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ABSTRACT Branch Convolutional Neural Nets have become a popular approach for hierarchical classifica-
tion in computer vision and other areas. Unfortunately, these models often led to hierarchical inconsistency:
predictions for the different hierarchy levels do not necessarily respect the class-subclass constraints imposed
by the hierarchy. Several architectures to connect the branches have arisen to overcome this limitation. In this
paper, we propose a more straightforward and flexible method: let the neural net decide how these branches
must be connected. We achieve this by formulating an attention mechanism that dynamically determines
how branches influence each other during training and inference. Experiments on image classification
benchmarks show that the proposed method can outperform state-of-the-art models in terms of hierarchical
performance metrics and consistency. Furthermore, although sometimes we found a slightly lower perfor-
mance at the deeper level of the hierarchy, the model predicts much more accurately the ground-truth path
between a concept and its ancestors in the hierarchy. This result suggests that the model does learn not only
local class memberships but also hierarchical dependencies between concepts.

INDEX TERMS Attention mechanisms, deep learning, hierarchical classification.

I. INTRODUCTION
Inmany pattern classification applications, class labels can be
organized into a hierarchical taxonomy [1], [2]. For example,
to help shoppers find products easily, e-commerce platforms
such as Amazon maintain a detailed product taxonomy in
which categories (e.g., Electronics Bags &Cases) branch into
more specific sub-categories (e.g., Laptop Computer Brief-
cases). Other applications in which hierarchies of this type
arise include sentiment analysis [3], web content categoriza-
tion [4], disease detection [5], and gene function prediction
[6], [7]. Hierarchical classification methods are devised to
organize data into the hierarchy while respecting and exploit-
ing the class relationships encoded by the taxonomy.

Manymethods exist that adapt traditionalmachine learning
algorithms for hierarchical classification. They include top-
down approaches, which train different classifiers per node
or level of the hierarchy [8], and global approaches, which
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train a single classifier for the entire hierarchy [9], [10].
Unfortunately, only a few approaches address this task using
deep learning methods such as convolutional neural nets
(CNNs) [11], [12]. As these models become state-of-the-art
in more and more classification problems [13], methods to
embed class hierarchies into deep architectures may become
increasingly useful and necessary.

The popular approach of augmenting CNNs to include
branches that support hierarchical classification was first
introduced in [14] and then extended in [15]. In this
model, referred to as Branch Convolutional Neural Network
(B-CNN), a branch is a fully-connected subnet that receives
a feature representation from a main convolutional block and
computes predictions for a specific hierarchy level. The main
advantage of this approach is the implementation’s simplicity
and generality: it can accommodate any standard architec-
ture as the central building block. The main disadvantage
is that predictions per level are often inconsistent with the
hierarchy: the class predicted for a given level may not be
an ancestor of the classes predicted for lower levels. This
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limitation has motivated many refinements of the original
model. For instance, [16] proposed an architecture in which
skip connections allow hidden features from a branch to
propagate directly to the next branch. This way, the prediction
for a given level is explicitly conditioned on the previous one.
More recently, [17] proposed to connect a branch with all the
previous branches in the network. Finally, in [18], the authors
used a similar connectivity pattern, but instead of propagat-
ing hidden representations, they propagate probability esti-
mates from each branch. Although all these methods slightly
improve hierarchical classification metrics, we empirically
show that their improvements often came from the more spe-
cific level of the hierarchy only. Therefore, these models can
still producemany predictions inconsistent with the hierarchy
at inference time. This result shows that current CNNs do not
accurately learn hierarchical class relationships.

This work highlights two limitations of current CNNs
for hierarchical classification. First, existing approaches are
limited to top-down connectivity patterns: features propagate
unidirectionally from the top to deeper branches. This way,
predictions at detailed levels of the class hierarchy do not
explicitly give feedback to the upper levels. In addition, the
connectivity pattern is static; it cannot change during training
or inference. We hypothesize that a more flexible commu-
nication pattern can improve the ability of CNNs to learn
hierarchical relationships and, thus, hierarchical consistency.

Inspired by recent advances in deep learning, this work pro-
poses BA-CNN, a method that extends the original B-CNN
model by connecting its branches through an attention mech-
anism. The main motivation for our method is that Attention
[19] currently allows models to selectively and dynamically
aggregate information from different parts of the computa-
tional graph with a minimal computational burden. Thus,
by connecting B-CNN’s branches through an attention mech-
anism, we allow a branch to condition its predictions on
context vectors of the whole class hierarchy without cumber-
some hand-crafted connections. This mechanism breaks the
static top-down architecture of current models. In particular,
fused vectors can include features from lower and deeper
branches and, therefore, from coarser and deeper levels of the
class hierarchy. Moreover, by adjusting the attention weights,
attention allows the model to change how branches influence
each other during learning and prediction.

Experiments on image classification benchmarks show that
the proposed method can outperform state-of-the-art models
in terms of hierarchical performance metrics, sometimes at
the cost of slightly lower performance on the most specific
level. Furthermore, the model’s predictions reconstruct more
accurately the ground-truth path between a concept and its
ancestors in the hierarchy, which suggests the model does
learn not only class memberships but also their dependencies.
In addition, we show that BA-CNN has a memory footprint
and training time close to that of a flat CNN and lower
than that of more explicit and dense connectivity patterns for
hierarchical classification.

The contribution of this paper is threefold:
• First, we propose a novel extension of the B-CNNmodel
[15] for deep hierarchical classification. The model uses
an attention module that allows feature maps to flow
in different directions of the hierarchy, top-down and
bottom-up. Moreover, the attention mechanism deter-
mines how branches influence each other in a dynamic
and data-driven way.

• Second, we extend the actual comparison in the literature
by including four current branched CNN architectures
for hierarchical classification, three benchmark datasets,
and four different metrics.

• Third, we propose two custom metrics named hierarchi-
cal accuracy and hierarchical consistency. Those metrics
complement the chosen state-of-the-art metrics and help
to measure the ability of the model to learn hierarchical
dependencies between concepts more directly.

To facilitate future research, we provide code that applies
the proposed method and other four CNN architectures
in hierarchical classification datasets https://github.com/
IvanPizarroQ/BA_CNN.

The remainder of this paper is organized as follows. Sec-
tion II provides a brief background on hierarchical clas-
sification, reviewing fundamental concepts and traditional
approaches to the problem. Section III reviews other meth-
ods based on convolutional neural nets that leverage and
exploit class hierarchies. The technical background of the
attention mechanisms related to our formulation is presented
in Section IV. Our architecture is motivated and described in
Section V. Section VI explains the experimental setting and
results. In this section, we also compare the proposed method
with four other deep hierarchical classification architectures.
Finally, we summarize our conclusions and discuss future
research directions in Section VII.

II. HIERARCHICAL CLASSIFICATION
In pattern recognition, a classifier is a mapping f : X →

Y between data domain X and a finite set of class labels
C , representing different concepts in an application domain.
Classification algorithms often assume classes are unrelated.
Hierarchical classification instead copes with problems in
which the classes Y organize into a taxonomy [1] that
agglomerates classes to create more abstract concepts.

Wu et al. [20] defined such a taxonomy as a tree-structured
traditional concept hierarchy defined over a partial order set
(C ;≺), where ≺ represents the ‘‘is-a’’ relationship. Silla and
Freitas [1] defined the ‘‘is-a’’ relationship as asymmetric,
antireflexive, and transitive:

1) The only one greatest element is the root of the tree R,
i.e., ∃!R ∈ C : ∀c ∈ C, c ̸= R ⇒ c ≺ R.

