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ABSTRACT Process awareness is an essential success factor in any type of business. Process mining uses
event data to discover and analyze actual business processes. Although process mining is growing fast
and it has already become the basis for a plethora of commercial tools, research has not yet sufficiently
addressed the privacy concerns in this discipline. Most of the contributions made to privacy-preserving
process mining consider an intra-organizational setting, where a single organization wants to safely publish
its event data so that process mining experts can analyze the data and provide insights. However, in real-life
settings, organizations need to collaborate for performing their processes, e.g., a supply chain process may
involve many organizations. Therefore, event data and processes are often distributed over several partner
organizations, yet organizations hesitate to share their data due to privacy and confidentiality concerns.
In this paper, we introduce an abstraction-based approach to support privacy-aware process mining in
inter-organizational settings. We implement our approach and demonstrate its effectiveness using real-life
event logs.

INDEX TERMS Confidentiality, event data, federated process mining, inter-organizational process mining,
privacy preservation.

I. INTRODUCTION
Process mining provides a family of techniques to discover,
analyze, and improve latent business processes [1]. It pro-
vides fact-based and actionable insights into the actual pro-
cesses using event logs. Three basic types of process mining
are (1) process discovery, where the goal is to learn real
process models from event logs, (2) conformance checking,
where the aim is to find commonalities and disconformities
between a process model and an event log, and (3) process
enhancement, where the aim is to extend or improve a process
model using different aspects of the available data.

Events are the smallest units of process execution charac-
terized by their attributes. Process mining requires that each
event contains at least the following main attributes to enable
the application of analysis techniques: case id, activity, and
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timestamp. The case id often refers to an individual to whom
the event belongs, e.g., a patient or customer. The activity
refers to the activity associated with the event, and the times-
tamp is the time when the activity was executed. A sequence
of events having a fixed ordering based on their timestamps
is called a trace, which is considered a crucial case attribute
for process mining techniques.

Depending on the context of a process, the correspond-
ing events may contain more attributes. For example, in the
healthcare context, the resource attribute can be used to
indicate the activity performer, e.g., a nurse, or an event
attribute may show the disease of the corresponding patient.
Table 1 shows a part of an event log recorded by an infor-
mation system in a hospital. Some of the event attributes
may refer to individuals such as case id and resource. For
instance, in Table 1, the case id attribute refers to the
patients whose data are recorded, and the resource attribute
refers to the employees performing activities for the patients.
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TABLE 1. Sample event log (each row represents an event).

Moreover, some attributes may be considered as sensitive
attributes, e.g., the disease attribute in Table 1. Privacy issues
are highlighted when person-specific information is included
in an event log. For example, in Table 1, knowing that “Injec-
tion” was performed for a patient, the corresponding case,
which is case 4, is re-identified. Consequently, the whole
sequence of activities performed for the patient and also the
disease are disclosed.

The terms inter-organizational process mining, cross-
organizational process mining, and federated process mining
all refer to a sub-discipline of process mining where the
goal is to jointly discover, monitor, analyze, and improve
cross-organizational processes [2], [3], [4], [5]. Remaining
in the healthcare context, consider a collection of clinics
and hospitals involved in the treatment process of some
patients. Federated process mining can be used to discover
the overall treatment process that traverses several hospi-
tals, find bottlenecks in the process, identify successful/
failed treatment processes, etc. However, process mining is
rarely applied in an inter-organizational setting mainly due
to privacy/confidentiality concerns. Setting the right inter-
organizational boundaries, regarding privacy issues, is an
important element of advancing process mining.

Organizations, such as healthcare providers, are obviously
unwilling to share their entire event logs containing highly
sensitive information with other parties involved in a joint
process. Moreover, they cannot afford to trust third parties.
Thus, themain challenge of Privacy-Aware Federated Process
Mining (PAFPM) is to get process mining insights regarding
the entire process while considering privacy, and without a
need for a trusted third party.

We consider two main levels for privacy concerns in fed-
erated process mining: the individual level and the orga-
nizational level. The former aims to protect private data
belonging to individuals in organizations. The latter consid-
ers all the internal activities of an organization as sensitive
private information that should not be revealed. We pro-
pose an approach that can address both levels of privacy
concerns. Our approach for PAFPM focuses on the fol-
lowing challenges: (1) no need to bound the number of
involved parties, (2) no need for a trusted third party, (3) no
need for designing complex communication protocols among
parties, e.g., secure multi-party computation protocols, and

FIGURE 1. The general overview of the abstraction-based approach for
privacy-aware federated process mining. Inside the dashed squares is
considered as the trusted environment, and outside these squares is
considered as the untrusted environment.

(4) possibility of ensuring that all the involved parties can
share data while allowing for the necessary levels of data
utility and data privacy.

The proposed approach is based on the concept of abstrac-
tions in process mining [6]. Abstractions are intermediate
results of process mining algorithms that relate event logs
and final results. For example, a directly follows graph, rep-
resenting directly follows relations between activities, is an
abstraction of process discovery algorithms that relates an
event log to a formal process model describing the observed
behavior in the event log. Abstractions are generated by spe-
cific abstraction functions that reduce event logs, containing
highly sensitive detailed information, to the minimal infor-
mation required for obtaining specific results. Thus, shar-
ing abstractions is of lower risk for organizations compared
to sharing original event logs. However, using abstractions
arises the following challenges that need to be addressed.
First, given a single event log, the effectiveness of an abstrac-
tion function on both aspects of data utility and data privacy
needs to be evaluated. For the specific type of abstraction used
in this paper, we demonstrate the usefulness of the abstraction
function. Second, abstractions need to be shared in such a
way that the provided data utility and data privacy for a single
event log do not degrade in an inter-organizational setting.

Figure 1 depicts the general overview of the abstraction-
based approach for privacy-aware federated process mining.
Gray arrows depict sharing abstractions where the same type
of abstractions of event logs, i.e., obtained by applying the
same abstraction function, are shared rather than sharing
original sensitive event logs. The challenge w.r.t. the data
utility is to merge abstractions in such a way that the merged
abstraction is the same as the abstraction obtained from the
collection of event logs by applying the same abstraction
function. If so, the process mining results obtained by sharing
abstractions are the same as the results obtained by sharing
original event logs.
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In this paper, we focus on the control-flow aspect of pro-
cess mining that requires the basic three attributes (i.e., case
id, activity, and timestamp) to perform two main activities
of process mining, i.e., process discovery and conformance
checking. After discovering a joint process model using the
abstraction-based approach, we propose the so-called Risk-
Aware Reveal Method (RARM) that can be used to answer
more in-depth inquiries about the process while considering
the privacy concerns of organizations.

