and no-pooling
structures [23] to extract features. However, most structures
ignore that the size of the tampered area is variant, and
thus can only solve limited scale variation. A significant
improvement of the U2-Net model [24] compared with the
traditional model is that the Residual U-Block (RSU) is able
to mix receptive fields of different sizes. That is to say,
we can utilize this advantage to better deal with the problem
of tampered areas with arbitrary size. Therefore, we use the
model of U?-Net as the backbone of our proposed TransU?-
Net. In addition, to address the issue that CNN-based detec-
tion networks lack the ability to explicitly model global
information, we introduce self-attention modules in the last
block of encoder to capture long-range semantic information
interaction.

The TransU?-Net is a two-level nested U-structure,
as shown in Fig. 2. The symmetrical structure can be used
to learn how to extract and encode multi-scale context infor-
mation. By using the different layers of RSU, the net-
work can capture multi-scale features within the stage, and
reduces the loss of detail caused by large-scale direct upsam-
pling. In addition, the nested U-structure allows the net-
work to obtain higher resolution feature maps, thus providing
multi-level deep features.

As shown in Fig. 2, TransU2-Net consists of an encoder
with six stages and a decoder with five stages. In the bottom-
up path, we use the RSU-7, RSU-6, RSU-5, and RSU-4,
respectively, where “7”, “6”, “5” and “4” denote the height
(L) of the RSU block. The L is configured based on the
spatial resolution of the input feature maps. Compared with
En_4, the pooling and upsampling operations are replaced by
dilated convolutions in the stage of En_S5, and we name this
block as RSU-4F (see Fig. 3). That means all feature maps
in RSU-4F have the same resolution. In addition, in stage of
En_6, we added self-attention module to the original RSU-4F
to form self-attention U-block.
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FIGURE 3. Illustration of residual U-block RSU.

1) RESIDUAL U-BLOCKS

Multi-scale features cannot be obtained by only using ordi-
nary convolution blocks and the shallow feature maps only
contain local features. Although the dilated convolution can
extract both local features and non-local multi-scale features
by expanding the receiving field, multiple convolutions on
the feature maps with original resolutions require too much
computational and memory resources. In order to solve the
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above-mentioned problems, U?2-Net introduces a novel RSU
to capture the multi-scale features in each stage. The struc-
tures of five residual U-block RSU-L (C;,, M, C,,;) with
different value L are shown in Fig. 3, where L represents
the height of the RSU block, C;,, C,,; are input and output
channels, respectively. M represents the number of channels
in the intermediate layers of RSU. In general, the RSU mainly
consists of three components:
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1) A 3 x 3 convolution layer that transforms the feature
map x (H x W x Cj,) to obtain an internal feature map F1(x)
with the channel of C,,;. The convolutional layer is used to
extract the local features of the current feature map.

2) A symmetric encoder-decoder structure with a height
of L, takes the internal feature map Fi(x) as input,
and extracts multi-scale feature U(F(x)). This component
encodes multi-scale features into high-resolution feature
maps through upsampling, concatenation and convolution,
which reduces the feature loss and improves the accuracy of
tamper localization.

3) A residual connection which mixes local and multi-scale
information by the summation: F(x) + U (F1(x)).

2) SELF-ATTENTION U-BLOCK

For image splicing detection and detection, both local and
global contextual information are very important. Self-
attention U-block is based on the self-attention module [25],
which can be used to model global semantic information
interaction from images. Specifically, the self-attention u-
block is constructed by integrating self-attention to the bot-
tom of the residual U-block, as shown in the right of Fig. 2,
which connects each element in the highest-level feature
map to access a global receptive field. That is to say, the
decision of a particular pixel may be affected by all input
pixels. To take into account the absolute context information,
positional encoding is added on the highest-level feature map
X € RH>XW shown in Fig. 4, where H and W represent
the height and width of the feature map, respectively, and
d is the number of channels. The positional encoding is
particularly suitable for capturing the absolute and relative
positions between the tampered areas in self-attention. The
feature map X is then reshaped to 2D feature map with size
n x d,where n = H x W. And X performs linear transform
to obtain Q, K, V € R4 for query, key, value embedding.
Embedded matrices are represented as W,, Wy, and W,,.. The
final output is a scaled dot-product (1):

T

Attention(Q, K, V) = soﬁmax(Q

V = AV.
ﬁ)

ey
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Note that A € R™" is called attention matrix, or similarity
matrix. The attention matrix can be regarded as weights to
account for the feature interactions between the keys and the
querys, as shown in Fig. 4. In this way, this module can intrin-
sically achieve the global receptive field, and can explicitly
model long-range semantic information interaction.

