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ABSTRACT The accurate detection of tire tread wear plays an important role in preventing tire-related
accidents. In previous studies, tire wear detection is performed by interpreting mathematical models and
tire characteristics. However, this approach may not accurately reflect the real driving environment. In this
study, we propose a tire tread wear detection system that utilizes machine learning to provide accurate results
under real-road driving conditions. The proposed system comprises: 1) an intelligent tire that samples the
measured acceleration signals and processes them in a dataset; 2) a preprocessing component that extracts
features from the collected data according to the degree of wear; and 3) a detection component that uses
a deep neural network to classify the degree of wear. To implement the proposed system in a vehicle,
we designed an acceleration-based intelligent tire that can transmit data over wireless networks. At speeds
between 30 and 80 km/h, the proposed system was experimentally demonstrated to achieve an accuracy of
95.51% for detecting tire tread wear under real-road driving conditions. Moreover, this system uses only
preprocessed acceleration signals and machine-learning algorithms, without requiring complex physical
models and numerical analyses.

INDEX TERMS Classification, deep neural network, intelligent tire, tire condition monitoring, tire
tread wear.

I. INTRODUCTION
With recent advancements, vehicle sensor technologies pro-
vide drivers with useful information and improve safety by
identifying surrounding vehicles or measuring the states of
internal components [1], [2]. Among the various sensors,
tire pressure monitoring systems (TPMSs), which measure
the pneumatic pressure in tires, have contributed signifi-
cantly to the prevention of tire-related accidents by ensur-
ing that drivers are aware of the current tire state [3],
[4], [5]. Although considerable research has been performed
on the prevention of tire-related accidents, these accidents
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still account for a large portion of traffic accidents. In par-
ticular, flat tires, punctured tires, and slipping caused by poor
tire conditions can make vehicles uncontrollable and result in
serious accidents [6], [7].

The National Highway Traffic Safety Administration
(NHTSA) in the United States reported that approximately
11, 000 cases of tire-related crashes occur annually [8].More-
over, the NHTSA presented tire pressure, temperature, and
tread depth as factors that could be perceived before a tire-
related accident occurred. In particular, the tire tread depth is
related to maintaining the appropriate grip force and braking
force of a vehicle during driving [9], [10]. If tires are severely
worn, handling the vehicle can become difficult because of
traction loss during driving on wet or snowy roads, and there
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is a possibility of tire blowouts or fires [11], [12]. In addition,
tire wear can cause noise or vibration during driving, affecting
the driver’s comfort [13]. In general, tires are recommended
to be replaced when the tread depth is 1.6 mm; tire-related
crashes are 12 timesmore likely to occur when the tread depth
is <1.6 mm [14].

To prevent tire-related accidents, it is important to period-
ically monitor the tire conditions and alert the driver when
they deteriorate. For example, using TPMSs can significantly
improve vehicle safety [15]. In contrast, the tire tread wear is
typically visually inspected by drivers or measured using a
gauge. To automatically detect tire damage or elements, var-
ious sensors are installed on tires [16], [17], [18], [19], [20].
Additionally, cameras are used to automatically detect tire
wear or damage [21], [22]; this research indicated that more
complex sensor systems and algorithms must be used to
monitor wear.

Accelerometer-based intelligent tires are sensitive to vibra-
tions [23], [24]; thus, they are frequently used to estimate
the roadway conditions [25], [26], [27], [28], tire force
[29], [30], [31], [32], and slip angle [33], [34]. In recent years,
several studies have been conducted on the estimation of tire
wear [35], [36], [37] using intelligent tires. Jeong et al. [35]
estimated dimensionless tire dynamics parameters, which
were simplified using a flexible ring tire model incorporating
the acceleration of intelligent tires, and they analyzed the
occurrence of tire wear. Li et al. [36] analyzed the effects
of tire pressure and wear on radial acceleration using a
finite-element model and estimated the degree of wear using
a neural network. However, approaches utilizing physical
models have limitations, as it is difficult to create a pre-
cise model reflecting the parameters of real road surfaces.
Zhang et al. [37] estimated tire wear by extracting signal
features such as the peak value of the strain-gauge signal and
width of the contact patch. They used an accelerometer for
conducting measurements on an indoor treadmill. However,
approaches based on indoor experimental environments fail
to consider irregular events generated by real driving condi-
tions. In the aforementioned studies, the proposed methods
were validated in controlled environments using experimental
devices set up indoors. However, in the case of driving on real
roads, many variables can significantly affect the assessment
of tire wear. In particular, when mathematical models are
used, it is difficult to reflect the complex conditions of real
road driving.

