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ABSTRACT Collaborative filtering methods for recommender systems tend to represent users as a single
static latent vector. However, user behavior and interests may dynamically change in the context of the
recommended item being presented to the user. For example, in the case of movie recommendations,
it is usually true that movies that the user watched more recently are more informative than movies that
were watched a long time ago. However, it is possible that a particular movie from the past may become
suddenly more relevant for prediction in the presence of a recommendation for its sequel movie. In response
to this issue, we introduce the Attentive Item2Vec++ (AI2V++) model, a neural attentive collaborative
filtering approach in which the user representation adapts dynamically in the presence of the recommended
item. AI2V++ employs a novel context-target attention mechanism in order to learn and capture different
characteristics of the user’s historical behavior with respect to a potential recommended item. Furthermore,
analysis of the neural-attentive scores allows for improved interpretability and explainability of the model.
We evaluate our proposed approach on five publicly available datasets and demonstrate its superior perfor-
mance in comparison to state-of-the-art baselines across multiple accuracy metrics.

INDEX TERMS Artificial neural networks, collaborative filtering, neural attention, recommender systems.

I. INTRODUCTION
Collaborative Filtering (CF) is one of the most effective and
widely used methods for recommender systems [1]. Its aim is
to recommend items to users based on their historical inter-
actions with other items. As such, the underlying assumption
of any CF algorithm is that users’ past experiences are highly
predictive of their future preferences. For instance, a user who
enjoyed watching a certain type of comedy movie is likely to
seek another movie that is similar to the one she previously
watched. Thus, a user’s memory, such as the items they have
interacted with, plays a crucial role in shaping their future
recommendations.

Although the role of memory in human decision-making
is not fully understood, empirical evidence suggests that the
human memory is dynamic, and different memories become
more accessible in different contexts [2], [3], [4], [5]. Sim-
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ilarly, users’ interests and preferences are also dynamic and
context-dependent [6], [7]. According to preference construc-
tion theory, individuals do not always have a clear idea of
their preferences from the outset; rather, their preferences are
shaped and constructed through complex decision-making
processes based on past experiences [8], [9]. Therefore, tra-
ditional CF methods that represent users as a static vector
regardless of the context fail to account for the dynamic
nature of users’ preferences and their varying relevancy to
different items.

To address this issue, there is a need to develop more
sophisticated CF models that can capture the dynamic nature
of users’ preferences and the varying relevancy of different
past experiences. These models can leverage more complex
representations of users that can capture contextual infor-
mation and the evolving nature of their preferences. Such
models can enhance the accuracy of recommender systems
and improve user satisfaction by providing recommendations
that are more relevant and better personalized.
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FIGURE 1. The distribution of attention scores over a user’s historical items which include
both horror movies and family-fantasy movies. The scores are presented with respect to
2 different items: (1) on the upper image, with respect to the horror movie ‘‘The Scream
(1996)’’ and (2) on the lower image, with respect to a family-fantasy movie ‘‘Cinderella
(2021)’’. We see how the attentive relevant scores adopt with respect to the target item.

To illustrate this gap, consider the example in Fig. 1 depict-
ing a list of historical movies that a user has watched. The
list of movies consists of both horror movies as well as some
family-fantasy movies. Accordingly, the user in this example
is generally interested in popular mainstream horror movies,
but from time to time her 5 years old daughter joins her and
they both watch an age-appropriate movie from the family-
fantasy genre. Most of the time, the family-fantasy movies
are irrelevant to her personal taste and interests which are
mostly determined by her love of horror movies. Occasion-
ally however, when considering a movie to watch with her
daughter such as the Disney movie Cinderella, all the other
family-fantasy movies she has watched in the past should
come to the foreground and become dominant in determining
her affinity to the recommended item.

This paper presents the Attentive Item-to-Vector++

(AI2V++) model, which is a novel CF model designed to
capture the dynamic nature of users’ preferences by adapting
to changes in the relevance of historical items. The AI2V++

model is inspired by the dynamic nature of the human mem-
ory, in which different memories become more accessible
in different contexts. The model uses attention mechanisms
to dynamically adjust the importance of the historical items
based on the item being considered for recommendation.
As such, AI2V++ addresses the limitations of traditional CF
models, which represent users as a static vector and ignore
the varying relevancy of different past experiences. To the

best of our knowledge, AI2V++ is the first CF model to
explicitly account for the dynamic nature of human memory
in the context of recommender systems.

The key novelty of the AI2V++ model arises from its
unique multi-attentive user representation that changes and
adjusts in the presence of the target item. To this end,
AI2V++ employs multiple attention networks in parallel on
the user’s historical items with respect to a potential target
item to score. Each attention network produces an attentive
context-target representation, representing a different pattern
in user-item affinities. This results in multiple contextual-
ized user representations which are ‘‘aware’’ of the target
item to score. At this point, the model aggregates all the
context-aware user representations to form a final contex-
tualized user representation that is subsequently used for
scoring the target item. This novel context-target attention
mechanism enables superior accuracy with respect to state-
of-the-art alternative models.

AI2V++ makes another noteworthy contribution with
respect to its interpretability properties. The attention mech-
anism embedded in AI2V++, which mimics the human
brain’s function, facilitates the identification of insights
regarding which items the model considers as more signif-
icant for the recommendations. By highlighting relevant
items in the user’s history, AI2V++’s internal processes
can be comprehended, and its predictions can be explicated.
Consequently, AI2V++ takes a step forward in the realm of
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explainability for recommender systems based on collabora-
tive filtering.

The remainder of this paper is organized as follows:
Section II covers related work concerning this research.
Section III describes the proposed AI2V++ model in detail.
In Section IV, we present an extensive evaluation of the
AI2V++ model and compare it to state-of-the-art alterna-
tives using multiple datasets. Finally, we summarize our find-
ings in Section V.

II. RELATED WORK
This section provides a review of previous studies that are
relevant to the present research. The literature review begins
with a broad classification of collaborative filtering algo-
rithms. Subsequently, deep learning approaches for recom-
mender systems are discussed, with special emphasis on
the use of neural attention in collaborative filtering. Finally,
the topic of explainable recommender systems is briefly
addressed.

A. COLLABORATIVE FILTERING
Collaborative filtering (CF) algorithms are used to model
users’ personalized preferences using historical user-item
interactions [1]. CFmodels are characterized as either explicit
e.g., item ratings, thumb up/down, or implicit e.g., clicks,
purchases, etc. Initial research, following the Netflix Prize
competition [10] focused mainly on explicit data. However,
due to the lack of explicit data in industrial applications,
research efforts shifted to focus on implicit models [11], [12].

