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ABSTRACT In this study, a Machine Learning (ML) is implemented to soft computation of the Reconfig-
urable Horn Bowtie Dumbbell (RHBD) antenna at operating frequency range from 26 GHz to 29.5 GHz
for 5G applications. An adaptive learning rate approach is used to build a ML model on a 5-layer system
utilizing a simulated database of 180 RHBD antennas. In the training stage of a hybrid method that combines
the advantages of particle swarm optimization (PSO) with a modified version of the gravitational search
algorithm (MGSA), the architecture frame and hyper-parameters of the ML model are optimized. A precise
electromagnetic analysis platform is used to simulate 180 RHBD antennas with varying geometrical
properties in terms of the resonant frequency in order to create the database for training and testing the
model. The ML model is tested and validated using a fabricated RHBD antenna operating at 27.5 GHz.
Then, three PIN diodes are placed in the gaps of the reflectors located at the back of the antenna, and by
changing the state of these PIN diodes, it can be noticed that they have a significant and direct effect on the
radiation pattern, as they are able to change the beamwidth from 10.7° to 156.2°. The suggested antenna
makes it easier to create dynamic radiation patterns that may be utilized to reconfigure the coverage area as
required in accordance with the spatial-temporal user and traffic variations in high mobility environments.

INDEX TERMS Reconfigurable antenna, neural networks, machine learning, mm-Wave, optimization

techniques.

I. INTRODUCTION

Due to the urgent need to reach more users while maintaining
a dependable communication system that satisfies end-user
needs, the world recently saw a rapid transition in the wireless
communication business. As a consequence, a number of
contemporary standards and applications have been devel-
oped, including fifth generation (5G) communications, big
data applications, the internet of things (IoT), and vehicular
communications, etc. [1]. These new technologies are, how-
ever, creating new problems for radio frequency congestion
and have crossed wireless frequency band allotment. To meet
these issues, the phenomena of antenna reconfigurability has
emerged [2] because to its promising properties of tailoring
the operating frequency and beam width management for the
intended applications.
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Reconfigurable antennas (RAs) that have the ability to
dynamically change their characteristics, such as their radi-
ation pattern, operational frequency, and polarization, have
drawn a lot of interest [3], [4], [5], [6], [7], [8], [9]. In specif-
ically, the reconfigurable antennas with radiation pattern
reconfigurability aid in enhancing system performance [10],
energy efficiency, and communication security by directing
signals in the desired directions while minimizing interfer-
ence in the unwanted directions [11].

In addition to the properties that allow for reconfigu-
ration, antenna compactness is highly valued since minia-
ture antennas drastically reduce the dimensions of electronic
systems [12]. The antennas are therefore ideal for con-
temporary communication systems and gadgets because of
their reconfigurability and compactness. Various thin, small,
reconfigurable single-band, multi-band antennas [13], [14].
Modern technologies, however, require compactness in a sin-
gle antenna, functioning at many frequency ranges, reliable
band switching, and control over beam width [15].
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The aforementioned antennas’ potential applications may
therefore be constrained. The distribution or configuration of
electric or magnetic current on an antenna’s construction can
be changed to change the radiation pattern that is emitted by
the antenna. Another way to achieve pattern reconfigurability
without significantly changing the operating frequency is to
establish linkages between source currents and the antenna’s
radiation pattern. Changes in working frequency can be
avoided while still obtaining radiation pattern reconfigura-
bility by using a tunable circuit or some particular antenna
types (such as parasitically coupled antennas or reflector
antennas) [16], [17], [18], [19].

The following are a few techniques that have been discov-
ered to accomplish radiation pattern reconfigurability:

« Changes in structure or mechanics: It has been demon-
strated that altering the reflective surface of a reflec-
tor antenna physically by separating it from its excited
point can vary the radiation pattern while maintaining
the operational frequency. One use of this is to modify
an antenna’s reflector structure to produce a reshaped
beam and then incorporate a motor or actuator to provide
automatic radiation pattern reconfiguration.

« Electrical modifications: It has been discovered that it
is possible to modify the structure of the antenna in
order to vary its radiation pattern. An application of this
is the ringed slot antenna, which modifies the nulls of
its radiation interference pattern by placing PIN diodes
around its slot.