The remainder is organized as follows. In Section II, the
preliminaries are explained. In Section III, we discuss related
work. In Section IV, we analyze the data utility and pri-
vacy constraints of abstractions, and the risk-aware reveal
method is proposed to address the limitations. In Section V,
we demonstrate our approach for privacy-aware federated
process mining. In Section VI, we employ real-life event logs
to show the effectiveness of the abstraction-based approach,
and Section VII concludes the paper with a discussion regard-
ing limitations and possible next steps.

II. BACKGROUND
In this section, we introduce some basic concepts and provide
formal models that will be used in the remainder of the paper
to describe the approach.

A. EVENT LOG
We first introduce some basic notations. For a given set A,
A∗ is the set of all finite sequences over A and B(A) is the
set of all multisets over the set A. A finite sequence over A
of length n is a mapping σ :{1, . . . , n} → A, represented as
σ = ⟨a1, a2, . . . , an⟩ where ai = σ (i) for any 1≤i≤n. |σ |
denotes the length of the sequence. For σ ∈ A∗, we write
a ∈ σ , iff ∃1≤i≤|σ |σ (i) = a. Given A and B as two multisets,
A ⊎ B is the sum over multisets, e.g., [a2, b3] ⊎ [b2, c2] =
[a2, b5, c2]. For σ1, σ2 ∈ A∗, σ1⊑σ2 if σ1 is a subsequence of
σ2, e.g., ⟨z, b, c, x⟩⊑⟨z, x, a, b, b, c, a, b, c, x⟩, and σ1⊕σ2 is
the concatenation of two sequences, e.g., ⟨a, b, c⟩ ⊕ ⟨d, e⟩ =
⟨a, b, c, d, e⟩. For σ ∈ A∗, {a ∈ σ } is the set of elements in
σ , and [a ∈ σ ] is the multiset of elements in σ , e.g., [a ∈
⟨x, y, z, x, y⟩] = [x2, y2, z].
Definition 1 (Event, Event Log): An event is a tuple e =

(c, a, t, r, d1, . . . , dm) ∈ C ×A× T ×R×D1 × . . .×Dm,
where c ∈ C is the case id, a ∈ A is the activity associated
with the event, t ∈ T is the event timestamp, r ∈ R is the
resource, and d1,. . . ,dm is a list of additional attributes values,
where for any 1≤i≤m, di ∈ Di. E = C × A × T × R ×
D1 × . . . × Dm denotes the event universe.

For e = (c, a, t, r, d1, . . . , dm), πcase(e) = c, πact (e) = a,
πtime(e) = t , πres(e) = r , and πdomi (e) = di, 1≤i≤m, are its
projections. An event log is L⊆E where events are unique.
Definition 2 (Trace, Trace Variant): A trace σ = ⟨e1,

e2, . . . , en⟩ ∈ E∗ is a sequence of events, s.t., for each
ei, ej ∈ σ : πcase(ei) = πcase(ej), and πtime(ei) ≤ πtime(ej)
for 1 ≤ i<j ≤ n. A trace variant σ ∈ A∗ is a trace where all
the events are projected on the activity attributes.

Definition 3 (Simple Event Log): A simple event log is a
multiset of trace variants, i.e., L ∈ B(A∗). We assume that
each trace in L belongs to an individual and σ ̸= ⟨⟩ if σ ∈ L.
AL = {a ∈ σ | σ ∈ L} is the set of activities in L, and
L̃ = {σ ∈ L} denotes the set of trace variants in L.

Table 2 shows a simple event log derived from Table 1.
In this paper, the term event log refers to a simple event
log unless it is clearly mentioned that we mean a set of
events.
Definition 4 (Entropy of Event Log): ent : B(A∗)→ R≥0

is a function which retrieves the entropy of traces in an event
log, s.t., for L ∈ B(A∗), ent(L) = −

∑
σ∈L̃

L(σ )
|L| log2

L(σ )
|L| .

max_ent(L) = log2|L| is the maximal entropy that can be
achieved when all the trace variants are unique.
Definition 5 (Directly Follows Relations (DFR)): Given

σ ∈ A∗, DFRσ = [(σ (i), σ (i + 1)) | 1 ≤ i < |σ |] ⊎
[(▶, σ (1))] ⊎ [(σ (|σ |), ■)] is the multiset of directly follows
relations between activities in σ , where the first and last
activities are tuples with ▶ and ■ as the dummy start and
end activities, respectively. The tuple including ▶ is called
the start relation, and the one including ■ is called the end
relation. For L ∈ B(A∗), DFRL =

⊎
σ∈L DFRσ is the

multiset of directly follows relations between activities in the
traces of L. Given dfr = (a, b), π1(dfr) = a and π2(dfr) = b
are the projections of dfr .
Definition 6 (Directly Follows Graph (DFG)): Let L be a

simple event log, AL be the set of activities in L, and
DFRL be the multiset of directly follows relations in L.
DFGL = (AL ∪ {▶,■},DFRL) is the directly follows
graph of L.
Figure 2 shows the DFG of the simple event log shown

in Table 2, where each node represents an activity, and the
directed arcs represent the DFRs between activities. Note
that ▶ and ■ denote the dummy start and end activities,
respectively. The numbers above arcs represent the frequency
of the corresponding DFRs. A multiset of DFRs is a specific
type of event log abstraction that can be used to generate a
DFG. Definition 7 provides a generic definition for abstrac-
tion functions on simple event logs.
Definition 7 (Abstraction Function): Let LA be the uni-

verse of event log abstractions, e.g., DFRs, log statistics,
footprints, etc. An abstraction function abs:B(A∗)→ LA is
a function that maps a simple event log onto an abstraction.
For la ∈ LA, abs−1(la) = {L ∈ B(A∗) | abs(L) = la}.
For instance, absDFR:B(A∗) → B(A∪{▶} × A∪{■}) is an
abstraction function that maps a given simple event log onto
a multiset of DFRs.

Definition 7 shows that there could be more than one
event log returning the same abstraction. For instance, con-
sider absDFR:B(A∗) → B(A ∪ {▶} × A∪{■}) . Given L ∈
B(A∗), absDFR(L) = DFRL , and abs−1DFR(DFRL) = {L ∈
B(A∗) | absDFR(L) = DFRL}. Considering L1 as our
example event log (Table 2) and the corresponding DFRs,
L2 = [⟨RE,VI ,RL⟩, ⟨RE,VI ,HO,BT ,HO,RL⟩, ⟨RE,VI ,
BT ,RL⟩, ⟨RE, IN ,RL⟩] ∈ abs−1(DFRL1 ) is another event
log with the same multiset of DFRs.
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TABLE 2. The simple event log derived from Table 1.

B. DISCLOSURE RISKS
The main process mining activities, i.e., process discovery
and conformance checking, can be performed using simple
event logs including only sequences of activities. Such event
logs, which do not contain other attributes, seem to be safe.
However, the trace itself, as a complete sequence of activities
performed for a case, is considered a sensitive attribute [7].
In this subsection, we demonstrate two types of disclosure
risks associated with publishing simple event logs.