This paper proposes a tire tread wear detection method
using an accelerometer for application in real driving con-
ditions. The proposed method consists of a preprocessing
algorithm for acceleration signals and a deep neural network
(DNN) for classifying tread wear conditions without using
complex physical models and numerical analyses. We ver-
ified that the proposed method can classify different tire
tread depths by extracting features from accelerometer data
acquired while driving on real roads at different speeds. The
contributions of this study can be summarized as follows:

FIGURE 1. Schematic of the proposed tire wear detection system using
machine learning.

FIGURE 2. Experimental setup for measuring acceleration under
real-road driving conditions: (a) data acquisition module; (b) battery
setup; (c) entire testing system.

• The proposed method detects tire wear using only
accelerometer data, without complex mathematical
models or interpretation of tire characteristics.

• A preprocessing method for the accelerometer signal to
classify the tire wear state is proposed, and it is shown
that the tire wear can be detected using general machine-
learning algorithms.

• The feasibility of the proposed method was verified
using sensor data obtained under actual vehicle driving
conditions.

The remainder of this paper is organized as follows. Section II
presents a schematic of the proposed tire wear detection
system using machine learning and the field-based experi-
mental setup. Section III explains the features and preprocess-
ing method of the acceleration signals measured during the
experiment, as well as the deep learning model to which the
features extracted using the proposed preprocessing method
are input. Section IV presents an experimental performance
evaluation of the proposed tire wear detection method.
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FIGURE 3. Characteristics of the acceleration signal: (a) during one
rotation; (b) radial acceleration over several seconds.

Finally, conclusions and future research directions are pre-
sented in Section V.

II. TIRE WEAR DETECTION METHOD USING
MACHINE LEARNING
A. SCHEMATIC OF TIRE WEAR DETECTION SYSTEM
Fig. 1 shows a schematic of the proposed tire tread wear
detection system, which consists of an intelligent tire compo-
nent and a tire wear detection component. In the intelligent
tire component, acceleration signals are sampled and stored
in a buffer as a dataset. To detect tire wear using the proposed
system in real time, the tire measurement dataset is transmit-
ted to the tire wear detection component through a wireless
network such as Bluetooth.

The tire wear detection component converts the accelera-
tion dataset from the time domain to the frequency domain
and then segments the entire bandwidth into n parts. Next,
the features are calculated as themean amplitude of all signals
within each segment, and a feature set consisting of n features
is used as the input to a detection model. The machine-
learning model in the proposed system is designed using
learning and testing procedures, and the detected tread wear
conditions are output according to a feature set. Finally, the
detection results are sent to a vehicle electronic control unit

or monitoring device through an in-vehicle network such as
a controller area network.

B. EXPERIMENTAL SETUP FOR TREAD WEAR DETECTION
In this study, the experimental setup shown in Fig. 2 was used
to measure the acceleration applied to tires of a passenger
car. The experimental setup consisted of a data acquisition
module and a data processing module, and it included func-
tions for detecting the tire tread wear, as shown in Fig. 1.
The intelligent tire component runs on the data acquisi-
tion module, and the tire wear detection component runs
on the data processing module. In this system, the out-
put of the tire wear detection component is monitored on
a laptop.

Fig. 2(a) shows the data acquisition module, which col-
lected data from the acceleration sensor. It was inserted into
a mold to prevent damage, and the mold was attached to
the center of the inner liner of the tire. Fig. 2(b) shows the
battery used as a power supply for this system. The lithium-
ion battery was attached to a jig mounted on the center cap of
the wheel and provided power to the data acquisition board
via a cable running through a hole in the wheel. Fig. 2(c)
shows the data processing module used to detect tire tread
wear. The data processing module in the figure was mounted
on the dashboard closest to the tire to permit Bluetooth com-
munication, and it was connected to the monitoring module
to provide tire condition information.

The selected accelerometer can measure acceleration val-
ues in the range of –500 to 500 g at a 1-kHz sampling
rate. In addition, the data processing module has a Blue-
tooth reception board connected to an NVIDIA TX2 board.
A 7.4-V lithium-ion battery with a 2000-mAh capacity is
used in this system.