« Parasitic Tuning: The employment of parasitic elements
in an antenna is a very efficient way to achieve the
capacity to change the radiation pattern. In order to
alter source currents on the antenna surface and hence
tilt or steer the antenna beam, they take advantage of
mutual coupling phenomena between the driving and
tuned antenna elements.

Another area of research focuses on the incorporation of
Machine Learning (ML) techniques into an optimization
method that selects the ideal antenna characteristics and
performance [20], [21], [22], [23], [24]. ML is an effective
method for estimating or predicting that has the advantage of
learning and may provide accurate results for a given task.
Therefore, instead of spending money on expensive simula-
tion and measurement, the recommended DNN model is a
trustworthy and accurate computing approach. With regards
to the development and optimization of antennas using deep
learning, [20] provides a complete study of multiple research
articles. It covers the various techniques and algorithms used
to generate antenna parameters based on necessary radia-
tion qualities and other antenna requirements. A complicated
antenna with high radiation properties was constructed by the
authors in [21] using a hybrid DNN system and MGSA-PSO
algorithm. An array of 16 antenna elements was constructed,
and the DNN system was used to feed the 16 antenna elements
in order to achieve the necessary beam-steering.

In [22], the authors used the DNN system and extremely
potent algorithms to design a beam steering for a 64 element
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plasmonic nano antenna array, as a result, the authors were
able to manage all antennas and achieve high precision beam
steering. After that, they only used 5 active antennas to make
beam steering. The authors of [23] constructed an applicator
with 35 antennas that utilizes a multi-resonance technology.
This array’s design utilized a DNN approach, which signif-
icantly aided in the heating of all kinds and sizes of breast
cancers. In order to create the radiation patterns, the authors
of [24] used a patch antenna array 4 x 1 with an inter-element
spacing of 0.28 A. Building a DNN allowed us to obtain the
outputs, which were the amplitude and phase of the antenna
elements, from the radiation pattern, which served as the
input. A number of radiation pattern samples that demonstrate
reasonable competence in creating the radiation patterns were
used to train the recommended ML. Antennas are typically
regarded as the greatest potential candidates for ML s because
to the inherent nonlinearities related to their radiation pat-
terns. Given their ability to connect data with actual specialist
expertise about problems, as well as their precise and rapid
learning and powerful generalization abilities, neural systems
are unquestionably widespread.

In this paper, a ML -based model is optimized in the train-
ing phase of a hybrid MGSA-PSO algorithm for the resonant
frequency computation of the RHBD antenna. The accuracy
of the model is further validated on a measured RHBD
antenna resonating at 27.5 GHz. The RHBD antenna pre-
sented in this work is capable of beamwidth control while
requiring a small number of PIN diodes, where only three
PIN diodes are used. This RHBD antenna can control 3-dB
beamwidths in three planes. The presented paper is organized
as follows: In section II, the RHBD antenna design configu-
ration is presented. Section III presents a brief introduction
about ML modelling and training. In section IV, discussion,
validation and testing the ML model results are explained.
The antenna ability of the reconfigurability and beam-width
control is presented in the section V. Finally, section VI
concludes the results.

Il. DESIGN OF RHBD ANTENNA

This section presents the design structure of the pro-
posed RHBD antenna. This antenna consists of five main
parts, which are Substrate Integrated Waveguide (SIW) horn
antenna, slotted bowtie antenna, sectoral horn with four arcs
director, three half circle reflectors and circular head dumb-
bell Defected in Ground plane Structure (DGS) as shown in
Fig.1.

All these parts are installed on the substrate, while the
antenna is fed with coaxial cable 50 ohm by SMA connector
2.92mm, OHz to 40GHz, 50 Ohm, Solder ST SMD F, and
code (SF1521- 60070) installed at the bottom of the antenna.
Below is a detailed explanation of each part of the proposed
antenna. The first part of the antenna is SIW horn antenna,
sectoral horn antenna are integrated by using the same single
substrate based on the SIW technology. As a result they
are easy to fabricate and the structure is compact. So the
directivity is directed along the x-axis, and it also improves
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FIGURE 1. Proposed antenna structure (a) 3D top view, (b) 3D bottom view, (c) Separated layers for antenna, (d) Top layer with
dimension, (e) Top layer with dimension Cont., and (f) Bottom layer with dimension.
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the reflection coefficient matching for RHBD antenna. Also,
SIW horn antenna has high gain and narrow beam-width
under conditions. As for the second part is slotted bowtie
antenna, which is two triangles opposite the head that are
fed by a microstrip feed line, and there are opposites slots
in the two triangles in order to change the distribution of
current inside the antenna from one scenario to another and
prevent the occurrence of eddy currents, and it also increases
the metallization area of the antenna, and shaping the two
wings appropriately which in turn increases the radiation
efficiency of the RHBD antenna. Providing three slots on
bowtie antenna has a huge advantage because it allows the