Consider the event log shown in Table 2. Assuming that
an adversary knows that a patient’s data are in the event log,
little information about the activities performed for the patient
could result in a successful re-identification. For example,
if the adversary knows that an injection was performed for a
victim patient, the onlymatching case is 4.We assume that the
adversary’s Background Knowledge (BK) is a subsequence
of activities performed for a victim case which can be consid-
ered as the strongest assumable knowledge w.r.t. the available
information in simple event logs. Thus, the attack model is
defined as follows.
Definition 8 (Attack Model): Let L be a simple event log

and AL be the set of activities in L. We formalize the attack
model as a function matchL :A∗L → 2L . For bk ∈ A∗L ,
matchL(bk) = [σ ∈ L | bk ⊑ σ ].
For example, if the adversary knows that bk = ⟨HO,BT ⟩

is a subsequence of activities performed for a case, case
2 is the only matching case. Once a case is re-identified
a complete sequence of activities performed for the case
is disclosed which is considered sensitive information. The
strength of such an attack highly depends on the strength of
the background knowledge that can be quantified based on
the length of the sequence, so-called the size of BK [7].
Definition 9 (Background Knowledge Candidates): Let L

be a simple event log. Given l ∈ N>0 as the size of back-
ground knowledge, cand l(L) = {σ ∈ A∗L | |σ | = l} denotes
the set of candidates for the background knowledge of size l.
For example, given Table 2 as the simple event log L,

cand1(L) = {RE,VI ,HO,BT , IN ,RL}. In [7], the authors
introduce two main types of disclosure risks associated with
such an attack: case disclosure and trace disclosure.

1) CASE DISCLOSURE
The uniqueness of traces w.r.t. the background knowledge of
size l is used to measure the corresponding case disclosure
in an event log. Equation (1) calculates the case disclosure
which is the average uniqueness based on the candidates of
background knowledge.

cd l(L) =
1

|cand l(L)|

∑
bk∈cand l (L)

1
|matchL(bk)|

(1)

FIGURE 2. The DFG of the event log shown in Table 2. The nodes
represent activities, and the arcs represent the directly follows relations.

The uniqueness alone cannot show some risks. Consider a
scenario where for a candidate of BK there are several iden-
tical traces in the event log matching the knowledge. Since
all the matching traces are the same, one can still know the
trace of the case without the need for singling out a specific
trace. Thus, trace disclosure is defined that is based on the
entropy of matching traces. The less entropy of matching
traces results in a high trace disclosure risk.

2) TRACE DISCLOSURE
The entropy of matching traces w.r.t. the background
knowledge of size l is used to measure the corresponding
trace disclosure in an event log. Equation (2) calculates the
trace disclosure where max_ent(matchL(bk)) is the maximal
entropy for the matching traces that is achieved when all the
matching traces are unique.

td l(L) = 1−
1

|cand l(L)|

∑
bk∈cand l (L)

ent(matchL(bk))
max_ent(matchL(bk))

(2)

Note that in both Equations (1) and (2), equal weights
are considered for the candidates of background knowledge.
However, one can consider different weights based on differ-
ent criteria, e.g., the sensitivity of activities. Moreover, the
worst cases can be used rather than average values, i.e., the
maximal uniqueness in Equation (1) or the minimal entropy
in Equation (2).

Unsurprisingly, event logs containing more information
provide more opportunities for attackers. If we consider an
event log where traces are sequences of events with more
attributes rather than only activities, each attribute could be
an attack point or sensitive information. For example, in the
event log shown in Table 1, if the adversary knows that for a
victim patient, the visit activity performed by Doctor 1, the
only matching case is 1. Once the case is re-identified all the
other attributes are revealed, e.g., disease which is a sensitive
attribute.

C. FEDERATED PROCESS MINING (FPM)
Federated process mining has been explored by researchers
from different angles and in different contexts from EDI-
supported inter-organizational business processes [3] to the
application of Blockchain technology in cross-organizational
process mining [8]. The majority of papers in this field
focused on the application of process mining in supply
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FIGURE 3. Different types of interoperability for inter-organizational
process mining.

chains [9], [10], [11], while supply chains are one of the types
of interoperability among organizations.

In [2], different types of interoperability are introduced
(see Figure 3) including (a) chained execution: the process
is split into a number of disjoint subprocesses that are exe-
cuted by different organizations in sequential order, (b) sub-
contracting: one organization subcontracts subprocesses to
other organizations, (c) case transfer: the process description
is the same among organizations. However, cases can be
transferred among organizations, and at any time, each case
resides at exactly one organization, (d) capacity sharing: the
process description is the same among organizations and the
execution of tasks is distributed among organizations, and
(e) loosely coupled: the process is cut into subprocesses, and
different subprocesses could be active at the same time.

In most of the above-mentioned types of interoperabil-
ity, the communication type can be synchronous or asyn-
chronous. In the asynchronous type of communication,
a case’s process can be simultaneously executed in several
organizations. On the contrary, in the synchronous type of
communication, a case’s process cannot be run in different
organizations at the same time. In this paper, we consider
the synchronous type of communication and describe our
approach based on the different types of interoperability.

III. RELATED WORK
In this section, we provide a short summary of the research
that has been done in privacy-preserving process mining, fed-
erated process mining, and privacy-aware federated process
mining.

A. PRIVACY-PRESERVING PROCESS MINING
Privacy and confidentiality issues in process mining are
recently growing in importance. The work having been done
covers different aspects of the topic ranging from discussing

challenges [12], [13], [14], [15], to providing privacy guaran-
tees [16], [17], [18], [19], [20], [21] and privacy quantifica-
tion [7], [22]. Confidentiality has been introduced as one of
the main challenges of Responsible Process Mining (RPM)
in [12]. The proposed privacy preservation techniques can
be categorized into three different categories: group-based,
noise-based, and encryption-based.

The group-based privacy preservation techniques are often
based on the concept of k-anonymity [23] and its extensions,
e.g., l-diversity [24] and t-closeness [25]. Some examples
are as follows. In [19], the authors introduce a group-based
privacy preservation technique for preserving the privacy of
resources, who are performing activities. In [18] and [26],
TLKC-privacy is introduced and extended to deal with high
variability issues in event logs for applying group-based
anonymization techniques. The noise-based privacy preser-
vation techniques are based on the notion of differential pri-
vacy [27]. For example, in [16], [17], [21], [28], and [29],
the notion of differential privacy is utilized to provide pri-
vacy guarantees in process mining. A general framework for
confidentiality in process mining based on encryption and
abstraction is proposed in [30].