III. PREPROCESSING OF ACCELERATION SIGNAL IN
PROPOSED TIRE TREAD WEAR DETECTION METHOD
A. CHARACTERISTICS OF ACCELERATION SIGNALS
Fig. 3(a) shows the signals from each axis of the acceleration
sensors of the intelligent tires during a single rotation. The
radial acceleration exhibited the largest deviation among the
three accelerations because it was affected by the centripetal
force applied in the vertical direction to the sensor. Therefore,
the radial acceleration appropriately represented the charac-
teristics of the tire tread. For this reason, we selected the
radial acceleration as the signal to classify the tire tread wear.
In the Fig. 3(a), the contact patch is the area of contact
between an accelerometer in a tire and the road surface. The
signals measured in this area include several characteristics
such as the peak-to-peak, vibration, and duration time. How-
ever, the method of using these characteristics generated in
a specific section requires distinguishing the section from
other sections [25], [31]. In addition, irregular signal pat-
terns shown in Fig. 3(b) that are formed due to noise gen-
erated when an actual vehicle is driven must be considered.
Therefore, we considered extracting features in the frequency
domain instead of using LSTM, which is widely used for
processing time-series data, for tire wear detection.
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FIGURE 4. Signal preprocessing framework for extraction features.

FIGURE 5. Distribution of features for different tire tread wear depths.

B. PREPROCESSING OF ACCELERATION SIGNALS
In this study, the radial acceleration is sampled n times to
consider the noise generated during real-road driving condi-
tions. As the tire rotates multiple times while the acceleration
signals are sampled, general characteristics reflecting the tire
tread wear can be identified; the tire tread wear can be rep-
resented in the frequency domain using the identified signal
characteristics. Fig. 4 presents the preprocessing method for
extracting features from acceleration signals. As shown, the
measured acceleration signals are sampled considering the
number of specific signals collected and stored in the form
of a dataset. In this study, a 500-point accelerometer signal is
sampled as one dataset. To achieve this, the signal from the
accelerometer sensor is sampled at a period of 0.5 s. After
the stored dataset is converted into the frequency domain,
the bandwidth is divided into k segments to extract the fea-
tures of signals in all bandwidths in the frequency domain.
Finally, the average amplitude of a signal existing in each
segment is calculated to extract statistical features. Here, the
feature point fk,T extracted by a segment can be defined as
follows:

fk,T =
1
N

N−1∑
i=0

aamplitude
(
iT , k

)
, (k = 1, 2, 3, . . .) (1)

where k represents the frequency segment, T represents the
order of the sampled datasets, aamplitude(iT ,k) represents the
amplitude of the ith signal in the k th segment, and N repre-
sents the number of acceleration signals in the segment.

The feature set used as the input for the deep-learning
model consists of k features (fk,T ) and a DC offset, which
is denoted as f0,T . Fig. 5 shows the distribution of the fea-
tures that have been normalized between 0 and 1 for use
as input values to the proposed model. The 0-Hz features
in the figure indicate the DC offset. Furthermore, the 0-Hz
features for the different tread wear conditions are similar
because they reflect the velocity of the vehicle. For other
frequency segments, the average value varies depending on
the tire tread wear. The largest value is observed in the low-
frequency band.

The features shown in Fig. 5 appear to be easily classifiable
using a simple approach. However, this figure represents the
results of extracting features from a single dataset under
specific conditions to demonstrate the applicability of the
extracted features. When extracting features from the entire
dataset, the feature patterns can be much more complex and
not as straightforward as those shown in the figure. This is
evident from the performance evaluation results in section IV,
which indicate that it is difficult to accurately judge tire wear
using a simple classification method. Therefore, this paper
uses a complex deep learning model to classify features and
detect tire wear.

C. PROPOSED METHOD FOR TIRE TREAD
WEAR DETECTION
In this section, a DNN model for detecting tread wear con-
ditions is designed and a method for increasing the detection
accuracy is proposed. Because the tire tread becomes worn
from damage accumulated over a long period of time, it is
less affected by real-time responses than the tire forces and
friction. Therefore, the accuracy of the proposed system is
more important than the response time for the detection of tire
tread wear. In particular, the use of a sensitive acceleration

VOLUME 11, 2023 32999



J.-Y. Han et al.: Experimental Evaluation of Tire Tread Wear Detection Using Machine Learning

FIGURE 6. DNN model architecture for detecting tire tread wear.

sensor for the detection of wear conditions may reduce the
detection accuracy because of the various noises generated
under real-world driving conditions.

Fig. 6 illustrates the proposed method for increasing the
detection accuracy for tread wear considering such charac-
teristics. The signal characteristics in the frequency domain
extracted via the proposed preprocessing method are used
as the input of a DNN model. The DNN model outputs the
detection results for four treadwear conditions, and the output
results are accumulated in a buffer over a certain period of
time. Eventually, the output value that has accumulated the
most in the buffer is considered to be the current tire tread
wear condition.