creation of a small, compact, low profile antenna with
excellent performance such as, for example, a high gain,
a changeable radiation pattern, etc. Designing such a bow-tie
antenna is very difficult. The physical shape, the number of
slots, and their position are critical parameters and must be
designed with extreme care and precision.

The third part is the antenna, which is sectoral horn with
four arcs director, it is fed by the tape, and plays a key role
in directing the radiation and distributing the current in the
antenna. On the other hand, when the arcs director is added
to the structure, the arcs director pulled the electromagnetic
radiation along its main lobe axis. Consequently, the side
lobes are decreased, and the directivity is enhanced. Also,
the electric field is not only confined seat metal bow but
also is concentrated around the arcs director. Therefore, the
performance of the RHBD antenna is improved in terms of
the gain and directivity. Moreover, the radiation efficiency
of the design is enhanced. It may be seen that the directors
enhance the radiated power in the transmitter terminal. This
results in reducing the losses over the distance and increases
the transmitted power in the receiver terminal.

As for the fourth part, which is three included arcs, each
arc 1s a half circle in the middle of each arc, which has a slot;
this slot is suitable for placing a diode in it. These reflectors
work on the reflection the entire energy in the direction
of the radiation pattern, increasing the modes of radiation,
increasing the resonance frequencies, modifying the antenna
geometry and variation the surface current distribution area.
As for the fifth and final part, which is circular head dumbbell
defected in DGS, it is a hole drilled in the ground plane
for the antenna in the form of a circular head dumbbell,
and it works on slower phase variation behavior beyond the
resonant frequency, which leads to significantly enhancement
the gain and matching the antenna and balancing the current
distribution throughout the antenna structure.

Ill. MACHINE LEARNING(ML): MODELLING

AND TRAINING

Deep learning differs from machine learning by merging
functionality collection and regression / classification, con-
taining more neurons, processing synchronously on sev-
eral layers, naturally extracting features, and validating the
best network hyperparameters. The ML system evaluates the
input by passing it through the neurons in the multi-layered
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pyramid, and the evaluated data is then transmitted to the
subsequent layers, enabling the creation of a learning model
that is more practical.

In order to determine what the dimensions of the antenna
are, which have a strong influence on the antenna charac-
teristics, such as the reflection coefficient and the realized
gain, thus, these dimensions are considered input variables for
the ML model, and then it is necessary to do the parameters
sweep on all antenna dimensions, and from the above, it was
found that the most important dimensions are Ly, L1, L9
and Ly;.

Then it can be made clear to us that the sectoral horn
with four arcs director length L, the width of the SIW horn
antenna L1, the slotted bowtie antenna length L9 and the
circular head dumbbell defected in DGS length L. The
change in them affect the reflection coefficient greatly, and
the greater the length of the variable, the lower the resonance
frequency at which the antenna operates as shown in Fig. 2.
Also, Table 1 listed the initial, optimized, and decision spaces
for each dimension in the proposed antenna.

In a brief explanation of the ML model that is applied to
the RHBD antenna and Multilayer perceptrons (MLPs) [25],
[26], [27], which, in this inquiry, are preferred because
they have been effectively and regularly used in engineering
applications. The MLP can be trained using a variety of
different techniques, including Levenberg-Marquardt (LM),
back propagation, and delta-bar-delta. The MGSA-PSO algo-
rithm [28], [29], which has rapid learning and excellent con-
vergence capabilities, is used in this study to train MLPs. The
MLP contains five levels, including an input layer, an output
layer, and three hidden layers, as seen in Fig. 3.