There are also other work targeting other aspects of privacy
and confidentiality in process mining. Some examples are as
follows. In [13], the authors provide an overview of privacy
challenges for process mining in human-centered industrial
environments. The data privacy and utility requirements for
healthcare event data are discussed in [14]. In [31], the
authors propose a solution that allows the outsourcing of pro-
cess mining while ensuring confidentiality. In [32], the goal
is to propose a privacy-preserving system design for process
mining. A privacy-preserving method for discovering roles
from event logs is introduced in [33]. The risks regarding
privacy degradation of privacy preservation techniques when
event data are continuously published are discussed in [34]
and [35]. In [22], the authors propose a measure to evaluate
the re-identification risk of event logs. Also, in [7], a general
privacy quantification framework, and some measures are
introduced to evaluate the effectiveness of privacy preser-
vation techniques. In [36], the authors propose a privacy
extension for the XES standard (www.xes-standard.org) to
manage privacy metadata. Some tools have also been pro-
vided to support the proposed techniques in practice such
as [37], [38], and [39].

B. FEDERATED PROCESS MINING
In [2], inter-organizational process mining is explained and
multiple categories of inter-organizational data flows are
characterized. In [3], EDI messages are used to illustrate
a case study of effective inter-organizational process min-
ing in the automobile industry. In [4], the authors focus on
improving the performance aspect of the process by utilizing
the insights gained from cross-organizational process min-
ing. In [40], the authors propose an approach to compare
collections of process models and their event logs recorded
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in different Dutch municipalities. Furthermore, cloud com-
puting [41] and blockchains [8] have been recognized as
opportunities within the cross-organizational process min-
ing context. In [9], an approach is proposed to discover
distributed processes in supply chains. In [10], the authors
describe basic patterns to capture modeling concepts that
arise commonly in supply chains. In [11], the authors focused
on different case notions in supply chains where objects are
grouped, and in [5], the so-called federated process mining
has been introduced to enable cross-organizational process
mining by providing a framework that recommends event log
abstractions.

C. PRIVACY-AWARE FEDERATED PROCESS MINING
Most related to our work are [42], [43], and [44]. In [42], the
authors propose a technique based on secure multi-party com-
putation for discovering directly follows graphs considering
only two parties. In [43], the authors propose a framework for
sharing public process models and discovering organization-
specific process models from multiple parties which requires
a trusted third party. In [44], the authors propose an approach
for discovering process models in inter-organizational set-
tings. This approach relies on a (semi) trusted third party
and uses secure multi-party computation algorithms, e.g., for
securely computing unions and aggregated values.

IV. PRIVACY AND UTILITY ANALYSIS
In this section, we analyze the data utility and privacy issues
when directly follows relations are shared instead of an event
log. We propose the risk-aware reveal method to overcome
the data utility shortcomings.

A. PRIVACY ANALYSIS
The disclosure risks demonstrated in Subsection II-B are
based on sequences of activities. Thus, it seems that removing
the concept of trace by using the abstraction function absDFR,
which maps an event log onto a multiset of DFRs, eliminates
such risks. However, similar risk analyses can be done based
on DFGs obtained from DFRs.

As demonstrated in Definition 7, the main advantage of
sharing abstractions such as DFRs is that they impose uncer-
tainty regarding original event logs. However, there may be
a situation where certain information about original event
logs can be revealed. In the following, we explain such a
situation. Given an event log L, the complete paths onDFGL ,
i.e., the paths from the start node to the end node, represent
trace variants that may or may not be the variants of L.
However, given an activity a ∈ AL as a node of DFGL ,
if there exists only one complete path on DFGL that contains
a, then that path represents a trace variant of the original log
L. For example, given the event log shown in Table 2 and the
activity IN , the only complete path traversing this activity is
⟨▶,RE, IN ,RL, ■⟩ which is a trace variant of the original
event log.

Consider a scenario where the background knowl-
edge of an adversary contains an activity that holds the

above-mentioned condition. As a result, the whole sequence
of activities performed for a victim case is disclosed.
For instance, if the background knowledge of an adver-
sary is bk = ⟨IN ⟩, then the only matching path is
⟨▶,RE, IN ,RL, ■⟩ that is the trace variant of case 4.

Such scenarios are more relevant to the disclosure risk
analysis of results [45] and privacy preservation techniques
for result protection that are out of the scope of this paper.

B. DATA UTILITY LIMITATIONS
Abstracting the control-flow aspect of an event log from a
simple event log to a multiset of DFRs implies several data
utility limitations such that even the most straightforward
analyses that are based on traces cannot be performed. Two
examples are shown below:
• The most frequent traces in an event log. For example,
in the healthcare context, it may be important to know
what are the most frequent sequences of activities per-
formed for patients.

• All traces that include a particular sequence or set of
activities. For example, it may be helpful to know what
is the process of treatment for patients who had a blood
test before being visited by doctors.

Obviously, it is also impossible to answer inquiries that are
based on the attributes removed from an original event log by
simplifying the event log. In the following, we provide two
types of such inquiries:
• All traces with a certain case or event attribute. It may
be helpful to know the process of treatment for patients
of a specific range of age, or the patients who are visited
by particular doctors.

• A set of attributes based on other attributes. For exam-
ple, it may be important to know the set of activities
performed by a particular doctor, or the set of joint
activities performed by a set of doctors.

We categorize such queries into two main categories:
Trace-Based Queries (TBQs) and Attribute-Based Queries
(ABQs). All the queries expecting traces as responses are
considered as trace-based, while attribute-based queries are
those that expect event or case attributes as responses. In the
following, we introduce the risk-aware reveal method that can
be used to answer such in-depth questions regarding a process
and mitigate the aforementioned utility limitations.

C. RISK-AWARE REVEAL METHOD (RARM)
Figure 4 shows the general overview of our abstraction-
based approach for privacy-aware process mining in an
intra-organizational setting. DFRs, as an abstraction of the
control-flow aspect, are shared with process analysts to
perform process discovery and get control-flow insights.
To answer more in-depth questions triggered by control-flow
insights, the Risk-Aware Reveal Method (RARM) can be
used. RARM can provide more information in a selective
manner to answer more in-depth questions regarding original
traces and also removed attributes from an original event log.
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FIGURE 4. The general overview of our abstraction-based approach for
privacy-aware process mining in an intra-organizational setting. Inside
the dashed squares is considered as the trusted environment, and
outside these squares is considered as the untrusted environment.

It can provide responses without revealing data about cases
that are irrelevant to addressing a specific query.

The main component of RARM is the so-called Risk-
Aware Reveal Engine (RARE). For each query, RARE first
provides a response in the trusted environment. Then, it does
a risk analysis before composing a response to the untrusted
environment. If the risks are above a preset threshold, the
engine refuses to answer the query. For TBQs, the result of a
query is a multiset of traces, and RARE does case disclosure
and trace disclosure analyses. For ABQs, RARE checks the
sensitivity of the attribute of interest in the query based on
the predefined set of sensitive attributes. If the attribute in
the query is non-sensitive, the result can be shared. How-
ever, the queries regarding the sensitive attributes are refused.
In Subsection V-G, we demonstrate the usage of RARM
in inter-organizational settings, where several organizations
have to be involved to provide answers for trace-based and
attribute-based queries.