2) ∀ci, cj ∈ C if ci ≺ cj then cj ⊀ ci.
3) ∀ci ∈ C , ci ⊀ ci.
4) ∀ci, cj, ck ∈ C, ci ≺ cj and cj ≺ ck imply ci ≺ ck .
On the one hand, the existence of a taxonomy for the

classes of interest represents an opportunity to improve
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classification performance. As concepts at the lower levels
of the hierarchy are a specialization of concepts at the upper
levels, it should be easier to classify an instance by following
the taxonomy. The classifier can first discriminate between
simpler/coarser concepts, discarding a large set of possible
outcomes, and then focus on the specific features that make
the instance part of a sub-category. For example, knowing
that birds cannot be felines can help the classifier discard
feline-specific features when the bird category is much more
likely than the mammal category. On the other hand, the
existence of a taxonomy presents a learning challenge. If an
instance belongs to a given class, it automatically belongs
to all its superclasses, and the classifier should respect this
hierarchy constraint. For example, if the model classifies
an instance as a feline, it should classify the instance as a
mammal and not as a bird.
Methods to leverage and respect concept hierarchy differ

from three main criteria [21], [22]. The first is the hierarchical
structure used, either a tree or DAG, as depicted in Fig. 1.
The main difference between using a DAG instead of a tree is
that a node can have more than one parent node in the DAG
(a category may belong to multiple superclasses). The second
criterion is the completeness of the decisions made by the
classifier, i.e., whether the method can stop the classification
at any node of the class hierarchy (non-mandatory leaf-node
prediction) or is constrained to stop at a leaf (mandatory
leaf-node prediction). The third criterion is related to how
the classifier explores the hierarchical structure. The most
straightforward approach ignores the class hierarchy, typi-
cally predicting only classes at leaf nodes. Methods in this
category are called flat classifiers. Another way to achieve
this is to learn the whole class hierarchy using a single classi-
fier. Methods in this category are called global (or big-bang)
classifiers. A third possible scenario involves learning the
taxonomy class using a set of local classifiers. These methods
are also known as top-down classifiers [1].

A. FLAT CLASSIFICATION
This method is also known as the direct approach [23] or
bottom-up approach [24]. It completely ignores the class
hierarchy, typically predicting only the classes at leaf nodes.
Therefore, this approach acts as a traditional classification
algorithm during training and inference (testing). Despite
neglecting the hierarchy, this approach can indirectly lead to
hierarchical classifications in some cases. Indeed, assuming
the ‘‘is-a’’ relationship, we can assign to an instance all the
ancestor classes corresponding to the leaf class predicted by
the model. It is worth noting that the latter applies only to
a tree hierarchy and if the taxonomy is perfectly known.
To illustrate this approach, Fig. 2 shows the use of a flat
multi-class classification algorithm.

The main disadvantage of flat classifiers is that they do
not exploit possible correlations between the target con-
cepts, which help the learner to improve generalization such
as multi-task learning and transfer learning benefit from

learning inter-related tasks jointly [25]. Furthermore, theo-
retical studies have revealed that neglecting the hierarchical
structure is especially unfavorable in large-scale multi-class
scenarios, where a flat classifier must simultaneously dis-
criminate between many unbalanced categories [26].

B. GLOBAL CLASSIFIERS
As Fig. 3 shows, algorithms in this category train a single
(usually complex) classification model to learn the class
hierarchy. For example, Labrou and Finin [27] proposed a
text-mining classifier to address Yahoo!’s hierarchical cat-
egories. It learns the hierarchy using a set of topic pro-
totypes and a classification method resembling Rocchio’s
document categorization approach [28]. For inference, this
method first computes the similarity of a test document
with each topic. The method then classifies the document
in the corresponding topic if the similarity is beyond a cer-
tain threshold. Unfortunately, the authors do not suggest a
method to determine this hyperparameter’s value automati-
cally. Kiritchenko et al. [9], [10] considered the hierarchical
class problem a multi-label classification problem. During
the training process, the method expands the label set of
all the training examples with their corresponding ancestor
labels and treats them as different possible outcomes. This
approach is naturally prone to hierarchical inconsistencies,
so the authors considered a post-processing stage that con-
siders all outputs to ensure that the hierarchical constraints
are respected. It is worth noting that the output of a global
classifier might be easier to interpret than that of a local
classifier because the complexity of the decision procedure
implemented by the former is often lower. For example, the
experiments reported in [29] showed that the number of rules
generated by the global approach was much smaller than the
number of rules generated by the local approach. In addition,
the global classifier approach does not suffer from the signif-
icant drawback of the local classifier approach, namely, the
fact that amisclassification at a given class level is propagated
to the lower levels of the class hierarchy.

C. LOCAL CLASSIFIERS
These approaches handle the hierarchy using a local top-
down approach. For a new example in the test set, the
algorithm first predicts the coarsest level and then uses this
prediction to narrow the choices at the following (finer)
level. This procedure is applied recursively until the classifier
reaches a leaf node. The major drawback of this approach
is that misclassification at a given class level propagates to
the lower levels of the class hierarchy. According to Silla and
Freitas [1], there are three main approaches to implementing
a classifier of this type:

1) Local classifier per node.
2) Local classifier per parent node.
3) Local classifier per level.
The local classifier per node approach is the most used in

the literature, and it consists of training a binary classifier
for each node of the class hierarchy except the root. For
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FIGURE 1. Hierchical classification structures: Tree (left) and DAG (right).

FIGURE 2. Local classifier approach using a multi-class classification
algorithm.

FIGURE 3. Example of the global classifier approach.

training, there are several ways to define each binary clas-
sifier’s positive and negative examples. Then, for inference,
each classifier predicts whether or not an example belongs
to the class corresponding to the actual node. An advantage
of this approach is that it allows assigning more than one
label per level, as is required for multi-label hierarchical
classification problems. However, a significant disadvantage
of this method is that prediction errors in the nodes can
generate inconsistent predictions, in other words, predictions
that do not respect the class taxonomy. Therefore, due to
the above, methods with this approach must have some way
of correcting inconsistencies. The local classifier per parent
node approach implements a multi-class classifier per parent
node, trained to distinguish between its child nodes. It is
worth mentioning that this method is also prone to inconsis-
tencies if a post-processing method to correct the predictions
is not applied. Finally, the local classifier per level approach
consists of implementing a multi-class classifier per level of
the class taxonomy.

D. HIERARCHICAL CONSISTENCY
We expect that a hierarchical classification algorithm pro-
duces predictions that respect class hierarchy. This property is
referred to as hierarchical consistency. Wu et al. [20] defines

it as: ‘‘A label set Ci assigned to an instance di is called con-
sistent with a given hierarchy if Ci forms a connected proper
subgraph of the hierarchy graph rooted in the top node.’’
For example, in the hierarchy in Fig. 4, the correct label set
for the instance d1 = Nokia is {‘‘Electronics’’, ‘‘Phones’’,
‘‘Nokia’’}. The label set {‘‘Electronics’’, ‘‘Phones’’, ‘‘Dell’’}
is called a hierarchical inconsistency or a class-membership
inconsistency [1]. As the hierarchical structures are usually
Tree or DAG, we can exclude the root node from any ancestor
set since it does not provide additional information.

E. HIERARCHICAL METRICS
Most current related works evaluate hierarchical classifica-
tion models using flat measures such as accuracy, precision,
and recall. Thus, to measure the level-wise performance,
we used the flat metric accuracy per level of the hierar-
chy. However, these measures do not consider the relations
between different levels of the hierarchy. Many hierarchical
performance metrics have been proposed in the literature
[30]. From these, we used Kiritchenko’s metrics [9] because
these metrics are suitable for more different hierarchical clas-
sification problems, and Silla and Freitas recommended his
usage in [1]. In addition, we propose two custom metrics:
hierarchical consistency to evaluate the consistency of the
predictions and hierarchical accuracy.