The layer’s neurons just serve as buffers to distribute the
input signals xj to the hidden layer’s neurons. After weighing
their input signals X; according to the intensities of the rele-
vant input layer connections wj;j, each hidden layer neuron j
adds the signals and computes its output y; as a function f of

the sum, i.e.
yj=f (Z wjiXi) (D

where f(-) can be a simple threshold function, a sigmoid,
hyperbolic tangent, a radial basis function, a purelin function,
etc. [26], [27]. The output of the neurons in the output layer
is calculated similarly. One of the learning methods that are
accessible is employed to modify the weights of the network
during training.

The learning algorithm provides the variation in weight of
a relationship between neurons i and j at time ¢ asAwj;(t).
Using the formula below, the weights for the LM learning
algorithm are updated.

wji (t+ 1) = wji (t) —Awji(t) )

Awji = 1T @ J (@) +ul) I @E@ (3

where the Jacobian matrix, a constant, the error function, and
the identity matrix are, in that order,u, E (@), and I. The first
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FIGURE 2. Parameters sweep for main dimensions’ effects on the
reflection coefficient.
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TABLE 1. The initial, decision space, and optimized dimensions for
proposed antenna. (All unit in mm).

Variable Initial Decision Space Best
Value From To Value
L, 7 6 11 9
L, 3.5 3 5.5 4
L; 3 2 3.5 2.5
Ly, 9 8.5 9.5 8.7
Ls 8.5 6.5 9 7
Ly 9 7.5 9.5 7.8
L; 6.5 6 7 6.8
Ly 2.5 2 3 2.8
Ly 0.8 0.5 1 0.7
Lo 5.3 5 6 5.6
Ly, 15 13.5 15.5 14.3
L, 2.2 2 2.5 2
Ly; 1.5 1.5 2 1.9
Ly, 0.5 0.3 0.5 0.4
Lis 0.2 0.1 0.4 0.3
Lis 0.3 0.1 0.4 0.4
L; 0.4 0.3 0.6 0.5
Ls 1.7 1.5 2.5 2
Ly 4.5 4 5.5 4.8
Ly 2.5 2 3 2.3
Ly, 14 11 14.5 12.4
Ly 17 14 18 15
R, 4.5 4 4.8 4.2
R, 5.5 5 6 5
R; 6.5 6 7 6.1
R, 1.5 1.3 2 1.8
Rs 1.4 1.3 2 1.8
R 2.5 23 3 2.4
R; 2.8 2.5 3.5 3
S 0.3 0.3 0.4 0.35
S, 0.45 0.4 0.55 0.5
S3 0.55 0.5 0.65 0.6
g 0.25 0.25 0.35 0.3
o) 0.4 0.35 0.45 0.4
g3 0.55 0.45 0.55 0.5

variations of the errors with regard to weights and biases are
contained in the Jacobian matrix. The value of decreases after
each succeeding step and is only raised when a step would
raise the total of squares of errors. In this study, a ML model
with five different layers input layer, three hidden layers, and
the output layer was used. The training technique consists of
180 epochs.

Additionally, the tangent sigmoid, tangent sigmoid, and
purelin functions were utilized in the input layer, hidden layer,
and output layer, respectively.

The CST-MWS [30] 3D EM solver executing FIT is used
to simulate 180 RHDBs with varying geometrical variables in
order to create a database for modelling the ML. In Fig. 4, the
variables of the simulated RHBDs are topologically depicted.
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FIGURE 4. Topological illustration of the geometrical parameters of the simulated 180 RHBD antennas by CST 3D EM (dimension unit: mm).

Three groups of antenna parameters are taken into con-
sideration. Each group includes the ground plane slot length
and sectoral SIW horn antenna parameters L;x Ljjx Lo
mm, 6 X 14 x 82 mm, 9 x 143 x 12.4 mm, and 11 X
15.5 x 13.9 mm. Each group has 60 RHDBs that comprise
a parameter combination of Lj x Li;xLjyj. E. g. for the first
group of 6 x 14 x 8.2 mm, there are 60 RHDBs including
the parameter combination of (Lig: 3, 3.5, 4, 4.5, 5 mm) X
(Lio: 3, 3.5, 4 mm) x (Lp: 3, 3.5 mm) x (L3: 1.5, 2 mm).
CST package provides the simulated resonance frequency f,
of each RHBD antenna with a specific antenna parameter.