V. PRIVACY-AWARE FEDERATED PROCESS MINING
In this section, we expand our abstraction-based approach to
enable Privacy-Aware Federated Process Mining (PAFPM)
which has the following main properties. It does not limit the
number of parties, it does not need a trusted third party, it sup-
ports privacy at both the individual level and the organiza-
tional level, and it does not require designing communication
protocols among parties.

A. PROBLEM STATEMENT
For describing the main approach, we assume that pri-
vacy concerns are at the level of individuals. Particularly,
as explained in Subsection II-B, traces are considered as sen-
sitive private information. Nevertheless, we later explain that
the approach can also support privacy at the level of organiza-
tions. We also consider the following standard assumptions.

The sets of activities of organizations are disjoint, and the
involved organizations share the same set of case identifiers
for the joint cases. Cjoint⊆C denotes the set of joint case iden-
tifiers. Note that organizations may use different case identi-
fiers for the joint cases in their internal environment and use
a mapping to map the shared identifiers to the internal ones.
There are two main challenges when abstractions are shared
rather than entire event logs: (C1) How to merge abstractions
from different organizations such that the merged abstraction
is the same as the abstraction that can be obtained by applying
the same abstraction function to the merged event logs, and
(C2) How to answer more in-depth questions regarding the
information not included in the shared abstractions.
Definition 10 (Merging Abstractions Challenge): Let O

be the universe of organization identifiers, andLA be the uni-
verse of abstractions. Consider CL = {L1,L2, · · · ,Ln} as an
event log collection where 1≤i≤n and Li ∈ B(A∗). Assume
CLA = {la1, la2, · · · , lan} as the collection of abstractions,
where lai = abs(Li) ∈ LA represents the abstraction of
Li belonging to the organization oi ∈ O using abs as an
abstraction function. If merge(CLA) ∈ LA is an overall
abstraction obtained by merging the individual abstractions,
then merge(CLA) have to be the same as abs(CL).
Since we consider DFRs as abstractions, the challenge

of merging abstractions C1 is specialized to the challenge
of merging DFRs. In inter-organizational process mining,
merging DFRs is a challenge because of the missing so-
called handover relations related to the interconnections
among the organizations. Thus, to address challenge C1,
we first define the concept of handovers. Then, we demon-
strate the process of retrieving missing handover relations,
and finally we explain the merging process based on the dif-
ferent types of interoperability described in Subsection II-C.
We adapt RARM in the inter-organizational setting to address
challenge C2.

B. HANDOVERS
A so-called handover happens when a case moves from one
organization to another. A directly follows relation indicating
a handover is called a handover relation, and the involved
activities are called handover activities. The first handover
activity of a handover relation is called the handover to
activity that hands over a case to another organization. The
second handover activity is called the handover from activity
that receives the handed-over case from another organization.
Definition 11 (Handover Relation (HoR)): Let L and L ′

be two simple event logs belonging to two organizations
involved in a joint process,Cjoint ⊆ C be the set of joint cases,
and c1 ∈ Cjoint . Consider σc1 = ⟨a1, a2, . . . , an⟩ as the trace
of case c1 in L, and σ ′c1 = ⟨b1, b2, . . . , bm⟩ as the trace of case
c1 in L ′. hor = (ai, bj) is a handover relation, s.t., 1 ≤ i ≤ n,
1 ≤ j ≤ m, ai ∈ σc1 , and bj ∈ σ ′c1 . Given hor = (a, b)
as a handover relation, π1(hor) = a and π2(hor) = b
are the projection functions, and considering a′ ∈ A as an
activity, set1(hor, a′) = (a′, b) assigns the activity a′ to the
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first handover activity, and set2(hor, a′) = (a, a′) assigns a′

to the second handover activity.
Since each organization has only access to its own event

log, merged DFRs obtained by sharing the DFRs of different
organizations in an inter-organizational setting do not include
handover relations. To retrieve such missing relations, the
organizations need to share the so-called handover tables
together with DFRs. A handover table is a collection of
handover records that are defined as follows.
Definition 12 (Handover Record): Let O be the universe

of organizations identifiers including ⊥ as the null identifier.
A handover record is a tuple rec = (id, c, o1, a, o2, o3) where
id ∈ N>0 is the incremental identifier of the record, c ∈ C
is the case identifier of the case involved in the handover,
o1 ∈ O is the identifier of the organization generated the
handover record, a ∈ A is a handover activity, o2 ∈ O
indicates the organization that handed over the case to o1, and
o3 ∈ O indicates the organization that o1 hands over the case
to it.HR = N>0× C×O×A×O×O denotes the universe
of handover records.

Given rec = (id, c, o1, a, o2, o3), πid (rec) = id ,
πcase(rec) = c, πorg(rec) = o1, πact (rec) = a, πfrom(rec) =
o2, and πto(rec) = o3 are the projections of the record.
For any (id, c, o1, a, o2, o3) ∈ HR, o1 ̸= o2, o1 ̸= o3,
{o2} ∪ {o3} ̸= {⊥} and {o2, o3} ∩ {⊥} = {⊥}.
Note the following constraints in Definition 12.

An organization cannot have a handover with itself, and a
handover record has to indicate one and only one type of
handover activity, i.e., handover from or handover to. Given
(id, c, o1, a, o2, o3) ∈ HR, if o2 ̸= ⊥, then the record
indicates a handover from activity, and if o3 ̸= ⊥, then the
record indicates a handover to activity.
Definition 13 (Handover Table (HoT)): Let HR be the

universe of handover records. HoT ⊆ HR is a han-
dover table. If (id1, c1, o11, a, o12, o13) ∈ HoT and
(id2, c2, o21, b, o22, o23) ∈ HoT , then o11 = o21 and
id1 ̸= id2.
Consider the chained execution type of interoperability,

where cases can move from one organization predictably to
the next one. An example of this type of interoperability
in the healthcare context could be a patient arriving at the
emergency room, receiving a sepsis treatment, and ultimately
a specialty check-up. Figure 5 shows example event logs for
such a scenario, and Figure 6 shows the handover tables of
the event logs in Figure 5. For example, the first record of
EC’s handover table shows that by performing IVA activity,
EC hands over a case to ST. Consequently, the first record of
ST’s handover table shows that by performing REG activity,
ST receives the handed-over case from EC. Note that the
records of a handover table must be inserted with the order
that they happen in reality.

C. RETRIEVING HANDOVERS
Algorithm 1 demonstrates the process of retrieving missing
handover relations. Before explaining the algorithm, we need
to define the selection operations over handover tables.