In Fig. 6, the input layer of the DNN model consists of
11 nodes, i.e., the average amplitude of each segment and
the amplitude at 0 Hz. The hidden layer is designed with five
layers, each consisting of 32 or 62 nodes, depending on the
position. We use rectified linear unit (ReLU) as the activation
function for the hidden layers in the DNN to ensure that the
input tire wear features are well propagated to deeper layers.
We use the softmax function to calculate the final output for
estimating each wear class.

We denote the input of the DNN model as x, the output as
y, the class to be classified by the DNN model as s, and the
number of hidden layers as Nlayer . The number of classes is
equal to the number of tire tread depths we wish to classify.
We denote the input of the ith layer as vi, the weight as wi,
and the bias as bi. Equation (2) gives the weighted sum of
the ith layer. The output of the ith layer of the DNN model
is calculated using (3), and the tire tread depth is detected
by selecting the class with the highest probability calculated
using (4).

zi = wivi + bi, 0 ≤ i ≤ Nlayer (2)

vi+1
= ReLU

(
zi
)

, 0 ≤ i < Nlayer (3)

(y = s | x) = softmax
(
zNlayer

)
(4)

The DNN model was trained using categorical cross-entropy
as the loss function, which is suitable for multi-class clas-
sification. Equation (5) gives the loss function, where Nclass

FIGURE 7. Experimental procedure.

represents the number of classes, and ti,j and yi,j represent
the target value and the output of the DNN for the jth class
of the ith dataset, respectively. Adaptive Moment Estimation
(Adam) was used as the optimizer for training the DNN
model.

L =
1

Nsample

Nsample∑
j=1

Nclass∑
i=1

ti,j log(yi,j) (5)

IV. PERFORMANCE EVALUATION USING VARIOUS
MACHINE-LEARNING METHODS
We evaluated the performance of the proposed tire wear
detection method via the procedure shown in Fig. 7.

33000 VOLUME 11, 2023



J.-Y. Han et al.: Experimental Evaluation of Tire Tread Wear Detection Using Machine Learning

FIGURE 8. Comparison of the tire tread wear detection accuracies of different algorithms: (a) 0%, (b) 20%, (c) 40%, and (d) 80% tire tread wear.

The performance verification was conducted in three stages:
experimental data preparation, model training, and per-
formance verification. In the experimental data prepara-
tion stage, data were acquired through vehicle driving and
divided into verification and training datasets. This process
is described in Section IV-A.

In the model training stage, the tire wear judgment model
was trained using the training dataset, and the training
time was measured. In the model testing stage, the tire wear
degree was determined by inputting the test dataset to the
trained model. The time required to detect the tire wear
and the accuracy of the determination were measured. This
process is described in Section IV-B.

A. EXPERIMENTAL ENVIRONMENT
In this section, the experimental environment for verifying
the performance of the proposed tire tread wear detection
method is described. The data used for performance evalu-
ation were collected by driving a vehicle on a drive proving
ground. During the experiment, a vehicle was driven on an
asphalt road in a straight line, and the speed was increased
from 10 to 100 km/h in increments of 10 km/h, corresponding
to 10 different speeds. One 18-in acceleration-based intel-
ligent tire was installed at the front left of the vehicle, and

TABLE 1. Number of datasets for training and testing.

the tire pressure was maintained at 39 psi. The signals were
measured by switching among four different types of tires
with tread depths of 7 mm (0% wear, new), 5.6 mm (20%
wear, normal), 4.2mm (40%wear, normal), and 1.4mm (80%
wear, dangerous). The vehicle weight was 1550 kg, and two
adults were on board.

The degree of wear and datasets for each speed obtained
from the experiment were used for training and testing the
classification models. Table 1 presents the number of datasets
obtained for each speed and the degree of wear, which were
used to create and validate the models. 40% of the datasets

VOLUME 11, 2023 33001



J.-Y. Han et al.: Experimental Evaluation of Tire Tread Wear Detection Using Machine Learning

collected by speed and tire tread depth were used for training,
and the remaining 60% were used for testing. The driving
experiments were repeated, as the experimental road had a
limited length, and less data were acquired at higher speeds
because the driving time was shorter.

B. EVALUATION RESULTS OF PROPOSED METHOD
The proposed DNN model was compared with four widely
used machine-learning algorithms to evaluate its perfor-
mance for using the acceleration characteristics in the fre-
quency domain to detect tread wear. The machine-learning
algorithms used for comparison included multiple lin-
ear regression (MLR), a support vector machine (SVM),
k-nearest neighbors (KNN), and a convolutional neural net-
work (CNN). For KNN, k was set as 4, which exhibited
the best performance in the experiment, and for the SVM,
the radial basis function [36] was used as the kernel. The
CNN model uses the acceleration signal converted to the
frequency domain as an input without applying the proposed
preprocessing method.