The simulated resonant frequency changes versus antenna
number are depicted in Fig. 5. While the sectoral SIW horn
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antenna and ground plane slot dimensions both affect the
resonant frequency, the relationship between the antenna
parameters and the resonant frequencies is therefore very
nonlinear. The simulations are performed at the frequency
range from 26 to 29.5 GHz by 180 points.

Of the three groups that the ML model trains on, it is clear
to us that each group has a dominant frequency of the mm-
wave frequencies, the rest of the frequencies resonant around
it. For example, in first group, its dominant frequency range
is 26 to 27 GHz, and the all frequencies of this group resonant
in this frequency range. As for the second group, its dominant
frequency range is 27 to 28 GHz, and the third and last group,
its dominant frequency range is 28 to 29.5 GHz, and all
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group defined in Fig. 4.

these three frequencies ranges belong to the dominant mm-
wave frequencies. Fig. 6 shows three dominant frequencies
from these ranges, Fig. 6a illustrates reflection coeffienct
for the dominant frequencies, and Figs 6b, 6¢, and 6d have
shown the horizontal and vertical radiation pattern at each
of the frequencies 26.5 GHz from the third group, 27.5 GHz
from the second group, and 28.3 GHz from the first group,
respectively.

IV. VALIDATING AND TESTING THE ML MODEL

In this section, the simulation and measurement results of the
training RHDB antenna will be presented and analyzed. The
ML model with three layers was trained to generate the reso-
nant frequency for each group of antenna parameters based on
the association between the input and the goal. The ML model
was tested using 18 RHBD antennas, whereas 162 RHBD
antennas were utilized for training. The scatter diagrams of
the computed and simulated resonant frequency results for the
training and testing datasets are provided in Fig. 7 to visually
identify the connections between the results.

The ML model has calculated the average percentage
errors (APE) for the resonant frequencies, as shown in
Fig. 8 [31]. It is obvious that for every deep learning appli-
cation, the amount of training points assigned has an impact
on the APE value. In contrast, increasing the amount of train-
ing points enhances the system’s precision, and vice versa.
A suitable APE of 0.316% was achieved as for the 180 RHBD
antennas training data on the basis of Fig. 8, which depicts the
topology of computing the APE for CST models. It is obvious
that the points will reflect a linear pattern, indicating that the
results have a strong linear association.

The RHBD antenna variables that weren’t used throughout
the training stage were used to further explore the validity
of the current technique, operating from 26 to 29.5 GHz
was designed via CST and then fabricated on the
Rogers@®) Duroid™ RT5880 with a 0.508 mm substrate
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28.3 GHz, respectively.

thickness, relative permittivity &€,=2.2, and loss tangent
tané =0.0009 substrate.

Table 1 showed the corresponding antenna dimensions.
A good match between the measured and simulated for reflec-
tion coefficient Sq; results is seen in Fig. 9 (a). The antenna
can accomplish a good agreement at operating frequency
27.5 GHz with a realized gain of 8.43 dBi, as illustrated in
Fig. 9 (b).

V. RECONFIGURABILITY AND BEAM-WIDTH CONTROL

In the previous sections, the ability of the proposed antenna to
operate at any frequency in the range from 26 to 29.5 GHz is
explained depending on the amount of change in the antenna
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FIGURE 10. The proposed antenna after connecting three PIN diodes.
dimensions. In this section, the effect of changing the state
of the three PIN diodes D, D, and D3 in the gaps g1, g three half circle reflectors at the back of the antenna, as shown
and g3 is studied; these gaps are located in the middle of the in Fig. 10. Placing these PIN diodes in those gaps changes
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the path of the current distribution in the antenna, which in
turn changes the beam width of the radiation beam out of
the antenna. Therefore, all cases resulting from changing the
state of the three PIN diodes and the consequent change in the
beam width radiation out of the antenna have been clarified,
as listed in Table 2.

As aresult of each state of the PIN diodes, it can be noticed
that the beam width changes with changing the state of the
PIN diodes from 10.7° to 156.2°. For example, in case of the
first scenario, when all the PIN diodes are OFF state, the beam
width equal to 156.2°, and in the case of the eighth scenario,
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the state of all the PIN diodes are ON state, the beam width
equal to 10.7° as shown in Fig. 11.