Implicit user feedback can be challenging due to the
ambiguity of interpreting ‘non-observed’ interactions. Hence,
point-wise and pairwise methods were proposed to alleviate
this challenge and learn latent user representations. In pair-
wise methods e.g., [13] the positive user-item interaction is
contrasted with another item that the user did not interact
with. In point-wise methods e.g., [11], a positive user-item
interaction is contrasted against all other items that the user
did not interact with sometimes via sampling.

A different approach to implicit feedback collaborative
filtering is to learn only item representations without user
representations i.e., implicit user learning. These methods
emphasize the importance of learning item-to-item semantics
rather than user-to-item predictions. For example, [14] pro-
posed learning item representations from implicit feedback in
a Euclidean space. The I2V model [15] is a popular method
for learning static item representations based on CF item co-
occurrences [15]. The AI2V++ model in this paper belongs
to this category. It is inspired by I2V and adds to it the ability
to dynamically build implicit user representations based on
their items.

The I2V model is a well-known CF technique that utilizes
item co-occurrences to acquire hidden item representa-
tions. I2V is based on the Skip-Gram with Negative Sam-
pling (SGNS) approach, which is also used in Mikolov
et al.’s influential Word2Vec model to learn semantic word
representations [16]. In recent years, several studies have

demonstrated the usefulness of incorporating neural attention
mechanisms to static word embeddings, enabling them to
capture the dynamic qualities of words in relation to their
context [17], [18]. Following this trend, the authors of this
paper introduced the AI2V recommendation model, which
enhances the I2Vmodel by presenting a novel cross-attention
mechanism that modifies user representations in response to
the item being rated [19].

The model in this paper, dubbed AI2V++, enhances our
earlier conference presentation of the AI2V model [19].
Two key modifications were made to the original AI2V
algorithm. First, we introduced ordinal information into the
context-target attentionmechanism by hierarchically learning
global and personal ordinal biases. It should be noted that
the hierarchical mechanism integrated into AI2V++ repre-
sents a novel and distinct approach compared to the typical
method of learning positional embeddings that is commonly
employed in most transformers, as seen in previous works
such as [17] or in [20]. Second, we changed the categorical
cross-entropy loss in AI2V to a binary cross-entropy loss,
which is more suitable for multi-label problems, as there
are typically multiple appropriate items per user in recom-
mender systems. Our experimental results demonstrate that
both modifications significantly enhance the original AI2V
model. In particular, the incorporation of ordinal information
enables AI2V++ to consider the order in which a user’s
items were consumed, resulting in a considerable perfor-
mance improvement over AI2V. Additionally, we illustrate
how attentive score analysis in AI2V++ can be utilized for
explainability and interpretability. The code for AI2V++

was made available on GitHub1 and is expected to be easily
accessible for researchers and practitioners alike.

B. DEEP LEARNING FOR COLLABORATIVE FILTERING
In recent years, numerous deep learning-based recommender
system models have been proposed, as documented in [21],
[22], [23], and [24]. A particular strand of research aims
to substitute the conventional inner-product operation found
in Matrix Factorization (MF) models with deep neural net-
works. For instance, AutoRec [25] uses autoencoders to pre-
dict ratings, while Neural Collaborative Filtering (NCF) [26]
estimates user-item interactions throughMulti-Layer Percep-
tions (MLP). The value of this approach is currently being
debated within the research community, with some studies
suggesting that an inner product may suffice for CF tasks
and that the added complexity may be unnecessary [27],
[28]. Although the primary focus of this paper is not on this
topic, the AI2V++ model does utilize neural scoring, which
has been shown to enhance predictions in four of the five
evaluation datasets analyzed.

Another line of work seeks to employ Graph Neural Net-
works (GNNs) for CF. An example of this is the Neural
Graph Collaborative Filtering (NGCF) model [29], which
uses the well-established GCN model [30], [31], originally

1https://github.com/kerengaiger/ai2v
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designed for graph classification, to perform CF. In contrast
to conventional approaches that train distinct embeddings for
users and items, NGCF learns a function that creates embed-
dings by collecting and aggregating features from a user’s
local neighborhood. NGCF has become a state-of-the-art
model for CF by achieving superior performance compared
to many notable models, including BPR [13], CMN [32],
HOP-Rec [33], PinSage [34], and GC-MC [35]. Recently,
LightGCN was introduced as a simplified version of NGCN
by retaining only the most relevant components of NGCN.
LightGCN is simpler to implement and train, yet it has been
shown to outperform NGCN [36].

A further line of research has focused on the integra-
tion of neural attention mechanisms. The present study falls
within this category. Attention mechanisms have emerged
as a crucial component in numerous deep learning mod-
els [37]. Specifically, self-attention and transformer models
have yielded exceptional outcomes in various Natural Lan-
gauge Processing (NLP) tasks, such as language translation
and understanding [17], [20]. The success of self-attention
models in NLP has triggered widespread adaptation of these
models for computer vision [38], [39], [40]. Moreover, the
versatility and scalability of transformer models have enabled
the processing of multiple modalities (e.g., text and images)
using similar processing blocks [41].

Incorporating attention mechanisms into recommender
system models has been an active area of research. Attention-
based recommendation models mostly utilize self-attention.
One such model is presented in [42], which uses two
transformer encoders to capture mobile user click behav-
ior. Another example is SASRec [43], which employs a
self-attention mechanism to represent each item in a user’s
item sequence and generates a user representation based on
the final attention block. The user representation is mul-
tiplied by the target item embedding vector to produce
an affinity score. To emphasize the importance of the last
item in the sequence, SASRec also includes a residual
connection between the non-contextualized representation
of the last item and the final user representation. SAS-
Rec has been demonstrated to outperform several pop-
ular algorithms, including BPR [13], FPMC [44], Tran-
sRec [45], GRU4Rec [46], GRU4Rec+ [47] and Caser [48].
Finally, Bert4Rec [49] is another model for sequential rec-
ommendations which is closely related to SASRec. Bert4Rec
also employs self-attention but instead of one-directional
attention, it employs bi-directional attention via the Cloze
task [50].

AI2V++ differs from these models in several aspects:
First, in contrast to the above models, which are focused on
sequential recommendations, AI2V++ is a traditional CF
recommendation model that performs a different prediction
task and is evaluated using different datasets. Importantly,
its approach to user representation also sets AI2V++ apart.
AI2V++ assumes that users’ interests are dynamic and can
change in response to different target items. To capture this,
AI2V++ uses context-target attention to dynamically adjust

the user’s representation based on the presence of the tar-
get item and does not employ self-attention, as do all the
aforementioned models. This approach is inspired by how the
human brain works, where different parts of memory become
relevant in different contexts.