B. CROSS-ATTENTION MODULE

In order to make the low-level feature maps that are passed
through the skip connections more expressive for better spa-
tial recovery in decoder, we introduce cross-attention into
each skip connections of our TransU2-Net, as shown in Fig. 2.
Note that this module is not suitable for original resolution
feature map for heavy computational cost. In order to ensure
high-resolution information from skip connections, we utilize
the cross-attention module to enhance the low-level feature
maps under the guidance of high-level semantic information.
The specific operations of our cross-attention module are
shown in Fig. 5. We first add positional encoding on the
low-level feature map U € RIXZHX2W where H, W are the
height and width of space and d is the number of channels.
The feature map U is then downsampled and used as the key
of the cross-attention block. The high-level feature map N
€ R¥*HXW after adding positional encoding and a 1 x 1
convolution serve as the query and key. Then the cross affinity
matrix A € R™" is obtained by matrix multiplication and
a Softmax function, where n = H x W. Then we use the
Relu activation function to re-scale the calculated weight
value. The result is shown as S in Fig. 5, which can be
regarded as a filter, where the low magnitude element repre-
sents the irrelevant area that need to be reduced. The noise and
non-semantic features is filtered out by the Hadamard product
U - S. Finally, the filtered features and high level features
are concatenated. Through the cross-attention module, more
detailed information can be retained than that of ordinary skip
connections, thus improving the detection performance.

C. DECODING NETWORK

The structure of the decoder is similar to the encoder. For
example, in De_5, the dilated RSU-4F is deployed and has
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FIGURE 5. Illustration of cross-attention module.

Downsample + BN + Relu

a similar structure with En_S5 in the encoder. The input of the
decoder stage is the concatenation of the upsampled feature
maps generated by its previous stage and the output feature
maps of the current cross-attention module, as shown in
Fig. 2. The final mask of tampered area is generated by a
3 x 3 convolution and a sigmoid operation at the end of the
network.

In summary, our TransU?-Net design can capture rich
multi-scale features, so as to locate tampered areas of differ-
ent scales.

IIl. EXPERIMENT

This section mainly introduces various comparative exper-
iments. Subsection III-A describes the datasets used in
the experiment, the details of the experiment, and the
evaluation metrics. Subsection III-B describes ablation exper-
iments to verify the validity of self-attention and cross-
attention. Subsection III-C describes the comparison results
between TransU2-Net and several other existing methods
for detecting image splicing forgery. Subsection III-D ana-
lyzes the robustness of TransU2-Net and other detection
methods.

A. EXPERIMENTAL DETAILS

In this section, we present experimental settings. Specifi-
cally, subsection III-A1 presents details about used datasets.
Subsection III-A2 presents details about implementation and
subsection III-A3 shows employed evaluation metrics.

1) DATASETS

In this paper, we conduct experiments on two public datasets
to analyze and evaluate image splicing forgery detection
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TABLE 1. Precision, Recall and F-measure obtained by different U2-Net
variants, bold values represent best results.

Methods Precision Recall F-measure
U2-Net 0.6031 0.6634 0.5932
UZ2-Net-base-SA-1 0.6148 0.6312 0.5755
U2-Net-base-SA-2 0.6136 0.5751 0.5532
UZ2-Net-base-SA-3 0.6093 0.6225 0.5793
UZ2-Net-base-SA-4 0.7258 0.7340 0.6946
UZ-Net-base-CA 0.6823 0.6260 0.6082
TransUZ2-Net(ours) 0.8086 0.7460 0.7351

methods, which are Casia [32], Columbia [33]. Casiais a pop-
ular dataset of image forgery localization, including images
from multiple sources. Casia includes two types of tampering:
splicing, copy-move. The tampered regions of image in Caisa
dataset are carefully manipulated and post-processed through
filtering and blurring, which makes it more challenging. Since
the ground truth mask is not officially available, we used
a third-party mask [34] in our experiments. Images on the
Caisa dataset have a resolution of 384 x 256 and 640 x
480. Columbia dataset only consists of splicing forgery,
and has large but simple tampered areas. Images in the
Columbia dataset have a typical resolution of 757 x 568 and
1152 x 768. The corresponding ground truth mask is pro-
vided. We selected 1802 sets of splicing tampered images and
randomly divided them into 1622 training data and 180 test
data. Similarly, 180 groups of splicing tampered images were
selected from the Columbia dataset and randomly assigned to
160 training data and 20 test data.

2) IMPLEMENTATION DETAILS
During the training process, our TransU2-Net is trained by
using Adam optimizer [35]. The epoch of two stages are
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TABLE 2. Comparison of splicing forgery detection results between this method and other detection methods.