Algorithm 1 The Process of Retrieving Missing
Handover Relations
Input: A collection of handover tables

HoTs = {HoT1,HoT2, · · · ,HoTn}
Input: A set of joint case identifiers Cjoint⊆C
Output: A multiset of handover relations

HoRs ∈ B(A × A)
foreach c ∈ Cjoint do

foreach HoT ∈ HoTs do
HoTc = φ(HoT , (case, c)); while HoTc ̸= ∅
do
hor = (⊥,⊥); rec = minid (HoTc); if
πto(rec) ̸= ⊥ then
set1(hor, πact (rec));

else
HoTfrom← get HoT ∈ HoTs where
∃rec′∈HoTπorg(rec′) = πfrom(rec);
HoTfromc = φ(HoTfrom, (case, c));
HoT tofromc =
φ(HoTfromc , (to, πorg(rec)));
recto = minid (HoT tofromc );
set1(hor, πact (recto)); remove recto
from HoTfrom;

end
if πfrom(rec) ̸= ⊥ then

set2(hor, πact (rec));
else

HoTto← get HoT ∈ HoTs where
∃rec′∈HoTπorg(rec′) = πto(rec);
HoTtoc = φ(HoTto, (case, c));
HoT fromtoc =

φ(HoTtoc , (from, πorg(rec)));
recfrom = minid (HoT

from
toc );

set2(hor, πact (recfrom)); remove
recfrom from HoTto;

end
remove rec from HoT and HoTc; add hor
to HoRs;

end
end

end
return HoRs;

Definition 14 (Selections Over Handover Tables): Let
AT = {id, case, org, act, from, to} be the set of attribute
names and VL = N>0 ∪ C ∪O ∪A be the universe of values
for the attributes of handover tables. Also, let d : AT → 2VL

be a function that retrieves the domain of an attribute, e.g.,
d(id) = N>0, andM = {m : AT → VL | ∀att∈dom(m)m(att) ∈
d(att)} be the set of functions mapping attribute names to
values. Given m ∈ M , φ : 2HR × m → 2HR is a selection
function such that given HoT ⊆ HR and (att, val) ∈ m,
φ(HoT , (att, val)) = {rec ∈ HoT | πatt (rec) = val} retrieves
a subset of handover records inHoT matchingm.minid (HoT )
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FIGURE 5. Event logs of a chained execution scenario where a case (patient) arrives at the emergency care, receives a
sepsis treatment, and finally gets a special checkup.

FIGURE 6. Handover tables correspond to the event logs shown in
Figure 5.

and maxid (HoT ) retrieve the records with the minimum and
maximum id in HoT , respectively.

The retrieving process can be started from the first record
of any case in any of the handover tables. Note that handover
records in handover tables are ordered based on the times-
tamps of the handover activities. The handover activity of
the record is considered as the handover from (to) activity
of a handover relation if handover from (to) organization
of the record is specified. The missing handover activity of
the handover relation is retrieved by referring to the first
corresponding record of the case in the handover table of the
organization specified in the handover from (to) organization
of the starting record. The processed records are removed
from the handover tables of organizations and this process
continues until all the handover tables become empty.

For example, the retrieving process for a handover relation
w.r.t. the handover tables shown in Figure 6 is as follows.
Starting the process from case 1 in the handover table of EC
(Figure 6 (a)), since handover to organization is specified,
IVA is considered as the first handover activity, i.e., han-
dover to activity. To retrieve the second handover activity,
i.e., handover from activity, first, the handover table of the
organization specified in the handover to organization is
obtained (the handover table of ST). In the handover table of
ST (Figure 6 (b)), all the records of case 1 are obtained. The
handover activity of the first record of these records where the
handover from organization is EC (i.e., REG) is considered
as the second handover activity.

The retrieved handover relations need to be added to the
merged DFRs obtained through sharing DFRs by each indi-
vidual organization. Figure 7 shows the overall abstraction
merging process to obtain the original DFRs including han-
dover relations. In the following, we demonstrate the update
operation for the different types of interoperability.

D. THE UPDATE OPERATION FOR CHAINED EXECUTION
We first demonstrate the problem that arises by not sharing
handover tables. Consider the event logs shown in Figure 5

FIGURE 7. The overall process of merging abstractions (i.e., DFRs) to
obtain the DFRs including handover relations. Inside the dashed squares
is considered as the trusted environment, and outside these squares is
considered as the untrusted environment.

as the event logs of a chained execution scenario.
Figure 8 (a), (b), and (c) show the DFRs of these event logs.
Figure 8 (d) shows the frequency annotated DFG obtained
from the merged DFRs. One can see that the resulting graph
does not reflect the real paths followed by the patients in the
event logs. For example, the DFG includes three start activ-
ities, while ERR is the only start activity for all the patients.
That is because handover relations have not been captured.
For example, there are handover relations between REL in
ST and DOC in SC having been replaced with (REL, ■) and
(▶,DCO). Such missing relations can be retrieved by sharing
handover tables.

Since we consider the synchronous type of communication
(see Subsection II-C), in chain execution scenarios, han-
dovers cannot happen in the middle of an intra-organizational
trace. Thus, each retrieved handover relation is replaced with
one start relation and one end relation matching with the
handover relation. For example, (IVA,REG) is a handover
relation retrieved by processing the first record of EC and
ST in Figure 6. This relation is replaced with (IVA,■) and
(▶,REG). We call this specific type of update a coupling
update which is defined as follows.
Definition 15 (Coupling Update): Let L1,L2, . . . ,Ln be

simple event logs belonging to n organizations involved
in a process, HoRs ∈ B(A × A) be a multiset of han-
dover relations among the organizations, and mDFRs =
absDFR(L1) ⊎ absDFR(L2) ⊎ . . . ⊎ absDFR(Ln) be the merged
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FIGURE 8. The DFRs of the event logs shown in Figure 5, and the DFG
obtained by merging them.

FIGURE 9. The DFG obtained from the merged DFRs of the chained
execution scenario after updating the DFRs with the missing handover
relations.

FIGURE 10. Event logs of a subcontracting scenario where a patient
arrives at emergency care, goes to a laboratory for certain tests and
returns to the emergency care.

DFRs. updatecp(mDFRs,HoRs) updates mDFRs based on
HoRs as follows:

updatecp(mDFRs,HoRs) = [dfr ∈ mDFRs | ∀dfr1,dfr2∈mDFRs
∄hor∈HoRs(π1(dfr1) = π1(hor) ∧ π2(dfr1) = ■)∧

(π1(dfr2) =▶ ∧π2(dfr2) = π2(hor))] ⊎ HoRs

Figure 9 shows the DFG after updating the merged DFRs
with the missing handover relations. All the redundant
start/end relations have been removed, and the DFG reflects
a chained execution scenario.