In general, the AI2V++ model distinguishes itself
from any transformer-based model in two ways. Firstly,
AI2V++ does not utilize self-attention and instead employs
cross-attention on the target item. Second, AI2V++ relies on
cosine similarity for its attention mechanism. Furthermore,
AI2V++ employs a compound neural scoring function to
compute the similarity between the user representation and
the target item, rather than a simple inner product. Finally,
while transformer-basedmodels leverage positional encoding
to encode item sequence information, AI2V++ uses a novel
set of hierarchical ordinal bias scalars within the attention
layer to learn the relevant order of items in a user’s history.

He et al. introduced NAIS, Neural Attentive Item Simi-
larity model (NAIS) for item-based CF from [51]. Similar
to AI2V++, NAIS employs cross-attention in order to learn
the relative importance of the historical items in a user’s
profile with respect to the prediction. In that respect, NAIS
is arguably the most similar model to AI2V++. However,
there are several key differences betweenNAIS and themodel
in this paper: (1) NAIS does not learn user representations.
Instead, it is an item-centric approach in which the predic-
tions are computed according to the relation of the target
item and each of the user’s historical items without ever
computing user representations explicitly. (2) NAIS mostly
uses the item embeddings directly, or in one of its versions
(design 3 in [51]), NAIS learns a single projection matrix
on the item embeddings in order to compute the attention
scores (Equation 7 in [51]). In contrast, AI2V++ employs
4 different types of projections on the item embeddings:
2 projections for the context items and 2 for the target
items. In each case, context or target, the first projection is
used in order to transfer the item into the attention scor-
ing space while the second projection is used in order to
compute the dynamic user representation and the target item
representation prior to the final user-item scoring function.
By employing different projections for the attention and for
the final prediction, AI2V++ is able to disconnect these two
distinct functions, which gives it much more flexibility. For
example, consider the case of items in the user history that
are in general very similar to the target item, yet their rela-
tive importance (attention) with respect to the user’s taste is
marginal. (3) Another key difference is the fact that AI2V++

injects ordinal information into the context-target attention
mechanism, which as we show in Section IV-F, makes a dra-
matic contribution to the model’s accuracy. This is achieved
by a novel learnable mechanism of hierarchical global and
personal ordinal biases which help emphasize recent events
over older events. (4) While NIAS employs a single cross-
attention unit, AI2V++ employs multi-head attention which
gives it further descriptive power. (5) Last but not least,
a key advantage of AI2V++ stems from its ability to extract
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TABLE 1. AI2V++ notation summary.

intuitive explanations for its predictions. ExplainableAI algo-
rithms and in particular explaining recommender systems is
an important open research question [52]. While it may be
possible to extract meaningful explanations from NAIS, the
authors in [51] do not address the issue at all. In contrast,
the current paper explains and demonstrates how AI2V++

provides interpretability over its predictions which can be
further harnessed for generating user-intuitive explanations.

C. EXPLAINABLE RECOMMENDER SYSTEMS
In recent years, the need for explainable AI has become
a topic of increasing interest and importance for both the
research community and industry, as evidenced by the grow-
ing number of publications and regulations in the field [53],
[54], [55]. For example, the European Union General Data
Protection Regulation determines that users have a basic
‘‘right to an explanation’’ concerning algorithmic decisions
based on their personal information [55]. Similar regula-
tions either exist or are publicly proposed in other coun-
tries. Specifically, in the context of recommender systems,
the goal of explanations is to provide justifications for rec-
ommendations in a way that is understandable to human
users [52]. Previous research has shown that transparency and
interpretability are crucial for building trust in recommender
systems and ensuring their effectiveness [56]. In this regard,
AI2V++ offers a distinct advantage over many existing CF
algorithms. By analyzing AI2V++’s attention scores over
the user’s historical items, the model’s inner workings can be
revealed, providing transparency and interpretability that is
often lacking in other CF approaches that operate as a ‘‘black
box’’ to end users.

III. THE MODEL
TheAI2V++model builds upon the I2Vmodel [15] and adds
to it the ability to learn dynamically adaptive user representa-
tions. Hence, we first formalize and provide a brief overview
of the Item2Vec (I2V) model which serves as the basis for
AI2V++. Then, we continue to describe the AI2V++model
in detail.

A. ITEM2VEC (I2V)
Let I = {i}Mi=1 be a set ofM item identifiers. For each item i,
I2V learns latent context and target vectors ui, vi ∈ Rd . These

latent vectors are estimated via implicit factorization of the
items’ co-occurrence matrix. Specifically, the training data
for I2V consists of a list x = (l1, . . . , lK ) for each user of the
historical items that were co-consumed by that user.

Without loss of generality, we consider a dataset of a single
user x, where the extension to multiple users is straightfor-
ward and can be found in [15]. The objective of I2V is to
learn item co-occurrences. This is achieved by minimizing
the following loss function:

LI2Vx = −

K∑
i=1

K∑
j<i

log p(lj|li), (1)

with

p(lj|li) = σ (s(li, lj))
∏
k∈N

σ (−s(li, k)), (2)

where s(i, j) = uTi vj, σ (x) = (1 + exp(−x))−1 and N ⊂ I
is a subset of items that are sampled from I according to the
unigram item popularity distribution raised to the power of
0.5. The items inN are treated as negative context items with
respect to the target (positive) item lj.

In order to mitigate the popularity bias in common CF
datasets, I2V further applies a subsampling procedure in
which positive items are randomly discarded from users
according to their popularity. The amount of subsampling
is controlled by a hyperparameter that is adjusted w.r.t. the
dataset statistics as explained in [15].

During the training phase, I2V learns the sets of context
and target vectors U,V ⊂ Rd by minimizing LI2Vx using any
stochastic gradient descent method. In the inference phase,
the affinity between the context and target items i and j is
based on the cosine similarity as follows:

cos(ui, vj) =
uTi vj

|ui||vj|
. (3)

The I2V model is commonly used in the recommender
systems community especially for learning item similarities
from collaborative filtering data. In what follows, we keep
the notations for the context and target vectors from above,
i.e., U,V ⊂ Rd .