1) HIERARCHICAL PRECISION, RECALL, AND F-SCORE
To measure the performance of hierarchical classification,
Kiritchenko et al. [9] proposed a hierarchical version of the
flat metrics precision, recall, and F-score. The authors called
the metrics hP (Hierarchical precision), hR (Hierarchical
recall), and hF-score (Hierarchical F-score). Formally, let Ci
be the true label set for an instance di, i.e., the set of elements
composed of the ground-truth label for the finest hierarchy
level and all its ancestors. On the other hand, let Ĉi be the set
of labels predicted for an instance di at each level of the class
hierarchy. Therefore, hP and hR are computed as follows:

hP =

∑
i |Ci ∩ Ĉi|∑

i |Ĉi|
, hR =

∑
i |Ci ∩ Ĉi|∑

i |Ci|
. (1)

Then we can combine the two values into one hF-measure:

hFβ =
(β2

+ 1) · hP · hR
(β2 · hP+ hR)

, β ∈ [0, + inf]. (2)
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FIGURE 4. Example of a hierarchical consistent label path (left) and a hierarchical inconsistency (right).

FIGURE 5. Example of a taxonomy to exemplify the use of hierarchical
metrics.

In particular, authors recommend β = 1, giving precision
and recall equal weights.

hF1 =
2 · hP · hR
hP+ hR

. (3)

These metrics fulfilling the following requirements formu-
lated by the authors:

1) The measure gives credit to partially correct
classification.

2) For non-mandatory leaf node prediction problems:
a) The measure gives a higher evaluation for cor-

rectly classifying one level down compared to
staying at the parent node.

b) The measure gives a lower evaluation for incor-
rectly classifying one level down compared to
staying at the parent node.

3) The measure punishes errors at higher levels of a hier-
archy more heavily.

To exemplify the use of this metric, Table 1 shows five
instances associated with the taxonomy illustrated in Fig. 5.
It is worth noticing that if all the classes have labels for
every level in the taxonomy (full labeling) and the task is
mandatory leaf node prediction (the model always assigns
leaf classes), the cardinality of the true label sets will be
equal to the cardinality of the predicted labels, so hR, hP, and
hF1-score will have the same numerical value.

Then Kiritchenko’s hierarchical metrics are computed as
follows:

hP =

∑
i |Ci ∩ Ĉi|∑

i |Ĉi|
=

2 + 1 + 1 + 1 + 2
2 + 2 + 2 + 2 + 3

=
7
11

= 0.64,

(4)

hR =

∑
i |Ci ∩ Ĉi|∑

i |Ci|
=

2 + 1 + 1 + 1 + 2
2 + 2 + 2 + 3 + 3

=
7
12

= 0.58,

(5)

hF1 =
2 · hP · hR
hP+ hR

=
2 · 0.64 · 0.58
0.64 + 0.58

= 0.61. (6)

2) HIERARCHICAL ACCURACY
In addition to Kiritchenko’s metrics, we propose to adapt the
standard accuracy metric to hierarchical classification. For
this modification, we only consider an object as correctly
classified if the entire prediction set for that object is correct.
For example, in Table 1, we can notice that for five instances,
only one is correctly classified (d1), so hierarchical accuracy
is computed as follows:

Hierarchical accuracy =
1
5

= 0.2. (7)

3) HIERARCHICAL CONSISTENCY
As argued in [9] and [1], some models are prone to incon-
sistent class predictions across different levels. This prob-
lem is called hierarchical inconsistency or class-membership
inconsistency.

LetG be the set of all correct paths from the root to a leaf in
the class hierarchy (if the hierarchy is a tree, |G| = the number
of class leaves). Then, to verify the hierarchical consistency,
we propose to verify that the predicted label set Ĉi for every
instance di is inG. This metric does not give credit to partially
consistent classifications and only considers a prediction as
consistent if Ĉi exists in the taxonomy. It is worth noting
that hierarchical accuracy is always lower than or equal to
hierarchical consistency because a prediction can respect the
hierarchy but be incorrect for a particular input case (d3 is an
example).

For the example presented in Table 1,G = [{‘‘Cat’’, ‘‘Sph-
ynx’’}, {‘‘Cat’’, ‘‘Toyger’’}, {‘‘Dog’’, ‘‘Beagle’’}, {‘‘Dog’’,
‘‘Poodle’’}, {‘‘Dog’’, ‘‘Poodle’’, ‘‘Standard’’}, {‘‘Dog’’,
‘‘Poodle’’,‘‘Miniature’’}, {‘‘Dog’’, ‘‘Poodle’’,‘‘Toy’’}]. Then
the proposed hierarchical consistency metric (hC) is com-
puted as follows:

hC =
No. Consistent Predictions

No. Instances
=

2
5

= 0.4. (8)

The previous examples show that while Kiritchenko’s
metrics present values close to 0.6, the custom hierarchical
consistency and hierarchical accuracy metrics get values of
0.2 and 0.4, respectively. These newmetrics will complement
the Kiritchenko metric, providing a more severe penalty for
errors since they do not penalize entirely correct predictions
for the case of hierarchical accuracy and completely correct
relationships for the case of hierarchical consistency.
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TABLE 1. Example of the hierarchical metrics calculation.

III. RELATED WORK
Yan et al. [14] were the first to introduce the idea of extracting
information from the hierarchical structure of a Convolu-
tional Neural Network to enrich the prediction quality. The
authors proposed the Hierarchical Deep Convolutional Neu-
ral Network (HD-CNN) for image recognition. This approach
uses a specialized CNN for image recognition as the base
(building block). Next, it uses a classifier for the coarse level
that contributes to the finest level. One disadvantage of this
method is that its architecture only accepts a hierarchy of two
levels. Subsequently, Zhu and Bain [15] presented the Branch
Convolutional Neural Network (B-CNN). They were inspired
by the idea that the first layers of the CNN obtain information
from higher-level layers. As shown in Fig. 6, this method
uses an existent convolutional net (e.g., VGG16) as a central
feature extractor (common backbone) and generates many
branch neural networks as levels have the class hierarchy.
Each branch neural network is a feedforward neural network
that predicts a given level of the hierarchy. Next, a final
loss function computes the weighted sum of the loss func-
tions of each branch. They also presented a training method
for this type of structure called Branch Training Strategy
(BT-Strategy). It consists of modifying the weights of the
branch losses while training the network. Thus, to improve
performance, a weight update process is performed from the
lower-level parameters to the higher-level parameters.

Various authors have implemented the B-CNN to solve
different problems. For example, Seo and Shin in [31] applied
the B-CNN model in the context of retail with the Fashion
MNIST dataset, grouping the ten classes of the dataset into
six superclasses and then, in turn, grouping these superclasses
into two classes. To implement this, the authors used VGG16
and VGG19 as the central feature extractor. In addition,
Sali et al. [32] employed the B-CNN model to classify gas-
trointestinal disorders on histopathological images using a
two-level hierarchy.

To that moment, branches were treated independently, but
authors such as Inoue et al. [16] and Zhang et al. [17] demon-
strated the benefit of interconnecting branches. Indeed, they
showed that branches can complement information from dif-
ferent hierarchy levels during training. Inoue et al. proposed
the so-called Concat-net and Add-net, which consists of con-
necting the last dense layer of the branches in a top-down
manner. For example, the second branch would receive the
last activation tensor from branch 1, and branch three would
receive that from branches 1 and 2. This interconnection

concatenates these layers for the Concat-net model and adds
them in the Add-net model, demonstrating advantages over
the approach of using the branches independently (B-CNN).
Zhang et al., similar to Inoue et al., also propose to connect
the branches in a model called Hierarchical Bilinear Con-
volutional Neural Network (HB-CNN). As shown in Fig. 7,
this was performed from the first dense layer of the branch.
This connection is called Connectivity Pattern (CP), and the
authors showed that it is beneficial not only to extract one
branch per level but it can be more than one; in their exper-
iments, they extracted three and five branches. Furthermore,
it uses the Bilinear CNN (B-CNN) proposed by Lin et al.
in [33] to provide further enhancement to the fine level.
The authors presented HB-CNN without the Bilinear CNN
as Hierarchical Convolutional Neural Network (H-CNN).
All the aforementioned authors applied the BT-Strategy for
training, which entails an exhaustive process of adjusting the
weights of the different loss functions and estimating the
number of times to apply this change.