Method Detection Result
CASIA COLUMBIA
Precision | Recall | F-measure | Precision | Recall | F-measure
CFA [26] 0.144 0.697 0.202 0.747 0.599 0.584
ELA [27] 0.086 0.975 0.158 0.316 0.961 0.475
NOI [28] 0.149 0.992 0.258 0.422 0.997 0.593
ADQ [29] 0.402 0.585 0.476 0.367 0.998 0.536
NADQ [30] 0.278 0.455 0.285 0.329 0.225 0.238
U-Net [31] 0.734 0.629 0.626 0.820 0.816 0.779
UZ-Net [24] 0.603 0.663 0.593 0.915 0.803 0.808
UZ2-Net-base-SA-1 0.615 0.631 0.576 0.859 0.801 0.804
UZ2-Net-base-CA 0.682 0.626 0.608 0.876 0.858 0.857
RRU-Net [15] 0.678 0.586 0.586 0.836 0.904 0.855
ManTra-Net [16] 0.631 0.673 0.651 0.716 0.549 0.621
TransU2-Net(ours) 0.809 0.746 0.735 0.885 0.878 0.872

100 and 150, respectively. The initial learning rate for the
first stage is set to 0.001 and that of the second stage is set
to 0.0001. The weight decay is set to 0, and the batch size is
set to 8. During the experiments, the proportion of validation
sets is 0.1. We use Pytorch 1.8.1 as our training framework.
Training and testing are conducted on RTX 3060 GPU (12GB
memory).

3) EVALUATION METRICS

In order to quantitatively evaluate the pixel level performance
of image splicing forgery detection methods, we use the
precision, recall rate and F-measure as evaluation indicators.

P

Precision = —— 2)
TP + FP
TP
Recall = ——— 3)
TP + FN
2 x Precision x Recall
F — measure = “4)

Precision + Recall

where TP denotes the numbers of correctly detected and
FP denotes the numbers of erroneously detected tampered
pixels and FN is the numbers of falsely missed pixels.

B. ABLATION EXPERIMENT

In order to verify the influence of attention, we evaluate the
performance of the U?-Net in varied setups with the attention
added progressively. All results in this section are based on
experiments by using Casia dataset. As shown in Table 1,
‘U%-Net’ means the original U2-Net without attention. “U>-
Net-base-SA-1’ means to replace the last RSU-4F of U2-
Net encoder with self-attention U-block. ‘U%-Net-base-SA-2’
means to replace the all RSU-4F of U2-Net with self-attention
U-block. ‘U%-Net-base-SA-3’ refers to adding a self-attention
module after the last RSU-4F of U?-Net encoder. ‘U?-Net-
base-SA-4’ refers to adding self-attention modules to the
last two layers of all RSU encoders in U2-Net. ‘U?-Net-
base-CA’ indicates U%-Net adding four cross-attention mod-
ules. ‘TransU2-Net” means U2-Net combining self-attention
and cross-attention. Comparing U?-Net-base-SA and U?-
Net-base-CA and the original U?-Net, the performance is
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gradually improved, which clearly shows the effectiveness
of self-attention and cross-attention. And TransU2-Net has
achieved the highest precision, recall, and F-measure.

C. COMPARATIVE EXPERIMENTS AND ANALYSIS
This subsection compares the performance of our proposed
TransU2-Net and other methods.

To further evaluate the effectiveness of our TransU?-Net
effectiveness, we selected five traditional detection methods
ADQ [29], CFA [26], ELA [27], NOI [28], NADQ [30]
and six detection methods RRU-Net, U-Net [31], ManTra-
Net [16], U-Net [24], U?-Net-base-CA, U?-Net-base-SA-1
based on deep learning to compare with the TransU2-Net
proposed in this paper.

From the experimental results presented in Table 2, it can
be seen that compared with deep learning based methods,
the traditional methods have poor precision and F-measure
value. NOI and ELA achieved very high recall value because
they treated entire image as a tampered area. TransU2-Net
achieved the highest precision and F-measure values on both
Casia and Columbia datasets. In addition, the number of
parameters of the proposed network, U-Net, and RRU-Net,
U2-Net are 1,397,421, 13,395,329, 4,097,249, and 1,131,181
respectively, and U?-Net uses a smaller version. In summary,
it can be seen that the proposed TransU2-Net has relatively
small number of parameters and achieved high performance.