B. ITEM2VEC++ (AI2V++)
The AI2V++ model is designed to estimate the likelihood of
a user consuming a target item based on her past consumption
history. Compared to the I2V model, AI2V++ incorporates
several modifications. First, it utilizes a novel attention mech-
anism that allows personalization by selectively attending
to the user’s historical items in the context of the target
item. Second, AI2V++ introduces a hierarchical ordinal bias
scalar to the attention layer, which enables the model to learn
the relevant order of items within the user history. Addition-
ally, AI2V++ employs a neural scoring function to compute
the similarity between the user representation and candidate
items, instead of the dot-product function used in I2V. Finally,
the model incorporates target biases to address popularity
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FIGURE 2. A schematic illustration of the AI2V++ model. First, the context and target item embeddings are multiplied by the learnable
transformation matrices Ai

c and Ai
t , respectively. Then, cosine similarity is calculated between the transformed target item and each of the

transformed context items. The attention weights αi
mj are given by the softmax operation applied on the sum of the cosine similarities, the global

ordinal biases λm, and the user-personal ordinal biases λx
m. The sub-user representation ai

j−1 is the sum of the transformed context items
weighted by the attention weights. This calculation is repeated over N multiple attention heads, where i denotes the attention head index. The
final sub-user representation zj−1 is given by concatenating {ai

j−1}Ni=1 and passing through S. In parallel, the target item representation is passed
through Bt and scored according to the neural scoring functions φ Eq. 7 and ω Eq. 8. Finally, the popularity bias blj

of the target item is added to
account for general popularity patterns.

biases and avoid the need for subsampling as used in I2V.
The multi-attentive context-target mechanism of AI2V++

is illustrated in Figure Fig. 2. The details of the model are
explained in a step-by-step manner, and the notations used in
the model are summarized in Tab. 1 for ease of reference.

1) A DYNAMIC USER REPRESENTATION
Consider a user with a list x = (l1, . . . , lk ) of historical items
which are ordered by the time of consumption. We denote a
sub-user by xj−1 = (l1, . . . , lj−1), (j < k), i.e., a sub-user is
simply a sub-sequence of the historical items consumed by
the user. The attentive context-target mechanism produces an
attentive sub-user representation for xj−1 as follows:

aj−1 =

j−1∑
m=1

αjmBculm , (4)

where ulm ∈ Rd is the item representations for item lm, Bc ∈

Rd×d is a learnable linear mapping that maps the historical
context item vectors to a new space, and αjm are the attention
weights. These attention weights are computed dynamically
based on the target item lj according to:

αjm =
exp(τ cos(Aculm ,Atvlj ) + λj−m + λxj−m)∑j−1
n=1 exp(τ cos(Aculn ,Atvlj ) + λj−n + λxj−n)

, (5)

where vlj ∈ Rd is the target item’s vector, and Ac,At ∈

Rd×dα are learnable linear mappings from the original context
and target spaces to a dα-dimensional context and target atten-
tion space, respectively. The attention scores are based on the
cosine similarity within this attention space. The hyperparam-
eter τ controls the attention sphere’s radius.
The AI2V++ model includes global and personal ordinal

biases that incorporate temporal information: 3 = {λi}
Cmax
i=1
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are global (shared by all users) ordinal biases that learn the
importance of each position in the context items sequence
(Cmax is the maximal sequence length of a sub-user), and
3x

= {λxi }
Cmax
i=1 are the personal ordinal biases for user

x that enables personalized correction to the global ordinal
biases 3. 3x allows for a subsequent layer of personalization
that is instrumental for users that do not conform to the global
temporal trend captured by the global ordinal biases 3.
During optimization, we employ L2 regularization on 3x

s.t. their effect is pronounced only if the specific user behavior
justifies a different pattern than the global trend learned by 3

(see Eq. 10). In the evaluation of the model (Sec. IV, we show
that the addition of the global and personal ordinal biases,
which were not included in the conference presentation of
AI2V [19], significantly contributes to the model’s accuracy.

Finally, the attentive sub-user representation aj−1 (Eq. 4) is
a convex combination of her historical item representations.
aj−1 is dynamic and depends on the item lj: the importance
and hence the weight of each historical item lm in xj−1 is
governed by its affinity αjm to the target item lj. In other
words, if lj changes, aj−1 changes as well. This mechanism
tries to mimic how the human mind works: when considering
different items, different memories come to the foreground
and influence our opinion.

2) A MULTI-ATTENTIVE USER REPRESENTATION
AI2V++ applies the above attentive context-target
mechanism multiple times in order to learn several user
representations in parallel. These representations are then
aggregated to form a multi-attentive user representation.
Specifically, we propose to learn N context-target atten-
tion mechanisms, in parallel. Each attention mechanism
is associated with different sets of learnable parameters
{Ai

c,A
i
t ,B

i
c, 3i, {3

x
i }
X
x=1}

N
i=1, where X is the number of

users. This process produces N attentive context-target rep-
resentations for each user {aij−1}

N
i=1 according to Eq. 4. Then,

the final multi-attentive user representation zj−1 is given by:

zj−1 = Swj−1, (6)

where wj−1 = [(a1j−1)
T , . . . , (aNj−1)

T ]T is a stacked matrix
based on the N attentive context-target representations, and
S ∈ Rd×Nd is a learnable linear mapping that transforms the
multiple user representations of the sub-user back to the orig-
inal dimension. This allows AI2V++ to learn various types
of attention functions and aggregate the information extracted
by each attention function into the final multi-attentive user
representation.

3) THE AI2V++ SIMILARITY FUNCTION
The multi-attentive user representation zj−1 from Eq. 6
encodes the output from the multiple attentive context-target
units. AI2V++ computes the affinity between a user and a
target item by applying a neural scoring function φ : Rd

×

Rd
→ R as follows:

φ(u, v) = W1ReLU(W0([u, v,u ◦ v, |u − v|])), (7)

where ◦ denotes the Hadamard product, and W0 ∈ Rd×4d

and W1 ∈ R1×d are learnable linear mappings (matrixes).
It is a neural network with a single ReLU-activated hidden
layer and a scalar output. According to our experiments, this
scoring function, inspired by [57], outperformed the use of
the dot-product as the similarity function. The final score of
sub-user xj−1 and the target item lj is given by:

ω(xj−1, lj) = φ(zj−1,Btvlj ) + blj , (8)

where φ is the neural scoring function from Eq. 7, Bt ∈ Rd×d

is a learnable linear mapping, and blj is a popularity bias for
the target item lj.

4) THE LOSS FUNCTION
Our goal is to compute the probability of the item lj given the
historical items in xj−1, i.e., p(lj|xj−1). To this end, AI2V++

models p(lj|xj−1) according to:

p(lj|xj−1) = σ (ω(xj−1, lj))
∏
k∈N

σ (−ω(xj−1, k)), (9)

where ω(·, ·) is the AI2V++ score function from Eq. 8,
and N is defined in the same manner as in Eq. 2. Finally,
AI2V++ loss for a user x is given by:

Lx = −

K∑
j=2

log p(lj|xj−1) + γ

N∑
i=1

∥3x
i ∥

2
2, (10)

where γ is a hyperparameter that controls the regularization
of the personal ordinal biases (correction) for user x.

The optimization proceeds with stochastic gradient descent
on the BCE loss with negative sampling. At the inference
phase, the similarity between a user x and a target item k is
computed by ω(x, k).