All works mentioned above present two main limitations.
First, features between branches propagate unidirectionally
from coarse to fine levels, causing the fine level to bene-
fit most with this connection and not consider bottom-up
feedback. The second limitation is that the connectivity pat-
terns between branches can not change during training or
inference, so it has to be carefully tuned and assuming that
said interconnection is beneficial for all classes, denying the
possibility that for some, the most beneficial connection is
different.

Other Deep Learning approaches presented in the litera-
ture do not exploit the hierarchical structure of the features
extracted by the CNN, i.e., they do not make correspondences
between levels of the CNN and levels of the hierarchy to
enrich the quality of predictions. For instance, Kolisnik et al.
[18] trained a modified VGG16 architecture with teacher
forcing, using the true labels of a higher level to train lower
levels. They validated their results on the Kaggle Fashion
Product Images data set [34]. La Grassa et al. [35] proposed
an architectural extension that could be adapted to generic
neural networks. They chose a base model and added a set
of neural layers equal to the number of levels in the hierar-
chy. Each new layer is associated with a cross-entropy loss
function and then computed a center loss function. In the
medical field, Kowsari et al. [36] proposed the Hierarchical
Medical Image classification (HMIC) model that uses one
CNN architecture for each parent node in the hierarchy. They
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FIGURE 6. B-CNN architecture.

FIGURE 7. HB-CNN architecture.

validated this idea using a medical dataset in which the first
level has three classes (Normal, Environmental Enteropathy,
and Celiac Disease), and the child level of Celiac Disease is
based on severity (I, IIIa, IIIb, and IIIc). Gao [37] proposed a
deep hierarchical classification framework, tested on text and
images, composed of three parts: a Feedforward Neural Net-
work, a Hierarchical Embedding Network, and a Hierarchical
Loss Network. The first is to obtain a root representation;
the second is composed of a representation per level, where
the representation of a level is computed by concatenating the
representations of all previous levels; and the third consists of
a dependence loss to punish if the model does not predict the
classes according to the hierarchy, and computes a total loss
by adding the losses per level.

IV. ATTENTION MECHANISMS
Attention is a recent technique for improving deep learn-
ing models that have shown promising results in Natural
Language Processing [19], Speech Recognition [38], and

Computer Vision [39]. Inspired by the ability of humans
to selectively concentrate on parts of the information when
processing large amounts of data, attentionmechanisms allow
a model to focus on salient features of the input data or its
internal representations to solve a task.

Formally, given a sequence of vectors (or more generally
tensors) V = {v1, v2, . . . , vM } produced at a given level of
the neural net, an attention mechanism computes a new set of
feature representations A = {a1, a2, . . . , aN } by recombining
the elements of V as follows:

an =

M∑
m=1

α(qn, km)vm , (9)

where km is a vector referred to as a key, qn is a vector
referred to as a query, and α(qn, km) ∈ [0, 1] is the attention
weight assigned by the attention mechanism to the value vm.
In this abstraction, the query encodes an information need
or task, while the key km is a descriptor of the information
contained in vm. The attention weight α(qn, km) determines
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the relevance of the information source vm for the task qn
and is computed by applying the Softmax function to the
scores vector ξnm. For instance, the values vm may correspond
to the latent vectors computed by an encoder recurrent neu-
ral network (RNN) fed with input text, and the queries qn
may correspond to the latent vectors computed by a decoder
RNN attempting to translate the text into another language.
The keys may correspond to the values themselves or their
projection into a space in which the languages can be more
easily aligned. In this example, αnm quantifies the attention
that the model needs to give the m-th input word to predict
the n-th output word.

Different attention models differ in the implementation of
the scoring function that computes ξnm. Bahdanau et al. [40]
proposed an additive attentionmechanism inwhich the scores
vector was first computed as

ξnm = tanh
(
W (1)qn +W (2)km

)
, (10)

were W (1) and W (2) are learnable matrices. Then, a Softmax
function is applied to obtain positive attention weights that
sum to 1. Later, Luong et al. [41] proposed a multiplicative
attention mechanism in which the scores vector is computed
as

ξnm = qnWkm , (11)

where W is a learnable matrix. It is noteworthy that,
in these attention models, the keys coincide with the values.
Key/value/query abstraction became popular after the intro-
duction of Transformers [19], which came with the concept
of multi-head dot-product attention. This mechanism extends
themultiplicativemodel of (11) with two significant improve-
ments. First, the keys, values, and queries are projected onto
a subspace using the learnable matricesW (k),W (v), andW (q).
Second, multiple attention mechanisms or heads can operate
in parallel. Finally, the results of these K heads are concate-
nated and projected onto the desired dimensionality using a
learnable matrixW (o).

Applying the attention mechanism to internal network
representations has led to the concept of self-attention,
a method that allows some models to learn from sequences
without recurrent connections [19]. Recent research has also
shown that attention is a powerful method for improving
the interpretability of deep-learning models [42]. Indeed,
if the mechanism is strategically placed to attend to the
input or internal features with clear semantics, visualizing the
attention weights can help humans to interpret the model’s
predictions [43].

V. PROPOSED METHOD
This section presents our method to train a CNN for hier-
archical classification. According to Silla’s categorization
framework [1], the proposed model corresponds to:

• SPP (Single Path Prediction): the model can assign
at most one path of the predicted labels to each data
instance.

• MLNP (Mandatory Leaf Node Prediction): the model
always assigns leaf classes.

• GC (Global Classifier): one single model assigns labels
for all levels.

In addition, the model does not assume that the hierarchy is
a tree or a DAG and works in both cases. Indeed, the method
only assumes that the classes form a top-down taxonomy
composed of B different levels and does not require knowl-
edge of the precise relationships between concepts of differ-
ent levels in advance: the method learns these relationships
from data.

Building on B-CNN, our model uses a multi-branch archi-
tecture that includes a central feature extractor and a series
of branches or sub-models devoted to classifying the input
data at each level of the hierarchy. As depicted in Fig. 8,
our main contribution is an extension of B-CNN based on
an attention mechanism that allows feature maps to flow in
different directions of the hierarchy. In addition, the attention
mechanism determines how the branches influence each other
in a dynamic and data-driven way.

A. BRANCHED ARCHITECTURE
Formalizing recent approximations, if x denotes a possible
input to the system, the central block implements a transfor-
mation of the form z(L) = F(x) constructed as a composition
of L simpler transformations or ‘‘layers’’

z(ℓ) = fℓ(z(ℓ−1)) ∀ℓ ∈ [L] ,

z(0) = x. (12)

Similarly, each branch implements a layered transforma-
tion y(Kb)b = Gb(xb) defined recursively as

y(ℓ)b = gℓ(y
(ℓ−1)
b ) ∀ℓ ∈ [Kb] ,

y(0)b = xb ∀b ∈ [B] , (13)

where xb is a tensor specifically prepared for level b and gℓ is
the ℓ-th transformation or layer.1 Predictions for each level of
the hierarchy can be obtained from a simple fully connected
layer fed with y(Kb)b ,

yb = σ (Wby
(Kb)
b + θb) , (14)

where σ denotes a Softmax activation function.Wb and θb are
the parameters of the fully connected layer for level b.

A key difference between existing models is how a branch
is allowed to condition the prediction of another branch. For
example, in [15], the branches were not explicitly connected
and depended on each other only through the shared feature
extractor. The input of branch b is a feature map extracted
from the central block, that is xb = z(ℓb) for some ℓb ∈ [L]
such that ℓb > ℓb′ , ∀b > b′. The output of branch b is not
independent of branch b′ < b because xb depends on xb′ ,
which is a more primitive representation of the input data.

1These layers gℓ are usually fully connected (FC) layers, i.e., an affine
transformation followed by an element-wise non-linear activation.
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FIGURE 8. Proposed architecture BA-CNN for a 3-level hierarchy.