As shown in Fig. 6, six groups of data are selected from
the test dataset as examples, of which the first to fourth
groups of data are from Casia dataset, the fifth and the sixth
groups of data are from Colombia dataset. The first row
and the second row are the tampered image and the ground
truth, respectively. All the remained rows are the detection
results of other nine methods and TransU2-Net. From the
experimental results, ADQ algorithm has a certain detection
effect on the splicing tampering of Casia dataset, while the
splicing tampering detection effect of Columbia dataset is
very poor. CFA algorithm can better locate the tampered area
in Columbia dataset, but it is difficult to locate the tampered
area in caisa dataset image. Compared with traditional meth-
ods, the deep learning methods can effectively locate the
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FIGURE 6. Comparison of splicing forgery detection results between the proposed TransU2-Net and other detection

methods.

tampered area for Casia dataset and Columbia dataset. How-
ever, U-Net and RRU-Net still have many problems such as
wrong segmentation, excessive segmentation and incomplete
localization. Finally, our proposed TransU2-Net can more
accurately locate the tampered areas of different sizes.

D. ROBUSTNESS ANALYSIS
To further evaluate the robustness of TransU?-Net, we com-
pare the performance of the TransU?-Net and other detection
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methods in Casia and Columbia datasets under two types of
attacks: Gaussian noise attack and JPEG compression.

1) EXPERIMENTAL RESULTS OF ROBUSTNESS AGAINST
GAUSSIAN NOISE ATTACK

This section discusses and evaluates the robustness of
TransU?-Net and other detection methods against Gaussian
noise attack. As shown in Fig. 7, we compare different eval-
uation metrics of the Casia dataset images under different
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FIGURE 10. Comparison of experimental results of JPEG compression attacks by different methods in Columbia dataset.

variance of Gaussian noise attacks. Also as shown in Fig. 8,
we compare different evaluation metrics of Columbia dataset
images with different variance of Gaussian noise attacks.
From the experimental results, it can be seen that with the
increase of variance of Gaussian noise, each evaluation index
of different detection methods has a certain degree of reduc-
tion. As shown in the Fig. 7 and Fig. 8, with the increase
of variance of Gaussian noise, the Gaussian noise attack
has some impact on the deep learning methods, but its per-
formance is still better than traditional detection methods.
On Casia dataset and Columbia dataset, the precision and
F-measure of TransU2-Net are far better than those of other
six detection methods. The recall value of the TransU2-Net
is slightly lower than the RRU-Net. In addition, with the
increase of variance of Gaussian noise, the detection index
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of TransU2-Net is least affected. This experiment proves that
the proposed TransU?-Net is robust against noise attacks on
all two datasets.

2) EXPERIMENTAL RESULTS OF ROBUSTNESS AGAINST JPEG
COMPRESSION

This section discusses and evaluates the robustness of
TransU2-Net and other detection methods against JPEG com-
pression attack. In Fig. 9, we compare different evaluation
metrics of Casia dataset images under distinct JPEG compres-
sion. In Fig. 10, we compare different evaluation metrics of
Columbia dataset images under distinct JPEG compression.
We can see from these figures that the JPEG compression
has some influence on image tampering detection. When the
quality factor gradually decreases, the precision, recall, and
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F-measure values of CFA and ADQ is reduced to a very
low value, but the impact on the method based on deep
learning is very slight. The deep learning method has a strong
resistance to compression attacks because it is a detection
method based on image content features. Therefore, compres-
sion attacks have little impact on the deep learning method.
In addition, as the quality factor is reduced from 100 to 50,
the TransU?-Net presented in this paper is still superior
to other methods and robust to both Casia and Colombia
datasets.

IV. CONCLUSION

In this paper, we propose a novel hybrid Transformer
architecture named TransU2-Net, which can locate image
tampered regions. Firstly, TransU2-Net integrates both
self-attention and cross-attention into U2-Net. Therefore, the
TransU2-Net can avoid relying heavily on large-scale pre-
training, and it has the ability to learn explicit long-range
semantic information dependencies. Compared with previous
methods, our model can locate forged areas that have differ-
ent scales. Secondly, to enhance the low-level feature maps
that are passed through the skip connections and achieve
fine spatial recovery in TransU2-Net decoder, we designed
the cross-attention module. Therefore, it is more general
and effective for complex image forgery. Finally, Experi-
ments on two standards image forgery datasets show that
our method achieves better performance than state-of-the-art
methods.

Although our method achieves better performance in terms
of precision, recall rate and F-measure without using large-
scale pre-training, there are still some problems to be solved,
such as: 1) our model is not good at generalization for
cross dataset testing; 2) The detection capability is rela-
tively simple and only applicable to the detection of splic-
ing images. On this basis, our future work will focus on
addressing these issues. Specifically, 1) improve the uni-
versality of the algorithm model by training the model on
high-quality data sets with multiple tampering methods;
2) Combining the idea of transfer learning, an effective detec-
tion model suitable for cross dataset training and detection
can be proposed to improve the generalization ability of the
model.
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