Table 2 clearly shows that the smaller the HPBW for
the antenna beam, the greater the antenna gain, as seen in
scenario 8, where the beam out coming from the antenna was
as narrow as possible, 10.7°, and the gain was 9.75 dBi, and
scenario 1, when the antenna’s beam out was as wide as pos-
sible, 156.2°, and the gain was 6.91 dBi, that is, the difference
between the largest beam and the smallest beam is 2.84 dBi.
That is, it is approximately equal to 3 dB, implying that the
antenna almost lost half of its gain, which is a significant loss
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FIGURE 12. Simulated —3 dB contour patterns of the RHBD antenna for
each case in Table 2.

value for a single antenna, to change its beamwidth from a
small to a large one, and this is considered an advantage of
designing this antenna, that it can control the beamwidth of
the outgoing beam without losing more than half of its power.
Because if any antenna loses more than half of its power, its
coverage in the case of a wide beam will be weak and its range
will be small. However, because it contains the SIW horn
antenna and the sectoral horn antenna with four arcs director,
this antenna has a high gain and directivity does not exceed
half its power loss, and its coverage and range are strong.

To confirm the clarification of the RHBD antenna cover-
age area in each of the scenarios mentioned in the Table 2,
Fig. 12 illustrates the simulations —3 dB contour patterns for
illustrating the angular coverage of all the RHBD antenna
scenarios. From this it becomes clear the amount of change in
the beamwidth at —3 dB HPBW of the output antenna beam
from 10.7° to 156.2°.

In order to validate the radiation pattern results in each sce-
nario in Table 2, the simulated radiation pattern results were
compared with the measurements results for the same sce-
narios. Fig. 13 shows a comparison between simulation and
measurement results for scenarios 1 and 8. Considering that
Sc. #1 is the largest beamwidth coming out of the antenna,
which is 156.2°, and Sc. #8 is the smallest beamwidth coming
out of the antenna, which is 10.7°, the results show that
there is an excellent agreement between the simulation results
and the measurements. Hence, we conclude that based on
changing the states of the PIN diodes in the proposed antenna,
the current distribution changes in all parts of the antenna,
resulting in a change in the beam width of the radiation beam
out of the antenna, and then this antenna can be used in
many applications such as dynamic radiation patterns that
may be utilized to reconfigure the coverage area as required
in accordance with the spatial-temporal user and traffic vari-
ations in high mobility environments.
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FIGURE 13. A comparison between simulation and measurement
normalized gain results for Sc. #1 and Sc. #8.

The basic idea of our proposed antenna is that it controls
the angle of the beamwidth coming out of the antenna, or,
in other words, the angle of the coverage area covered by the
antenna. Either the coverage angle is small enough to extend
the wireless network service to only one person, for example,
without interference with other networks and frequencies in
the work area. Either the angle is large enough to extend the
wireless service to a large number of individuals, or between
the coverage of one individual and a large number of individ-
uals, the angle of coverage varies according to the exact area
to be covered.

This is a reconfigurable system for covering the required
area of the work space, and this is considered a great and
distinctive control over the required coverage. There are also
some other antennas that have some simple control over the
pattern and are reconfigurable, but depend on a complete
change in the form of radiation from omnidirectional to bidi-
rectional or endfire, but they do not give complete control
over the angle of coverage of the work space. There are a
number of these antennas that have been compared to our
proposed antenna in Table 3. The power of controlling the
coverage angle in our proposed antenna is due to the hybrid
RHBD antennas, that is, several antennas mixed together by
the optimization technique in a way that makes them control
more flexibly the degree of coverage of the work space.

A comparison of the most recently reported reconfig-
urable antenna types described in the literature is given in
Table 3. Fundamental properties in terms of antenna type,
type of reconfiguration, number of switches used, frequency
of operation, and total size of the antennas, beamwidth range
controller, average realized gain, maximum radiation effi-
ciency and the control algorithm are provided and have been
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TABLE 2. Antenna properties at each PIN diode states.