In [18], two contiguous branches get explicitly connected
by defining xb as the concatenation of the previous branch’s
output with the feature representation drawn from the central
block, i.e., xb = z(ℓb) ⊕ y(Kb−1)

b−1 . This architecture allows
branch b to explicitly condition the prediction of branch
b+ 1 and resembles the Jordan recurrent connections used in
sequence modelling. In [31], the previous branch’s output is
substituted by pre-output activations, i.e., xb = z(ℓb) ⊕ y(kb−1)

b−1
for some kb ∈ [Kb]. In [17], each branch gets explicitly
connected to all previous branches by defining xb as

xb = z(ℓb) ⊕

b−1⊕
b̃=1

z(ℓb̃)

 . (15)

In [16], branches are connected similary to [17], but instead
of connecting the representation extracted from the central
block, they connect the pre-softmax layer y(Kb)b . This con-
nection generates a new pre-softmax layer ỹ(Kb)b , defined for
Concat-net as

ỹ(Kb)b = y(Kb)b ⊕

b−1⊕
b̃=1

y
K(b̃)

b̃

 . (16)

Add-net uses the same definition, but instead of performing
the concatenation, they use the summation.

B. ATTENTION MECHANISM
Generalizing the above ideas and inspired by recent advances
in sequence modelling, we propose replacing these (increas-
ingly complex) connectivity patterns with an attention mod-
ule. Our aim is to feed branch b using a context vector ab
constructed from representations B = {y(k)1 , y(k)2 , . . . , y(k)B }

drawn from all the other branches in the network, coarser and
finer ones. To this end, we propose an attention mechanism
that recombines the elements of B as follows:

ab =

M∑
m=1

αbm y(k)m , (17)

where αbm is the attention weight assigned to branch m to
compute the context vector of branch b. This mechanism is
shown in Fig. 9.

As discussed in the previous section, there are many differ-
ent ways to compute the weights, αbm.We propose computing
αbm using a simple one-hidden-layer neural net with the linear
activation g, that is:

αbm =
exp(ξbm)∑
m′ exp(ξbm′ )

, (18)

ξbm = g
(
Wbmy(k)m + βbm

)
. (19)

Note that each branch b attends to the representations in
B using the branch-specific parameters Wb· and βb·. Note
also that these parameters are not shared across the elements
in B, i.e., the model learns different parameters to obtain
the logits ξb1, ξb2, and ξbB, which determine how branch b
attends to branch m. It would be possible to use the same
parameters for each m, but this reduces the flexibility of the
attention module.2 An interpretation of this approach is as

2If the attention parameters were shared among branches, i.e., Wbm =

Wb′m∀b, b′,m ∈ B, each branch b would be constrained to attend the
representations in B with the same attention weights αbm used by the other
branches. Therefore, as the attention module’s input is the same for every
branch b, the context vectors ab would longer be branch-specific but global
context vectors about the model’s predictions for the hierarchy.
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follows: to be linearly combined, the tensors in B must have
a consistent dimension, i.e., we need to fix the dimension-
ality of the feature maps flowing from the branches to the
attention module. One way to compensate for this condition
is to introduce a map that projects y(k)m ∈ B into a feature
space that disentangles the information needed by branch
b about branch m. Our attention module implements that
embedding using a fully connected layer with the parameters
Wbm and βbm.

For further flexibility, we employ residual connections
around the attention module; that is, we concatenate ab with
the original latent representation flowing from branch b to the
attention module as follows:

ãb = ab
⊕

y(k)b . (20)

Once the attention weights have been computed, the pre-
dictions for each level of the hierarchy are obtained using a
softmax-activated output layer conditioned on ãb, i.e.:

yb = σ (Wbãb + θb). (21)

Note that Equations (12) and (13), which define the
branched approach to hierarchical classification, are still
valid. The fundamental difference between our method and
the previous techniques is that we place an attention module
between the features of (13) and the output in (14).

C. LEARNING
Provided that all the subnets in the model are differentiable,
we can train the system end-to-end using backpropagation.
We used the cross–entropy loss to guide the learning of each
branch. That is if y∗b denotes the desired probability distribu-
tion for branch b and yb = y(Kb)b is the predicted distribution of
that branch, the loss corresponding to level b in the taxonomy
is computed as:

Lb(y∗, y) = −Ey∗ ln (y) . (22)

In practice, the expected value in (22) is estimated using
data S = {

(
x(n), y(n∗)b

)
}, which have been annotated for that

level of the class hierarchy. Previous works (see, for example,
[15] and [17]) often assumed that data were classified at a
finer level in the hierarchy. In this case, level-wise annotations
can be obtained by tracing the hierarchy back. However, note
that the current formulation supports partial annotations.

The loss corresponding to the entire taxonomy is defined
as the weighted sum of these losses.

L(y∗1:b, y1:b) =

∑
b

ωbLb(y∗b, yb). (23)

VI. EXPERIMENTS
In this section, we describe the experiments conducted to
evaluate the proposed method on three image classifica-
tion datasets: CIFAR-10 [44], CIFAR-100 [44], and Fash-
ion MNIST [45]. These datasets have been widely used in
recent studies to assess the performances of deep hierarchical
classifiers. We compared the performance of our model with

four baselines: B-CNN [15], H-CNN [17], Add-net [16] and
Concat-net [16]. We also compared the performance of the
hierarchical CNN models with a traditional CNN trained to
predict the last level of the taxonomy. We chose B-CNN as
a baseline because it is the base architecture on which most
recent works are based. On the other hand, H-CNN is themost
recent method proposed for this task. In addition, Add-net
and Concat-net are recent architectures slightly simpler than
HCNN and, thus, are worth considering.

A. DATASETS
The CIFAR-10 dataset comprises 60,000 32 × 32 color
images organized into ten natural classes, with 6,000 images
per class. We employed the three-level class taxonomy pro-
posed by Zhu and Bain [15] and then used by [17], which
included the classes animal and transport at the coarsest
level. For the next level, the class animal separates into
four sub-categories (medium, pet, reptile, and bird) and the
class transport into three (road, water, and sky). Finally, the
fine level accommodates the ten original classes. CIFAR-
100 consists of 60,000 32 × 32 RGB images divided into
100 natural classes with 600 images per class. The class
hierarchy used in [15] and [17] organizes the classes into
three levels: the first level contains eight coarse categories
(not specific names used), the second and the third level
corresponds to the 20 coarse and 100 fine-grained categories
originally included in the dataset [44]. Fashion MNIST com-
prises 70,000 28 × 28 gray images extracted from Zalando,
an online fashion platform. In [31], the authors built a
three-level taxonomy for this dataset which included two
classes at the coarsest level: clothes and goods. The next
level separates the class clothes into four sub-categories (tops,
bottoms, dresses, and outers) and the class goods into two
sub-categories (accessories and shoes), for a total of six new
classes. Finally, the last level accommodates the ten original
classes. We adapted our model and the baselines to learn this
taxonomy.

B. EXPERIMENTAL SETUP
To implement all the methods, we adopted an architecture
first introduced for hierarchical image classification in [15].
The model, inspired by the VGG model’s architecture and
then adopted by many studies to facilitate comparisons,
includes a central feature extractor referred to as Base-C.
Base-C bifurcates into different sub-models or branches
devoted to predicting class assignments for the different lev-
els of the hierarchy. In [15], authors showed that Base-C
outperforms an alternative architecture named Base-B in all
metrics, but in Section VI-D, we assess the effects of this
choice.

Base-C includes five layer sequences referred to as con-
volutional blocks. The first two convolutional blocks consist
of two convolutional layers with 3 × 3 filters, followed by
a 2× 2max pooling layer. The last three convolutional blocks
increase the number of convolutions to three, and the fifth
convolutional block does not have the max pooling layer. The
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FIGURE 9. Attention mechanism for branch b in a 3-level hierarchy.

convolutional filters are 64, 128, 256, and 512 in the first,
second, third, and last two blocks, respectively. The activation
function is ReLU for all convolutional layers.