IV. EVALUATIONS
In this section, we describe the experimental setup and the
results of our evaluations.

A. EXPERIMENTAL SETUP
Training, validation, and test sets were generated using the
leave-one-out approach, i.e., for a user with K items, we allo-
cated the K ’th item (the last item) for the test set, and the
item before it (item K − 1) for the validation set. The rest
of the items (items 1 till K − 2) were used for the train-
ing set. Since not all sub-user sequences are of the same
length, we fixed a window size based on the longest sequence
and padded shorter sequences at their beginning accordingly.
Furthermore, when training the model, we set the attention
weights of those padded positions to zero so they won’t affect
the sub-user representation. The prediction of the hidden item
for each user was done by applying the similarity function
from Eq. 7 to all candidate items and returning the item with
the maximal score.
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TABLE 2. Dataset statistics.

B. DATASETS
We consider several datasets from different domains. Each
of the datasets consists of the following fields: user ID, item
ID, rating, and timestamp. On each dataset, we filtered users
with less than 4 items or more than 1,000 items. AI2V++ is
designed to employ implicit ratings, hence explicit numerical
ratings were first scaled to a 5-star rating scale, and then
ratings of 4 stars and above were considered as positive
examples. The following datasets were considered:

• MovieLens 1M: The MovieLens-1M database [58] has
been widely used to evaluate collaborative filtering algo-
rithms [59]. It consists of 1 million ratings from 6,040
users to 3,883 movies.

• Moviesdat: The Moviesdat dataset [60] consists of
26 million ratings from 270,000 users to 45,000 movies.

• Netflix: The Netflix dataset [10] consists of more than
100 million ratings by 480,189 users to 17,770 movies.

• Yahoo! Music: From the Yahoo! Music dataset [12]
we sampled 19,989 users with 30,000 items and around
3.36 million user ratings.

• Amazon Books: The Amazon Books dataset [61] is
based on book reviews crawled from amazon.com. This
dataset consists of 22.5 million reviews given by 8.9 mil-
lion users to 2.37 million books.

Before describing the evaluation process, we briefly inves-
tigate some relevant statistical properties of the datasets
above. We measure the sparsity of the datasets by calcu-
lating the percentage of user-item pairs without ratings out
of the entire user × item ratings matrix. As expected for
collaborative filtering datasets, the sparsity level was high in
all cases. In particular, rating sparsity in the Moviesdat and
Amazon datasets is significantly higher. Table 2 summarizes
these statistical properties for each dataset. In addition, Fig. 3
presents the popularity distribution of the different datasets
used in this research on a logarithmic scale. As can be seen,
all datasets present very skewed distributions. However, the
items in the Yahoo! Music dataset suffer from a much higher
degree of popularity skew.

C. EVALUATION METRICS
The qualitative measurements in this paper follow [59], [62]
and cover the following metrics:

• Hit Ratio at K (HR@K): The percentage of the pre-
dictions made by the model, where the positive test item
was found in the top K items suggested by the model.
Formally, a test-set tuple (x1:t−1, lt ) is scored ‘1’ if the
test item lt was ranked in the top K recommendations

produced by the model w.r.t. to the user x1:t−1 and ‘0’
otherwise:

HR@K =

{
1, if post ≤ K
0, otherwise,

where post is the position of the test item in a ranked
list of all items. We report the mean HR@K for all the
users in the dataset. Note that, unlike the other metrics,
the HR@Kmeasure ignores the exact position of the test
item as long as it appears in the top K .

• Mean Reciprocal Rank at K (MRR@K): This metric
reports the average Reciprocal Rank at K (RR@K),
where the reciprocal rank is set to zero if the target item
does not appear in the top K recommendations:

RR@K =


1
post

, if post ≤ K

0, otherwise,

where post is the position of the target item within the
ranked list of items for the user. We report the mean
RR@K for all the users in the dataset.

• Normalized Discounted Cumulative Gain at K
(NDCG@K): This metric reports the Discounted
Cumulative Gain at K (DCG@K) normalized by the
Ideal Discounted Cumulative Gain at K (IDCG@K)
which is achieved by the optimal ranking order. In our
case, since there is only one test item, the NDCG@K is
calculated as follows:

NDCG@K =


1

log2(post + 1)
, if post ≤ K

0, otherwise,

where post is the position of the test item. We report the
mean NDCG@K for all the users in the dataset.

• Mean Percentage Rank (MPR): This metric is a
recall-orientedmetric that is used tomeasure the average
user satisfaction with items in an ordered list. MPR
considers the entire list of ranked items (not just the
top K ). The percentile rank is defined as follows:

PR =
post
N

, (11)

where post is the position of the target item within the
ordered list of all items for the user, and N is the number
of items in the catalog. The Mean Percentage Rank is
the mean PRu for all the users in the dataset. Note that,
unlike the previous metrics, lower values of MPR are
more desirable, as they indicate that the test item was
ranked closer to the top of the recommendation lists.

D. BASELINES
The following baselines were considered for evaluation:

• Popularity (POP): This simple baseline ranks the items
based on their popularity and recommends the most
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FIGURE 3. Item popularity skew for the different datasets - from the most popular item
(first percentile on the left) to the least popular item (on the right). We see that all
datasets suffer from a strong popularity skew and a long tail of less popular items. In the
Yahoo! Music dataset this phenomenon is even more prominent.

popular items to all users. While this approach lacks
personalization, it was shown to perform well on many
collaborative filtering tasks [59].

• Item2Vec (I2V): The Item2Vec (I2V) model is an
item-based Collaborative Filtering model that gained
much popularity in recent years [15]. As explained ear-
lier, AI2V++ generalizes I2V by incorporating a neural
attention mechanism in order to dynamically generate a
user representation. As such, I2V serves as an ablated
version of AI2V++ that showcases the contribution of
AI2V++’s improvements.

• Neural Collaborative Filtering (NCF): Neural Col-
laborative Filtering (NCF) [26] employs Generalized
Matrix Factorization (GMF) [63] with a multi-layer
perceptron (MLP) for the user-item interaction func-
tion. The NCF model showed significant improve-
ments over many well-know state-of-the-art methods
such as ItemKNN [64], BPR [13], eALS [65], and
WMF [11].

• LightGCN: LightGCN [36] is the leading graph-based
model for Collaborative Filtering [30], [31]. The model
learns user and item embeddings by linearly propagating
them on the user-item interaction graph, and a weighted
sum of the embeddings from all layers is used as the
final user representation. LightGCN is an improvement
over NGCF [29] which was shown to outperform many
previous models such as graph-based GC-MC [35] and
PinSage [34], neural network-based models such as
NCF [26] and CMN [32], and factorization-based mod-
els such as BPR [13] and Hop-Rec [33]. In addition,
in [36], LightGCN was shown to outperform Mult-
VAE [66], and GRMF [67].