We designed the DNN and CNN models with a suffi-
ciently large capacity to optimize the hyperparameters of each
model. Subsequently, we optimized the neural network by
reducing the size of the model until performance degradation
occurred. The number of epochs was set to 400 and 1000.
We evaluated the accuracies, running times, and learning
times of all models to compare their performance.

Fig. 8 shows the tread depth classification accuracy for
each driving speed and the degree of wear observed when
estimated using the DNN with the preprocessing method.
Here, the distribution of the dataset samples is not consistent,
therefore the accuracy is defined as follows:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
, (6)

where true positive (TP) refers to the case where a positive
class is detected as true, true negative (TN) refers to the case
where a negative class is detected as true, false positive (FP)
refers to the case where a positive class is detected as false,
and false negative (FN) refers to the case where a negative
class is detected as false.

As shown in Fig. 8, the accuracies of all the models were
high at driving speeds between 30–80 km/h but significantly
lower outside of this range. This is because at low speeds,
sufficient vibrations do not occur for the tire wear condi-
tions to be classified, whereas the vibrations generated at
high speeds are stronger than those related to the tire wear
condition. Therefore, in this study, we compared the detection
accuracies of the models for the tire tread depth considering
the driving speeds typically observed in cities.

Table 2 presents the average accuracies of the
machine-learning models according to the tread depth at
speeds ranging from 30 to 80 km/h. The DNN model applied
with the proposed preprocessing method achieved excellent
classification results for each tire wear condition, with an
overall average accuracy of 95.51%. At a tire tread wear of

TABLE 2. Average accuracy for each machine-learning model from 30 to
80 km/h.

TABLE 3. Running and learning times for each machine-learning model.

80%, at which point tires are recommended to be replaced,
the accuracy was 98.84%. This result was obtained when
500 acceleration signals were used as the input and the
detection period was approximately 0.5 s. However, because
the monitoring of tire wear does not need to be real-time,
the detection accuracy can be increased by accumulating the
detection results in a buffer, as explained in Section III-C.

Table 3 presents the running and learning times of the
models, which confirm the applicability of the proposed tire
tread wear detection method. Deep learning-based classifica-
tion models, such as DNNs and CNNs, require long running
times. However, because the detection of the tire tread depth
does not require an extremely fast response time, a machine-
learningmodel with long running time, such as a DNN, is still
applicable. For the same reason, the relatively long learning
times for CNNs and DNNs may not be a critical factor.

V. CONCLUSION
We propose a method for detecting tire tread wear, which
can reduce related accidents by analyzing acceleration signals
from an intelligent tire. The proposed method consists of
(1) an intelligent tire that samples the measured acceleration
values and processes them in a dataset, (2) a preprocessing
component that extracts features from the collected data,
and (3) a detection component that uses a DNN model. The
proposed method was implemented in a real vehicle, and its
feasibility was verified using acceleration values measured
under real road conditions while driving. Additionally, its
detection performance was compared with that of various
machine-learning algorithms.

The experimental results indicated that the intelligent tire-
based tread wear detection method is capable of detec-
tion using only acceleration signals and machine-learning
algorithms, without numerical or other complex tire mod-
els. In particular, the proposed preprocessing method can
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adequately extract features according to tread wear condi-
tions regardless of how the acceleration signals are collected
under real driving conditions that exhibit irregular noise. The
proposed detection method achieved an average accuracy of
95.51% at driving speeds ranging between 30–80 km/h. The
accuracy increased when the detection period was increased.

To improve the performance of the proposed tire wear
assessment method and ensure its feasibility in various envi-
ronments, additional research is needed as follows:

• In this study, we collected data by driving at different
speeds under actual road conditions, but the evaluation
of the proposed method is limited to repeating the same
driving scenario under specific conditions. Therefore,
the proposed method may exhibit performance changes
under various driving scenarios and physical parameters
such as the load on the vehicle and internal tire pres-
sure. Consequently, additional performance verification
of the proposed method is required under various envi-
ronments and scenarios.

• To enhance the performance of the proposed system,
it is necessary to use approaches such as Kalman filters
to remove signal noise in the preprocessing stage and
optimize the parameters of the deep learning model.
Additionally, it is necessary to supplement and improve
the proposed system by comparing and verifying it
with mathematical modeling or finite element analysis-
based wear estimation algorithms proposed in previous
studies.

• The sensor module of the intelligent tire used in this
study is powered by a battery. However, this method has
the inconvenience of constantly replacing the battery.
Therefore, a new idea is needed to provide power to the
intelligent tire until its lifespan is exhausted.
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