As the taxonomies previously used to validate the base-
lines have three levels, all the models added three branches
to the central backbone. Each branch consisted of two
fully-connected layers followed by a Softmax output layer.
The number of neurons for each layer was 512, 1024, and
4096 for the first, second, and third branches, respectively.
Besides level-specific branches, H-CNN, Add-net, and
Concat-net add skip-connections that connect each branch
with the subsequent branches. Following the author’s rec-
ommendations, we implemented these skip-connections by
propagating each branch’s input vector to the following
branches. For the comparisons, we chose VGG16 as a flat
CNN representative because it is equivalent to B-CNN with-
out the first two branches.

As discussed before, all assessed methods use a step-by-
step training method named BT-Strategy, which gradually
modifies the weights of the multiple losses in the objective
function. This strategy encourages the model to focus on
coarser hierarchy levels during the first epochs of training
and gives more importance to fine-grained predictions at the
end of the training. As finding the proper schedule for new
datasets is difficult and time-consuming, we evaluated the
impact of the BT-Strategy in all experiments.

For our attention modules, we implemented fully-
connected nets with one hidden layer of 64 neurons each.
As the method linearly combines the feature vectors extracted
from each branch, these vectors must have a consistent
dimension. Therefore, we fixed the dimensionality of the
hidden layers in all three branches in our model to 256. This
decision was a parsimonious choice that reduced the total
number of parameters in the model. Subsequently, we stud-
ied the effect of this decision. Since Add-net also linearly
combines feature vectors from each branch, we adopted the
same standard for this model. In addition to the parsimonious
version of our proposal, we included a version using the
best hyperparameters from an exhaustive grid search per-
formed on the model. To tune our model, we considered
three hyperparameters: The number of neurons of the hidden
layers in all branches in the range [24, 212], [26, 212], and

[23, 212] for CIFAR-10, CIFAR-100 and Fashion MNIST
respectively, the number of neurons of the hidden layers in
the attention mechanism in the range [25, 211], and the usage
of BT-Strategy. For all combinations, we calculated all the
performance metrics using 5-fold cross-validation. Table 2
shows the optimal settings.

We conducted two statistical tests to evaluate the signifi-
cance of the experimental results. First, we employed Fried-
man’s test to assess the (null) hypothesis that the methods we
compared were statistically equivalent under a given metric.
In this design, the method serves as the group variable, and
the level of supervision serves as the blocking variable. Sec-
ond, when rejecting the null hypothesis of Friedman’s test,
we compared the proposed method with the other algorithms
using the Wilcoxon test with Bonferroni correction to check
for pairwise differences. Note that the Bonferroni correction
yields much more conservative p-values than those obtained
by assuming independence of the pairwise differences. For
all the tables, the highlighted values correspond to the maxi-
mum per category as long as it has a statistically significant
difference at 5% level from the value that follows it. If there
is more than one highlighted value, it is because the statistical
tests show them as equivalent, showing both as the best value.

All the models were implemented using Python with the
functional Deep Learning API Keras, running on a desktop
computer, composed of an AMD(R) Ryzen 7(R) @3.80GHz
processor and an Nvidia Geforce RTX 3060ti GPU. To facil-
itate future research, all the code required to reproduce
our model and the baselines have been made available at
https://github.com/IvanPizarroQ/BA_CNN.

The specific experimental settings for each dataset are the
following:

1) CIFAR-10
We trained all the models using the settings of [15] and
[17]. Stochastic Gradient Descent (SGD) was iterated for
60 epochs using a batch size of 128. The learning rate sched-
ule started with a value of 0.003, decreased to 0.0005 after
42 epochs, and to 0.0001 after 52 epochs. For the BT-Strategy,
we start with weights of 0.98, 0.01, and 0.01 for the first, sec-
ond, and third hierarchy levels, respectively. These weights
were modified to 0.1, 0.8, and 0.1 after 10 epochs; to 0.1,
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TABLE 2. Best hyperparameters after the exhaustive grid search for
CIFAR-10, CIFAR-100 and Fashion MNIST.

0.2, and 0.7 after 20 epochs; and 0, 0, and 1 after 30 epochs.
For the experiments without the BT-Strategy, we set the
weights to 0.33, 0.33, and 0.34 during the entire training
process.

2) CIFAR-100
The branches used to predict the different levels of the hierar-
chy were organized following [15]. We trained all the models
for 80 epochs using SGD and batch size of 128. The learning
rate starts with a value of 0.001. At epoch 55, it decreases
to 0.0002. Finally, at epoch 70, it is updated to 0.00005. The
schedule of weights for the BT-Strategy was the same as for
CIFAR-10.

3) FASHION MNIST
For all the experiments, we adopted the training settings
described in [31]. We trained all the models using vanilla
SGD for 60 epochs and a batch size of 128. The learning
rate starts with a value of 0.001. It decreases to 0.0002 after
42 epochs and to 0.00005 after 52 epochs. When the
BT-Strategy was active, the weights for the first, second, and
third hierarchy levels were 0.98, 0.01, and 0.01, respectively.
These weights were modified to 0.1, 0.8, and 0.1 after
15 epochs; to 0.1, 0.2, and 0.7 after 25 epochs; and 0, 0, and
1 after 35 epochs.

C. RESULTS
Table 3, 4, and 5 present the hierarchical and level-wise
performancemetrics for CIFAR-10, CIFAR-100, and Fashion
MNIST, respectively. The best results within the level of sta-
tistical significance are in bold. The parsimonious version of
our proposal is presented as BA-CNN and the tuned version
as BA-CNN*. For details about the p-values of the statistical
tests performed, please refer to Tables 8, 9, 10, 11, 12, 13, 14,
and 15 from the Appendix.

In all datasets, the proposed model outperformed all the
baselines in terms of hierarchical accuracy and hierarchi-
cal consistency with statistically significant differences. This
result confirms that our attention mechanism can equalize the
information flow among the branches, enabling the model
to make more accurate predictions respecting the labels’
hierarchy. In particular, for CIFAR-100, hierarchical accu-
racy was at least ten points higher than baseline values,
and hierarchical consistency was higher with margins of at
least 25 points. The above demonstrates more clearly the
principal advantages of the proposed model in hierarchical
terms. In this dataset, the difference between the tuned and

parsimonious models is not statistically significant, so we
presented the latter as a convenient choice that reduces the
number of parameters. Furthermore, we obtained this result
despite having only 40% of the number of parameters used
by B-CNN and 18% of the number of parameters required by
H-CNN to implement its highly dense connectivity pattern.
Regarding hierarchical F1, the proposed model outperformed
the baselines on CIFAR-10 and CIFAR-100. For Fashion
MNIST, the differences were not statistically significant.

Regarding level-wise performance, on CIFAR-10 and
CIFAR-100, the proposedmethod outperformed the baselines
with statistically significant differences at the first two levels
of the class hierarchy and competitive results at the last level.
Furthermore, in some cases, this advantage was noticeably
greater than the slight decrease observed at the third level.
For instance, on CIFAR-100 using BT-Strategy, we improve
the baselines’ accuracy at the coarser level by more than
10 points, whereas the decrease at the third level is 4 points in
the worst case. For Fashion MINST, all the methods achieve
similar results with remarkably narrow numerical differences
that the statistical tests do not find significant in most cases.
We must note that in this dataset, the B-CNN model already
obtains an excellent performance at the coarsest level of the
hierarchy (about 0.998 of accuracy), significantly reducing
the margin of improvement that its variants can achieve,
including the ours, which usually improves results at that
level.

The above results suggest that the proposed method is a
reliable extension of the referenced model: it can improve
B-CNN in complex tasks, keep its performance in more
straightforward tasks, and especially improve hierarchical
accuracy and consistency.

D. ABLATIONS
In this section, we evaluate the robustness of the pro-
posed model to the choice of the central backbone archi-
tecture. We also present ablation studies on the effect of
two hyperparameters: (i) the dimensionality of the feature
vectors propagated from the branches and (ii) the number
of neurons of the attention mechanism. These hyperparam-
eters were analyzed as a combination since they are strictly
linked.