E. THE UPDATE OPERATION FOR SUBCONTRACTING
In the subcontracting type of interoperability, an organization
hands over a part of the process to a sub-organization or a
third party. In this type of interoperability, handovers can
happen within the middle of an intra-organizational trace.
Note that we still assume the synchronous type of communi-
cation, i.e., a case’s process can not be continued in the main
organization while it runs in a sub-organization. An example
of this type of interoperability in the healthcare context is a
patient registered at emergency care, goes to a laboratory for
certain tests and returns to the emergency care.

Consider the event logs shown in Figure 10 as the event
logs for such a scenario. Figure 11 shows the handover tables
for this scenario, and Figure 12 (a) and (b) show the DFRs.

FIGURE 11. The handover tables of the event logs shown in Figure 10.

FIGURE 12. The DFRs of the event logs shown in Figure 10, and the DFG
obtained by merging them.

Figure 12 (c) shows the frequency annotated DFG that is
obtained from the merged DFRs without handover relations.
One can see that due to missing handover relations, the
resulting graph does not reflect the real paths followed by the
patients in the event logs. For example, there are handover
relations between IVA in EC and REG in LB and between
RES in LB and DCO in EC that have been replaced with
(IVA,DCO), (▶,REG), and (RES, ■).

The process of updating the merged DFRs using handovers
is based on two main properties of the synchronous subcon-
tracting scenarios: (P1) handovers happen within the middle
of traces of the main organization that outsources part of the
process, (P2) a case’s process in a sub-organization starts by
receiving the first handover relation from the main organiza-
tion, and it ends by the last handover to the main organization.
P1 implies that two handover relations need to be replaced
with one directly follows relation, and P2 shows that start
and end relations in a sub-organization need to be removed.
For example, (IVA,REG) and (RES,DCO) are the handover
relations retrieved by processing handover tables shown in
Figure 11. These relation are replaced with (RES, ■) and
(▶,REG), and (IVA,DCO) in the merged DFRs. We call this
specific type of update a decoupling update which is defined
as follows.
Definition 16 (Decoupling Update): Let L1,L2, . . . ,Ln

be simple event logs belonging to n organizations involved
in a process, HoRs ∈ B(A × A) be a multiset of han-
dover relations among the organizations, and mDFRs =
absDFR(L1) ⊎ absDFR(L2) ⊎ . . . ⊎ absDFR(Ln) be the merged
DFRs. updatedcp(mDFRs,HoRs) updates mDFRs based on
HoRs as follows:

updatedcp(mDFRS,HoRs) = [dfr ∈ mDFRs | ∀hor1,hor2∈HoRs
∄dfr1,dfr2,dfr3∈mDFRs(π1(dfr1) = π1(hor1) ∧ π2(dfr1)

= π2(hor2))

∧ dfr2 = (▶, π2(hor1)) ∧ dfr3 = (π1(hor2), ■)] ⊎ HoRs
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FIGURE 13. The DFG obtained from the merged DFRs of the
subcontracting scenario after updating the DFRs with the missing
handover relations.

FIGURE 14. The general overview of our abstraction-based approach for
PAFPM. Inside the dashed squares is considered as the trusted
environment, and outside these squares is considered as the untrusted
environment.

Figure 13 shows the DFG after updating the merged DFRs
with missing handover relations. As can be seen, ERR is the
only start activity, and the activities of LB appear in between
the activities of EC.

F. THE UPDATE OPERATION CASE TRANSFER, CAPACITY
SHARING, AND LOOSELY COUPLED
In this subsection, we focus on the case transfer, capacity
sharing, and loosely coupled types of interoperability. In all
three scenarios, organizations can take part in the events of a
process in random order. Thus, the main difference between
these scenarios and the ones discussed in the previous subsec-
tions is that handovers resulting from these types of interoper-
ability happen randomly, and they do not follow any specific
rule.

Random handovers mean that we cannot follow a specific
rule to update merged DFRs with missing handovers. Hence,
extra information needs to be provided by the organizations
involved in the process. In particular, each organization needs
to specify theDFRs involved in handovers. ADFR is involved
in handovers if its non-dummy activities are involved in
handovers. For instance, in the event logs shown in Figure 10,
(IVA,DCO) is indicated as a DFR involved in handovers
because IVA is involved in a handover from EC to LB, and
DCO is involved in a handover from LB to EC. (▶,REG) is
also involved in handovers because REG, as a non-dummy
activity, is involved in a handover from EC to LB.
Definition 17 (DFRs With Handover Indicators): Let

(A∪{▶} × A∪{■}) × {0, 1} be the universe of DRFs with
handover indicators, where DFRs involved in a handover
are indicated with 1 and the others are indicated with 0.

FIGURE 15. The DFG at the department level for the chained execution
type of interoperability based on three departments in the Sepsis
event log.

FIGURE 16. The DFG at the department level for the subcontracting type
of interoperability based on two departments in the Sepsis event log.

absDFRh : B(A∗) → B((A∪{▶} × A∪{■}) × {0, 1}) is
an abstraction function that maps a given simple event log
onto a multiset of DFRs with handover indicators. Given
dfrh = ((a, b), i) ∈ (A∪{▶}×A∪{■})×{0, 1}, πdfr (dfrh) =
(a, b) and πhor (dfrh) = i are the projections of dfrh onto
the directly follows relation and the handover indicator,
respectively.

Note that indicating handover DFRs does not reveal sen-
sitive information. It only imposes extra effort on the orga-
nizations, yet, at the same time, it drastically simplifies the
process of updating merged DFRs with missing handover
relations. Definition 18 demonstrates the process of updat-
ing merged DFRs with handover relations, where the DFRs
involved in handovers are indicated.
Definition 18 (Update): Let L1,L2, . . . ,Ln be simple

event logs belonging to n organizations involved in a process,
HoRs ∈ B(A × A) be a multiset of handover relations
among the organizations, and mDFRs = absDFRh (L1) ⊎
absDFRh (L2) ⊎ . . . ⊎ absDFRh (Ln) be the merged DFRs.
update(mDFRs,HoRs) updates mDFRs based on HoRs as
follows:

update(mDFRs,HoRs) = [πdfr (dfrh) | dfrh ∈ mDFRs∧

πhor (dfrh) = 0] ⊎ HoRs

The general idea of updating merged DFRs is to add miss-
ing handover relations and remove the wrong DFRs added
because of unknown interconnections among organizations.
In Definition 15 and Definition 16, we exploited some prop-
erties of the interconnections to update merged DFRswith the
minimum available information. However, when there is no
specific property for interconnections, we utilize DFRs with
handover indicators to updateDFRs. Since theDFRs involved
in handovers are indicated, one can simply remove all of them
and add missing handover relations.