PIN diodes states o . . Radiation
Sc. # no. D, D, D, HPBW (°) Gain (dBi) efficiency %
1 OFF OFF OFF 156.2 6.91 65.9
2 OFF OFF ON 131.5 7.25 69.2
3 OFF ON OFF 113.9 7.58 73.6
4 ON OFF OFF 94.6 7.89 77.4
5 ON ON OFF 71.8 8.32 81.3
6 ON OFF ON 55.3 8.77 85.1
7 OFF ON ON 324 9.28 89.7
8 ON ON ON 10.7 9.75 93.2
TABLE 3. Comparison between the proposed antenna and other reported reconfigurable antennas.
Frequency and ~ Beam width Antenna  Avg. Max. Control
Ref. Topology Rec;) nﬁegur. No. of bands range I\éo\.; f size Gain Eff. algorithm
yp (GHz) controller o (mm) (dBi) (%)
Multiple 1-7 Regression
[20] structures Frequency 5 & 6 bands No control 3 84 x64 3.65 NA troes
tortoise- 2.45-13.7
[37] shaped patch Frequency 3 band No control 1 33 x22 319 94.02 NodeMCU
Array 3 x 3 24-25 0 Ano Genetic
[38] patch ant. Pattern 1 band -30°, 30 12 98 x 90 6.5 NA algorithm
Array 10 x 1.9-2.1 0 1po0 345 x
[39] 10 patch Pattern 1 band -10°, 10 100 345 14.7 NA No
Yagi— Uda 3.32-3.62 o 140 100 x
[6] antenna Pattern | band -17°, 14 8 100 7 NA No
5 circular 2.36-2.39 0 Ano 120 x
[40] patch ant. Pattern 1 band -22°,22 4 120 7.5 76 No
Driven and 49.51 RA
[41] passive Pattern { band -40°, 40° 6 60 x 67 8 81 optimization
patch ant.
316 Simple
[42] Monopole Pattern control omni 4 38 x 42 1.8 NA No
1 band
/ endfire
Simple
Rectangular 2.45 control up / 100 x
[43] patch ant. Pattern 1 band down / left / 8 95.5 7.12 NA No
right
Simple
Closed ring 1.74-4.76  control omni
[44] resonator Pattern 3 & 4 bands - direction / > 29>34 185 NA No
bi - direction
Hybrid 26-29.5
Our antenna Certain freq, 14.3 x
. Pattern according -78.1°,78.1° 3 : 822 932 MLP
work Bow-Tie . 21.6
required ML
and horn
model

compared. This is meant to make it easier for readers to
choose the reconfigurable antennas that are most suited to
their applications.

It can be seen from the previous Table 3 that our proposed
antenna is the best of modern antennas in terms of many
features, the most important of which is that our antenna
does not operate at multiple frequencies at the same time,

VOLUME 11, 2023

thus causing interference between our frequencies and other
frequencies in the work environment, but rather it works at
the required frequency only according to the required ML
model and then starts the reconfigurability operation using
PIN diodes. The coverage angle of the antenna ranges from
—78.1° to 78.1°, which is a wide and large range and is con-
sidered the largest range of any antenna compared to it. This
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antenna is also distinguished by its ease of manufacturing,
as there are only three PIN diodes, which is not a large number
as in the rest of the antennas, and this antenna has higher gain
and radiation efficiency compared to the rest of the antennas
in the Table 3. For the pattern-reconfigurable antenna designs,
it should be highlighted that our antenna design provides great
performance, it is thus a good contender for both present-day
and upcoming wireless applications, it shows that the sug-
gested antenna design is a useful design approach for wireless
application devices with size limitations.

VI. CONCLUSION

In this study, a ML -based soft calculation framework is mod-
eled utilizing a full-wave 3D EM analysis platform in order
to compute the resonance frequency of the RHBD antenna
using ML. A collection of input-output data pairs using
the MGSA-PSO algorithm are used to train the network.
The simulations with various geometric dimensions define
a database including the resonance frequency of 180 RHBD
antennas. The database is separated into datasets #162 and
#18, respectively, for training and testing the model. As a con-
sequence, the most accurate resonant frequency estimation
was performed using the suggested ML model, making it a
practical and cost-effective substitute for expensive simula-
tions and testing. This study was not limited to the possibility
of changing the resonance frequency only, but three PIN
diodes are placed in the middle gaps of the reflectors located
at the back of the antenna, and by changing the state of these
PIN diodes, it can be noticed that they have a significant and
direct effect on the radiation pattern, as they are able to change
the beamwidth from 10.7° to 156.2°. The proposed antenna
can be used in beamwidth control enables the antenna system
to respond to spatial user variations in a dynamical manner,
which is prominent for many 5G use case scenarios in high
mobility environments.
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