To investigate the impact of the central backbone archi-
tecture on the model’s performance, we adopt an alter-
native model proposed by [15] and referred to as Base-
B. Base-B simplifies Base-C by reducing the number of
convolutional blocks to four and the number of convo-
lutional layers in the last two blocks to two. Following
[15], all models based on this architecture also simplify the
branches by reducing the number of neurons in each layer
to 256, 512, and 1024 for the first, second, and third branch,
respectively. Following the author’s recommendations, skip-
connections included in H-CNN, Add-net, and Concat-net
still propagates each branch’s input vector to the following
branches.

VOLUME 11, 2023 32983



I. Pizarro et al.: Attention-Based Architecture for Hierarchical Classification With CNNs

TABLE 3. Results on CIFAR-10.

TABLE 4. Results on CIFAR-100.

TABLE 5. Results on fashion MNIST.

Table 6 presents the hierarchical and level-wise perfor-
mance metrics achieved by the proposed and baseline mod-
els when we change the central backbone architecture from
Base-C to Base-B. We can observe that all models exhibit
a decrease in performance. These results confirm previous
studies in [15]. However, despite these differences, the rel-
ative advantage of our model is preserved. Indeed, in most
cases, the proposed model outperforms the baselines in accu-
racy at the coarser levels of the hierarchy, and its perfor-
mance is similar to the baselines at the finer level. Moreover,
our model obtains a considerable and statistically signif-
icant advantage in hierarchical accuracy and consistency,

showing that the proposed approach is robust to changes
in the central backbone. Details about the p-values of the
statistical tests can be checked in Tables 16, 17, and 18 of the
Appendix.

To evaluate the effect of varying the number of neurons in
the attention modules and the dimensionality of the feature
vectors propagated from the branches, we measured hier-
archical accuracy for different combinations of these two
hyperparameters. The dimensionality of propagated feature
vectors depends on the dimensionality of the branches, so we
varied that value in the range [24, 212]. For the number of
neurons in our attention mechanisms, we considered values
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TABLE 6. Main results on CIFAR-10 for Base-B models.

FIGURE 10. Hierarchical accuracy on CIFAR-10 as we increase the number
of neurons in the branches.

FIGURE 11. Hierarchical accuracy on CIFAR-100 as we increase the
number of neurons in the branches.

in the range [25, 211]. We adopted a logarithmic grid in
both cases. Figs. 10, 11, and 12 summarize the results in
the CIFAR-10, CIFAR-100, and Fashion MNIST datasets
respectively. In each figure, we represent the branch number

FIGURE 12. Hierarchical accuracy on Fashion MNIST as we increase the
number of neurons in the branches.

FIGURE 13. Number of model parameters on CIFAR-100 as we increase
the number of neurons in the branches.

of neurons on the horizontal axis and hierarchical accuracy
on the vertical axis. Then we plot a different curve for each
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TABLE 7. Time and Space Complexity of the models. As a Flat CNN representative we chose VGG-16 which is equivalent to B-CNN without the first two
branches.

value of the attention mechanism’s number of neurons. For
completeness, we report results with and without using the
BT-Strategy for training. We can observe that the model is
very robust to the choice of the attentionmechanism’s number
of neurons with a general trend to (slightly) increase as we
increase the dimensionality. The branches’ dimensionality is
the main factor to determine the model’s proneness to overfit-
ting. Generally, small values of this parameter obtains the best
results. Furthermore, the breaking point at the left (underfit-
ting) is significantly more difficult to reach than the breaking
point at the right (overfitting). The above suggests that the
proposed attention module does not need a large number of
trainable parameters to work effectively. We attribute this
result to the module’s flexibility. The model can dynamically
select the pieces of data that are useful to make a prediction,
and thus it does not need to explicitly keep track of many
individual patterns.

As regards the use of the BT-Strategy, we observe mixed
results. In two datasets (CIFAR-10 and Fashion-MNIST),
hierarchical accuracy tends to be better with this train-
ing methodology. However, in CIFAR-100, the BT-Strategy
causes a significant decrease in performance. Therefore,
we can conclude that a model selection phase for tunning the
number of neurons in the attention mechanism and predicting
the BT-Strategy’s efficacy on validation data is worth the
effort.

E. TIME AND SPACE COMPLEXITY
In this section, we discuss the proposed model’s time and
space complexity and the baselines. First, the scalability of
the models in terms of the number of parameters depending
on the branch’s dimension. Then different measures were

performed on the models to evaluate the impact of our pro-
posal in comparison with the state-of-the-art models pre-
sented in this work.

Regarding scalability, Fig. 13 shows the effect of increas-
ing the number of neurons in all branches. We observe that all
the models increase their space complexity similarly, except
H-CNN, which quickly surpasses the rest of the models. It is
worth mentioning that this behavior is for the proposedmodel
using 64 neurons in the attention mechanism. If that value
increases, the space complexity of the model increases, and,
at some point (2048 neurons in this setting), it can reach
H-CNN’s complexity.

The following measurements were computed to models
and presented in Table 7:

• Number of floating point operations per second
(FLOPs).

• GPU memory requirement.
• Number of model parameters.
• Memory required by model weights.
• Training time.

The above measurements were computed using the best
hyperparameters. We also adjusted the baselines to that
hyperparameters to make a fair comparison and evaluate the
complexity of the models in the same scenario.

In terms of training time, considering the fastest model
(Flat CNN) as the baseline, the proposed model presented,
for all datasets, a less than 1.13x slowdown. Between models,
the differences are less than 5%. It is worth noticing that the
differences in training time between datasets are primarily
due to the number of epochs: 80 for CIFAR-100 and 60 for
CIFAR-10 and Fashion MNIST.
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FIGURE 14. Hierarchy tree reconstructed by BA-CNN with BT-Strategy (score = 0.9803).

FIGURE 15. Hierarchy tree reconstructed by B-CNN with BT-Strategy (score = 0.8997).

FIGURE 16. Hierarchy tree reconstructed by H-CNN with BT-Strategy (score = 0.9070).

FIGURE 17. Hierarchy tree reconstructed by Add-net with BT-Strategy (score = 0.9212).

The FLOPs measurements confirm that by adopting the
same branches’ hyper-parameters, the time complexities of
the different models are comparable. The main reason for the
differences in FLOPs between the datasets is the input size of
the network. CIFAR-100 and CIFAR-10 use 32 × 32 images,
and Fashion MNIST 28 × 28.

In terms of model parameters and the corresponding mem-
ory required, due to the concatenation of branches from the
first dense layer, the H-CNNmodel presents more parameters

than the proposed model, excluding Fashion MNIST, always
with a tight margin.

In summary, adding the attention mechanisms to a
branched architecture does not negatively impact time and
space complexity.

F. HIERARCHICAL CONSISTENCY
To visualize the relationships learned by the model, we recon-
structed a hierarchy tree from the model predictions.
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FIGURE 18. Hierarchy tree reconstructed by Concat-net with BT-Strategy (score = 0.9212).

FIGURE 19. Attention weights per level on CIFAR-10. On the first row, using BT-Strategy, and in the second row without it.

FIGURE 20. Attention weights from three classes on CIFAR-10 for t = 3.
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FIGURE 21. Attention weights per level on CIFAR-100. On the first row, using BT-Strategy, and in the second row without it.

FIGURE 22. Attention weights per level on fashion MNIST. On the first row, using BT-Strategy, and in the second row without it.

Fig. 14, 15, 16, 17 and 18 show the relations for CIFAR-10
obtained using the proposed model (BA-CNN), B-CNN,

H-CNN, Add-net and Concat-net respectively. We can see
that the proposed model more precisely reconstructs the
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FIGURE 23. Attention weights for level 1 on Fashion MNIST.

FIGURE 24. Attention weights for class ‘‘Coat’’ and ‘‘Sneaker’’ from Fashion MNIST dataset.

correct relations in the hierarchy. Each edge of the graph was
drawn using an alpha value proportional to the number of
predictions that included that edge.