• SASREC: Self-attentive sequential recommendation
(SASRec) [43] incorporates a self-attention mechanism
to utilize user ‘context’ activities based on actions
they have performed recently. SASRec was shown to
outperform strong baselines such as GRU4Rec [46],
GRU4Rec+ [47], and Caser [48].

• NAIS: Neural Attentive Item Similarity model (NAIS)
for item-based CF from [51]. Similar to AI2V++, NAIS
employs cross-attention based on the target item but
differs from AI2V++ in multiple aspects as described
in Section II.

• AI2V++: The model presented in this paper.
• AI2V-Vanilla: This is the basic version of AI2V
from our conference presentation [19]. The differences
between AI2V and AI2++ were covered in Section II.
AI2V-Vanilla is an ablated version t showcases the rela-
tive improvements made in AI2V++.

• AI2V-Pos: An ablated version of AI2V++ which is
based on AI2V-Vanilla plus the hierarchical ordinal
biases (from Sec. III-B). This version comes to show-
case the specific contribution of the ordinal biases to
AI2V++.

• AI2V++ dot:An ablated version of AI2V++, in which
we replaced of the neural scoring function from Eq. 7
with the dot-product. This ablated version comes to
showcase the relative contribution of AI2V++’s neural
scoring function.

E. HYPER-PARAMETERS AND CONFIGURATION
Hyper-parameters tuning was performed on all baselines
and ablated versions using the Optuna optimization frame-
work [68] on the validation set. Specifically, AI2V++’s
hyper-parameters used in this paper are as follows: The
dimensions of the attention layer weights, At ,Ac, and Bc,
were set to 50. The parameter controlling the radius sphere in
the attention weights calculation, τ , was set to 1. The number
of negative items that were sampled for each positive target
item was set to 7. The model was trained using Adagrad [69]
and a mini-batch of 32 samples until the learning process has
finished and overfitting has been achieved. Then, the model
with the best validation score was chosen for evaluation. The
following hyper-parameters were optimized separately for
each dataset (using the validation set): learning rate, embed-
ding size, and the number of attention heads.
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F. RESULTS
The current study presents a comprehensive evaluation of
the AI2V++ model. The evaluation is divided into three
main sections. First, in Sec.IV-F1, we report the quantitative
accuracy results for various models, datasets, and evaluation
metrics, and analyze the results based on item popularity.
Second, in Sec.IV-F2, we provide a detailed investigation of
the role of ordinal biases in the AI2V++ model. Finally,
in Sec. IV-F3, we illustrate the dynamic construction of user
representations by AI2V++ and demonstrate how attention
scores can be utilized to provide model interpretability and
explainability.

1) COMPETATIVE RESULTS
Tables 3-7 summarize the extensive evaluations on the
MovieLens-1M, Netflix, Yahoo!, Amazon Books, and
Moviesdat datasets respectively (p ≤ 0.05). W The superi-
ority of the AI2V++ model is clearly noticeable across the
different datasets and metrics. In all cases, the ordinal biases,
which are part of the contributions made in the current paper,
significantly improve the results over theAI2V-Vanilla. Addi-
tionally, in most cases employing the BCE loss, which is
another contribution of the current paper, yields better results
than the original CCE loss.

Next, we turn to analyze the results as a function of item
popularity. It has been shown that in collaborative filter-
ing problems, much of the signal lies in simple popularity
biases [70]. For example, the winning model in the Netflix
Prize competition [10] managed to explain 42.6% of the
ratings’ variance i.e., R2 = 42.6%, but the vast majority of
the learned signal was attributed to popularity biases which
explained a whopping R2 = 32.5% of the variance (without
any personalization) [71].

Following this insight, we wish to investigate the model’s
results as the effect of popular items is artificially diminished.
To this end, we gradually remove popular items from the
dataset and evaluate the results on the remaining, less popular,
items. Figures 4a-4e depict the HR@20 metric (y-axis) after
removing the most popular items (x-axis) for each dataset.
We see that the HR metric monotonically decreases as more
popular items are removed. This is expected since the popular
items are easier to predict. Importantly, we notice a much
milder decrease in the AI2V++ variants compared to the
baselines. By being able to dynamically focus on different
items in the user’s history, AI2V++ can turn its focus to
any specific item in the user’s history, even if that item
does not agree with the general or recent user’s taste. This
gives the AI2V++ variants an advantage in recommending
long-tail items, a highly important property for recommender
systems [59], [72]. In contrast, when the user representation
is static, it tends to be more focused on the popular items and
performs poorly in the presence of less popular items. Note
that the moderate decrease in the Moviesdat and Amazon
Books datasets is attributed to the higher inherent sparsity
of these two datasets compared to the other ones (as seen in

Table 2), however, the general trend remains - the AI2V++

variants maintain superiority in the long-tail.

2) A DEEPER ANALYSIS INTO ORDINAL BIASES
From Tables 3-7 we learn that the additional ordinal biases in
AI2V++ are responsible for a significant improvement in the
model’s accuracy. This result is expected as user preferences
are known to be drifting over time and temporal dynamics
need to be addressed [73]. As explained earlier, the addition
of ordinal biases enables the AI2V++ model to be aware of
the order in which the user consumed the items. The global
ordinal biases 3 = {λi}

Cmax
i=1 attribute different learnable

weights according to the consumption order. In addition,
the personal ordinal biases 3x

= {λxi }
Cmax
i=1 enable per-user

personalized correction to the global ordinal biases 3.
Considering the notable contribution of this component,

we wish to better understand the effect of the ordinal biases
in the AI2V++ model. Fig. 5 depicts the learned global
ordinal bias values of the last twenty items in a user’s
sequence. In order to present model parameters from different
model instances (i.e., different datasets) on a single scale,
the weights were normalized by the weight of the highest
bias value. A common trend in all datasets is the gradual
decrease in items’ importance where the most recent items
are emphasized over less recent ones.

By comparing the trends of different datasets, further inter-
esting insights can be extracted: For example, we learn that
in the Yahoo! Music dataset, the decrease in item importance
is considerably more significant than in the other datasets.
This implies that in this dataset the non-stationary temporal
trends are of higher importance, in accordance with a deeper
analysis performed on this dataset for KDD-Cup’11 [71].
In contrast, the non-stationary temporal effects on the Netflix
dataset, while evidently significant, are of less importance
than in other datasets.