G. ATTENTION WEIGHTS
In addition to allowing performance gains in many tasks,
attention has become a popular method for gaining insights
into the internals of deep learning models and their predic-
tions [47]. Indeed, as attention allows the model to focus
on a subset of features when predicting an output, attention
weights have been used as proxies of feature importance
since their early introduction [48]. Bahdanau et al. [40] used
attention weights to analyze the alignment between words
learned by the model. Xu et al. [49] showed that the attended
regions in an image-captioning task aligned well with human
intuition. More recently, Voita et al. [50] demonstrated that

the maximum attention weight of a head in Transformer
models agrees reasonably well with its relevance to machine-
translation tasks. Although some recent studies have sug-
gested that attention scores can be inconsistent with other
feature importance measures [51], [52], subsequent experi-
ments have shown that attention weights can still help analyze
the decision and learningmechanisms of otherwise black-box
models [47], [53], [54].

Here, we briefly analyze how the proposed model attends
to different levels of the class hierarchy during training.
For a given level s, we compute the attention weight αst
given to branch s when classifying data at level t and report
the average among the training instances. Fig. 19 depicts the
resulting scores for CIFAR-10. We can see that the coarser
levels (t = 1 and t = 2) give much more importance
to features extracted by branch s = 3. Attention weights
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TABLE 8. P-values of the Friedman test, by groups on CIFAR-10.

TABLE 9. P-values of the Wilcoxon Test on CIFAR-10.

TABLE 10. P-values of the Friedman test, by groups on CIFAR-100.

TABLE 11. P-values of the Wilcoxon test against BA-CNN on CIFAR-100.

are not constant during training but quickly converge to
a configuration in which features extracted from coarser
branches have negligible importance. This result suggests
that bottom-up feedback between branches is useful for learn-
ing a class taxonomy, a type of internal feedback that solu-
tions have systematically ignored, thus favoring top-down
communication patterns. Fig. 21 confirms this result for
CIFAR-100. Although the convergence is slightly slower,
Fig. 22 shows that the same pattern is also observed for
level t = 2 on Fashion MNIST. Interestingly, however, level
t = 1 spreads attention more evenly among the branches,
suggesting that the attention distribution is case-dependent:
fixed attention weights canwork in some datasets but produce
unsatisfactory results in others. Fig. 19, 21, and 22 show that
attention at level t = 3 often behaves differently from
the other levels and varies more among the datasets.
In addition, these figures show that the effect of the
BT-Strategy is to systematically increase the attention the
branches give to the finer level of the class hierarchy, which is

TABLE 12. P-values of the Wilcoxon test against H-CNN on CIFAR-100
(Complementary table of Table 11).

expected because the BT-Strategy gradually focuses training
on that branch.

In Fig. 20, 23, and 24, we show how the attention dis-
tribution varies among different classes. For this experi-
ment, we averaged the attention weights by considering only
(training) instances belonging to the same class at a given
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TABLE 13. P-values of the Friedman test, by groups on Fashion MNIST.

TABLE 14. P-values of the Wilcoxon test against BA-CNN on Fashion MNIST.

level t of the hierarchy. We selected cases that depicted the
variety of attention patterns we observed in our experiments.
For CIFAR-10, for instance, as shown in Fig. 20, there are
three classes at level t = 3, which contradicts the global
attention distribution previously discussed. For these classes,
the attention mechanism weights more the feature vector
received from the same branch (s = 3). We can also observe
in Fig. 20 that the attention given to the previous branch
(s = 2) varies significantly between classes. In Fig. 23
and 24, we present the attention weights for two classes of
the first level and two classes at the last level. We can see
that the relevance of branch s = 2 for the predictions at
level t = 1 can respect the global pattern (class ‘‘Clothes’’)
or be significantly higher than the average curves suggest
(class ‘‘Goods’’). Similarly, at level t = 3, we can find
classes for which the attention given to the feature vector
from the same branch (s = 3) is the lowest, contradicting
the general behavior. We offer these results as evidence of
the fact that the context information that the model needs to
disambiguate a class varies from case to case. This supports
the hypothesis that an attention mechanism among branches
can be more effective for hierarchical classification than a
fixed connectivity pattern or a handcrafted rule to feed the
branches.

VII. CONCLUSION
This paper presented a novel technique for deep hierarchi-
cal classification that recombines feature maps extracted at
different depths of a convolutional neural network to clas-
sify data into the different levels of the class hierarchy.
The novelty of our approach lies in introducing an attention
mechanism devised to learn how the predictions at different
hierarchy levels must influence each other during training
and inference. The attention module allows feature maps to
be exchanged and fused in a dynamic data-driven way that
supports, in particular, top-down and bottom-up cross-level
interactions.

TABLE 15. P-values of the Wilcoxon test against H-CNN on Fashion
MNIST without BT-Strategy (Complementary table of Table 14).

We assessed the proposed methodology using well-known
hierarchical benchmarks based on theCIFAR-10, CIFAR-100,
and Fashion MNIST datasets. Experiments demonstrated
that, in all cases, our algorithm improves the hierarchical
accuracy and hierarchical consistency of four state-of-the-art
models in a statistically significant way. Regarding per-level
performance, we found that the coarser taxonomic levels are
typically those that benefit most from the attention mech-
anism. At the deeper level of the hierarchy, we observed
moremixed results, but statistical tests reveal that competitive
predictions for that specific level also come out very often.
For instance, in the CIFAR-100 dataset, the proposed method
consistently outperformed existing methods by a margin of
around 10% accuracy at the first level of the hierarchy, at the
cost of only about 4% accuracy at the deeper hierarchy level.
This result is remarkable because CIFAR-100 has a large
number of classes.

To conclude, we designed experiments to assess the
hypothesis that our method is better than baselines for
learning hierarchical dependencies between concepts. Exper-
iments showed that our technique outperforms state-of-the-
art models in hierarchical consistency: it typically traverses
the hierarchy by choosing consistent paths from the root
to the leaves. In particular, we observed the most consid-
erable improvement in the CIFAR-100 dataset, where the
proposed method achieved a 25% improvement on current
methods.

In view of the experimental results, we thus conclude that
our method advances current research on deep hierarchical
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TABLE 16. P-values of the Friedman test, by groups on CIFAR-10 for Base-B models.

TABLE 17. P-values of the Wilcoxon Test, against BA-CNN on CIFAR-10 for Base-B models.

classification providing predictions more consistent with the
class hierarchy. Furthermore, the analysis of the attentional
weights revealed that hierarchical classification benefits from
the dynamic connection between branches provided by the
attention mechanism. The neural net updates the importance
of the input feature maps as training progresses and uses dif-
ferent weights to classify different input patterns. This flex-
ibility contrasts with current solutions’ rigid and sometimes
cumbersome connectivity patterns. In addition, the ablation
study revealed that this flexibility allows the model to use a
low number of parameters to obtain the current advantages,
which translates only in a slight impact in terms of time and
space complexity.

In current methods (including ours), the depth at which
a branch emerges is handcrafted by the modeler. Future
work will explore the idea that the network can auto-
matically and dynamically make that choice. Specifically,
we plan to devise a secondary attention mechanism that
can select and aggregate visual features from different
depths of the central block to feed the branches. We plan
to investigate also different implementations of the pri-
mary attention mechanism. In particular, incorporating recent
advances in deep multi-head attention is an exciting direction
to explore.

APPENDIX
This Appendix includes all the p-values from the Fried-
man and Wilcoxon tests performed on the related exper-
iments. It is important to note that the Wilcoxon test
was performed against the proposed model. When our
model did not obtain the best numerical result, we per-
formed that test against the winner and presented the
results in complementary tables. The above occurs in
Tables 11, 14, and 17. P-values are highlighted when the sta-
tistical test shows significant differences at 5% level (p-value
> 0.05).

TABLE 18. P-values of the Wilcoxon Test, against BA-CNN on CIFAR-10 for
Base-B models (Complementary table of Table 17).
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