3) INTERPRETABILITY WITH AI2V++

In what follows, we present an attention score analysis that
demonstrates interpretability by exposing the inner workings
of the model. Figure 6 presents visualizations of the attention
weights for users from MovieLens-1M. The attention scores
are calculated when scoring the last movie in the sequence
(the test item) for an AI2V++ model with a single atten-
tion head. The first example in Fig. 6 relates to the movie
‘‘Clear and Present Danger (1994)’’. Of the user’s train items,
the highest score was given to the movie ‘‘Patriot Games
(1992)’’. Bothmovies are action thriller films, based on books
by Tom Clancy (a novelist), with Harrison Ford (an actor) as
Jack Ryan (the lead character). In fact, ‘‘Clear and Present
Danger (1994)’’ is a sequel to ‘‘Patriot Games (1992)’’. Other
movies with high scores such as ‘‘In the Line of Fire (1993)’’,
‘‘Fugitive (1993)’’, and ‘‘The Hunt for Red October (1990)’’
are all related action thrillers. In fact, ‘‘The Hunt for Red
October (1990)’’ is the first movie in Clancy’s Jack Ryan
movie series.
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TABLE 3. Evaluation results on the MovieLens-1M dataset.

TABLE 4. Evaluation results on the Netflix dataset.

TABLE 5. Evaluation results on the Yahoo! Music data.

TABLE 6. Evaluation results on the Amazon Books dataset.

In the second example, the target movie is ‘‘The Green
Mile (1999)’’ and the model identified the movie ‘‘‘Sixth
Sense (1999)’’ as the user’s highest-scored historical item.

Both movies share similarities in their genre as drama films
with a supernatural element, and also relate to the themes
of crime and death. Additionally, the movie ‘‘Silence of the
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TABLE 7. Evaluation results on the Moviesdat dataset.

Lambs (1991)’’ was also identified as having a high score in
the user’s historical items. This movie is another crime drama
that explores the complex relationship between a law enforcer
and a criminal.

In the final example, the target item is ‘‘The Dark Crystal
(1982)’’. The most similar item in the user’s history, as deter-
mined by AI2V++, is the movie ‘‘Labyrinth (1986)’’. Both
movies are fantasy/fictional movies directed and written by
Jim Henson.

Next, we examine how the attention scores of users change
in response to different items to be scored. The attention
scores of a particular user are depicted in Fig. 7, where
the left-side image represents the scores in the context of
the classic romantic comedy ‘‘Singing in the Rain (1952)’’.
In this case, the AI2V++ model gives more attention to
another classic romantic comedy from the same era, ‘‘Some
Like it Hot (1959)’’, followed by the romantic musical ‘‘King
and I (1956)’’. The user’s other items are science fiction
films from the 90s and receive lower scores accordingly.
While the model does not disregard them entirely, they
are de-emphasized and given a lesser role. In contrast, the
right-side image in Fig. 7 shows the attentive importance
scores of the same user in the presence of the science fic-
tion film ‘‘Cube (1997)’’. In this case, the model correctly
identifies ‘‘The Matrix (1999)’’ and ‘‘Star Trek: Insurrection
(1998)’’ as the most relevant, and the user’s representation
would adapt accordingly based on these scores.

Figure 8 presents another example based on a different
user. The left-side image presents the importance scores of
the model with respect to the romantic comedy ‘‘Four Wed-
dings and A Funeral (1994)’’ starring Hugh Grant (an actor).
We see that in the context of this target item, the model
gives more attention to ‘‘Notting Hill (1999)’’ and ‘‘When
Harry Met Sally (1989)’’, both are romantic comedies and
the former also features Hugh Grant in the lead role. The
right-side image in Fig. 8 presents a different target item for
the same user. Now, the target item is the action movie ‘‘Die
Hard (1988)’’. As can be seen, in the presence of this target
item, the romantic comedies from the previous example are
de-emphasized, and instead, two other movies come to the
front: ‘‘Indiana Jones and the Last Crusade (1989)’’ and ‘‘The
Terminator (1984)’’. Both are action-adventure movies from
the ’80s.

The above examples demonstrate that the attention weights
of the different historic items enable model interpretabil-
ity in AI2V++. This process can also be employed to
‘‘explain’’ the model’s recommendations based on the user’s
historical items e.g., ‘‘We recommend you ‘X’ because you
watched ‘Y’’’.

V. DISCUSSION
In this paper, we have introduced AI2V++, an improved and
extended version of our previous work on AI2V presented at
a conference [19]. Unlike most CF algorithms that represent
users as static vectors, AI2V++ models users dynamically
based on the item being recommended. This approachmimics
how the human brain operates when making decisions on
different items, where different memories are activated and
brought to the forefront. To achieve this, AI2V++ utilizes
a neural cross-attention mechanism on the user’s past items,
where the target item is used as a query. As a result, the items
in the user’s history receive dynamic attention scores based
on their relevance to the item being scored.

AI2V++ includes several algorithmic improvements over
the conference presentation of AI2V [19]: (1) the integra-
tion of ordinal information into the context-target atten-
tion mechanism through a hierarchy of global and personal
ordinal biases, and (2) the replacement of the categorical
cross-entropy loss function used in AI2V with a binary
cross-entropy loss function more suitable for multi-label
classification problems. The effectiveness of these modifi-
cations is demonstrated through extensive quantitative and
qualitative evaluations on five datasets, which show that the
AI2V++ model outperforms several state-of-the-art recom-
mender systems. Additionally, through attentive score analy-
sis, we demonstrate interpretability with AI2V++which can
be harnessed for generating end-user explanations. To ensure
reproducibility, the open-source code for AI2V++ is avail-
able on GitHub.

A. SPACE AND TIME COMPLEXITIES
In what follows, we wish to discuss the space and time com-
plexities of the AI2V++ model in the context of real-world
settings and in comparison to alternative algorithms.

The space complexity of the model is in line with that of
classical MF models e.g. [11], [74]. In classical MF models,
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FIGURE 4. Accuracy of less popular items: This analysis measures the HR@20 when removing the most popular items from the test set. Initially
(on the left), the 10 most popular items are removed. Then, at each point along the x-axis, the next 10 most popular items are also removed
until all the top 100 popular items are removed. This analysis reveals how the different models cope when canceling out the most popular
items that skew the dataset.

each user and each item is represented by a d-dimensional
vector, hence the space complexity sums up toO((X +M )d),
where X is the number of users, M is the number of items,
and d is the dimensionality of the representations.
AI2V++ represents items similar to classic MF models,

but different from these models, AI2V++ does not have
explicit user representations. Instead, AI2V++ dynamically
composes the user representation based on her items using
a per-user attention mechanism. The attention parameters of

AI2V++ consist of the projection matrixes Ai
c,A

i
t ∈ Rd×dα ,

and Bic,Bt ∈ Rd×d , where d is the dimensionality of the item
embeddings, and dα is the dimensionality of the attention
space. We can easily assume that dα ≤ d , since there is
no benefit in inflating the representations. The projection
matrixes Ai

c,A
i
t , and Bic are multiplied by the number of

attention heads N . In addition, there is Cmax ordinal biases
per user and an additional set of Cmax global biases. Putting
it all together, the space complexity of AI2V++ is, therefore,
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FIGURE 5. Ordinal bias weights of the last twenty items in the user’s
sequence. The items are ordered according to their consumption order.
Each element in this vector corresponds to a certain position of an item
in the user’s sequence. In order to enable the comparison between
different datasets on a single plot, we normalized the bias values of each
model by the maximal bias value in that model.

O(Md + X × (Nd2 + Cmax)). While AI2V++’s space com-
plexity is somewhat higher than that of a classic MF model,
the difference is arguably modest and remains linear in the
number of users and items.

In terms of training time complexity, since it is based
on SGD its time complexity is linear with the number of
parametersO(Md +X × (Nd2 +Cmax)) times the number of
epochs and the number of samples in each epoch. The number
of epochs and the number of samples varies from one dataset
to another, but in general, the training time of AI2V++ is
relatively fast. For example, we trained our model on a single
NVIDIA V100 GPU and it took us 4 hours to train a model
for Moviesdat dataset [60] which is the largest dataset we
have used. On other datasets, the training process converged
even faster. Arguably, the training time of AI2V++ is rela-
tively modest in the realm of deep learning. Furthermore, our
research code hasn’t been optimized for production settings
and can surely be improved by professional developers in
order to reduce training time in industrial settings. Finally,
training the algorithm is performed offline. Hence, its training
time is of less importance with respect to its inference time.

While training a CF model is performed offline, the infer-
ence often needs to be performed online. Moreover, in order
to pick the top recommendations, per-user ranking needs to
be performed which incurs additional costs. Therefore, in CF,
a model’s inference time is usually of higher importance than
its online training time.

As mentioned earlier, in basic CF algorithms such as
MF [74], users are represented using fixed pre-computed
latent vectors. At inference time, given a user and an item, the
predicted affinity of the user to the items is simply given by
computing the inner product between the user representation
and the item representation. Hence, the time complexity for
scoring a user-item pair is simply O(d). In contrast, the
dynamic nature of AI2V++’s user representations inherently

requires some additional computations. Given a user and an
item, the model needs to compute the attention scores for the
user’s historical itemswith respect to the itemfirst. Only then,
it is possible to assemble the user vector which is used to
score the item. Hence, if a user has k items in her history, the
time complexity of scoring a single interaction is given by
O(N × k × d). As can be seen, when compared to classical
CF algorithms, two additional factors are added toAI2V++’s
time complexity at inference: the first regards the number of
historical items that the user interacted with i.e. k , and the
second is a hyperparameter that determines the granularity of
the multi-attentive user representation i.e. N . Let us briefly
address both.

Empirically, when optimizing for the hyperparameter N ,
we found that it is best to set either N = 1 (MovieLens-
1M, Yahoo! Music) or N = 2 (Netflix, Moviesdat). Hence,
in practice, it can be argued that this number is very small
and can be considered a constant. Note that evenwhenN = 1,
AI2V++ still enjoys significant advantages over classical CF
algorithms.

The number of historical items per user k can be bounded
by the total number of items in the catalog k ≤ M . Hence,
this can be a theoretical upper limit on the time complexity
for each user-item prediction. However, for the lion’s share
of users, this upper limit is extremely inflated. CF datasets
are known to be very sparse. That is due to the fact that most
users only interact with a very small subset of the items in
the catalog. For example, the sparsity level of the Netflix
dataset is 98.82% [10] and the sparsity level in the Yahoo!
Music dataset is 99.96% [12].Moreover, such datasets exhibit
a power-law distribution in which a long tail of users rate only
a small number of items and only very few ‘‘heavy’’ users rate
a large number of items. As a result, in the vast majority of
cases k ≪ K , and for those users, k can be considered as a
constant number rather than a factor. For the few ‘‘heavy’’
users it is possible to employ different heuristics such as
ignoring some of their historical items or pre-computing and
caching their recommendations.

B. LIMITATIONS AND FUTURE WORK
The AI2V++ model presents a novel user representa-
tion scheme and demonstrates both state-of-the-art accu-
racy results as well as interpretability properties that throw
light on the inner workings of the model. However, these
advantages do not come without a cost. Arguably, the main
limitation of the model is its inference time which stems
from its dynamic user representation and the utilization of a
neural cross-attention mechanism on users’ historical items.
In general, AI2V++’s inference time is several times higher
than that of its classical predecessors. However, for the vast
majority of users, if we treat both N and k as constants rather
than factors, AI2V++’s inference time becomes O(d), sim-
ilar to classical MF algorithms. Moreover, when compared
to state-of-the-art algorithms based on neural attention such
as in computer vision e.g., [39], [75] or in natural language
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FIGURE 6. Attention scores for different users in the Movielens-1M dataset. Each plot represents a different user with her historical items (train
items), chronologically ordered from left to right. The movie in the title is the target item. The figure presents the attention scores of the users’
historical items with respect to the target item.

FIGURE 7. The change of importance (attention) scores for the same user in the presence of different target items: The
left image depicts the importance scores in the presence of the classic romantic comedy ‘‘Singing in the Rain (1952)’’,
while the right image depicts the importance score in the presence of the science fiction film ‘‘Cube (1997).’’

processing e.g., [17], [20], [76], AI2V++’s inference time
remains moderate.

In future work, we plan to investigate a distillation
approach that treats AI2V++ as a ‘‘teacher’’ model and
trains a nimble ‘‘student’’ model which learns to recon-
struct AI2V++’s cross-attention mechanism using regres-
sion. A similar approach is already been used successfully

in the field of natural language processing [57], where it has
been applied in order tomitigate the expensive cross-attention
operation at the inference phase of models such as BERT [20]
and XLNet [77].

The explainability of AI2V++ represents another area
for future research. Interpretability and explainability are
two related terms that are often used interchangeably [78],
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FIGURE 8. The change of importance (attention) scores for the same user in the presence of different target items: The left
image depicts the importance scores in the presence of the romantic comedy ‘‘Four Weddings and a Funeral (1994)’’, while the
right image depicts the importance score in the presence of the action film ‘‘Die Hard (1988).’’

[79]. Interpretability refers to the ability to comprehend the
inner workings of the model by someone knowledgeable
in the field, while explainability relates to the ability to
provide clear explanations to end-users that rationalize the
recommendations. In this study, we demonstrated effective
interpretability properties that can be leveraged for intuitive
explanations. However, evaluating explanations in recom-
mender systems is a complex task that varies according
to the explanations’ aim, such as transparency, scrutability,
trust, effectiveness, persuasiveness, efficiency, and satisfac-
tion. Moreover, the usefulness of an explanation depends on
objective and subjective system aspects, user experience, sit-
uational, interaction, and personal characteristics. Although
we cannot evaluate these aspects in the scope of the current
paper, we hope that the utility of the proposed approach is
evident. Future studies can investigate how to improve the
explainability of AI2V++ further.
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