G. RARM FOR FEDERATED PROCESS MINING
In this subsection, we demonstrate the risk-aware reveal
method for answering more in-depth questions about a pro-
cess. We explain the general approach for two main types of
queries, i.e., attribute-based and trace-based.

1) ATTRIBUTE-BASED QUERIES
A query is sent to the risk-aware reveal engines of all the
involved organizations. RARE of the respective organization
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FIGURE 17. The original DFG for the main event log (Sepsis-CE/SB).

verifies the sensitivity of the requested attribute and either
provides an answer or refuses the query. For example, con-
sider the chained execution type of interoperability, the event
logs shown in Figure 5, and the following query: what are the
activities performed on 02.01.2019? The answers provided
by EC, ST, and SC are as follows: ResEC = [ERR,ERT ],
ResST = [REG,CRP,REL], and ResSC = []. The sum of
these multisets provides the aggregated response, i.e., Res =
ResEC ⊎ ResST ⊎ ResSC .
Definition 19 (Attribute-Based Response): Let O be the

universe of organizations, and O⊆O be the set of organiza-
tions involved in a joint process. A response provided by an
organization o ∈ O for a query regarding an attribute value
V ⊆ C∪A∪T ∪R∪D1∪. . .∪Dm is a multiset Reso ∈ B(V).
The aggregated response is Res =

⊎
o∈O Reso.

2) TRACE-BASED QUERIES
To get a complete response for the trace-based queries,
a process analyst may need to send several queries to dif-
ferent organizations in a specific order depending on the
responses received from each single organization. Similar
to the attribute-based queries, a query is first sent to the
risk-aware reveal engines of all the involved organizations.
RARE of each organization verifies the risk associated with
a response. If the risk is above a predefined threshold, the
RARE refuses the query. Otherwise, it provides a response
with the corresponding handover tables for the cases whose

data are included in the response. Such handover tables are
utilized by the process analyst to get the possible missing
pieces of the response from other organizations. A response
provided for the trace-based queries by an organization with
the identifier o ∈ O is a set Reso ⊆ C × A∗ × 2HR (see
Definition 22).
Consider the chained execution type of interoperability, the

event logs shown in Figure 5, and the following query: what
are the traces of cases whose treatment process contains IVA?
Assuming that the risks are acceptable for the organizations,
the reponses provided by EC, ST, and SC are as follows:
ResEC = {(1, ⟨ERR,ERT , IVA⟩, {(1, 1,EC, IVA,⊥, ST )})},
ResST = ∅, and ResSC = ∅. Using the handover
table of EC, the process analyst realizes that another query
needs to be sent to ST to obtain the trace of case 1.
The response of such a query is as follows: ResST =

{(1, ⟨REG,CRP,REL⟩, {(1, 1, ST ,REG,EC,⊥), (2, 1, ST ,
REL,⊥, SC)})}. Verifying this response, the process analyst
needs to send another query to SC to obtain the missing part
of the trace. The response of such a query is as follows:
ResSC = {(1, ⟨DCO,PRE⟩, {(1, 1, SC,DCO, ST ,⊥)})}.

The process of sending queries stops when both launcher
and terminator organizations of cases in all the responses are
visited. Given a case c, the launcher organization is the one
that starts the process of the case c (Definition 20), and the
terminator organization is the one that ends the process of the
case c (Definition 21). For each case, the process analyst joins
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TABLE 3. Our categorization for departments and their activities in the
Sepsis event log.

TABLE 4. The general statistics of the event logs used in the experiments.

the traces in the individual responses. The joining process for
each case starts from the launcher organization and ends at
the terminator organization. The complete trace regarding the
only case involved in the above-mentioned example isRes1 =
⟨ERR,ERT , IVA⟩ ⊕ ⟨REG,CRP,REL⟩ ⊕ ⟨DCO,PRE⟩.
Definition 20 (Launcher Organization): Let c ∈ Cjoint be

a case, and HoTs = {HoT1,HoT2, · · · ,HoTn} be a collec-
tion of handover tables of the organizations involved in the
process of case c. An organization with the handover table
HoTi ∈ HoTs is the launcher organization of case c iff
πfrom(minid (φ(HoTi, (case, c)))) = ⊥.
Definition 21 (Terminator Organization): Let c ∈ Cjoint

be a case, andHoTs = {HoT1,HoT2, · · · ,HoTn} be a collec-
tion of handover tables of the organizations involved in the
process of case c. An organization with the handover table
HoTi ∈ HoTs is the terminator organization of case c iff
πto(maxid (φ(HoTi, (case, c)))) = ⊥.
Definition 22 (Trace-Based Response): Let O be the uni-

verse of organizations, o1, o2, . . . , on ⊆ O be the organiza-
tions involved in the process of some joint cases Cjoint ⊆ C.
A response provided for a trace-based query by an orga-
nization oi, 1≤i≤n, is a set Resoi⊆C × A∗ × 2HR, s.t.,
if (c, σ,HoT ) ∈ Resoi , then for all rec ∈ HoT , πcase(rec) = c.
The response provided regarding a case c ∈ Cjoint is Resc =
σ1 ⊕ σ2 ⊕ · · · ⊕ σn, where (c, σi,HoTi) ∈ Resoi , o1 is
the launcher organization of case c, and on is the terminator
organization of the case.

Figure 14 shows an overview of our approach for PAFPM
for all the types of interoperability where cases can be
shared among organizations. The general approach for all the
mentioned types of interoperability is the same. The only
difference is different update operations for merged DFRs
based on the different types of interoperability. Note that the
generic update definition (Definition 18) can be used for all
the types of interoperability if the DFRs involved in han-
dovers are indicated. The federated DFG obtained fromDFRs FI
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FIGURE 19. The DFG of the updated merged DFRs with handover relations for the chained execution scenario.

containing handovers can provide a high-level understanding
of the joint process. However, to analyze more complicated
aspects of the process, e.g., which activities are performed
simultaneously, the process discovery step needs to be done.

VI. IMPLEMENTATION AND EVALUATION
In general, three criteria can be considered for evaluating dif-
ferent aspects of our approach: data utility, privacy, and inter-
organizationality. In Section IV, we explained the privacy and
data utility aspects of the abstraction used in this paper, i.e.,
DFRs. Since DFRs remove the concept of trace, they can
mitigate the disclosure risks w.r.t. the control-flow aspect (see
Subsection II-B). Nevertheless, as we explained, there are
situations where the original trace variants of an event log can
be revealed based on its DFG. We also demonstrated the data
utility shortcomings of abstractions and introduced the risk-
aware reveal method to overcome the shortcomings. Since
the main focus of this paper is on inter-organizational process
mining, in this section, we evaluate the inter-organizationality
aspect that also incorporates the other aspects.

We employ Sepsis as a real-life event log for our exper-
iments [46]. Sepsis is an event log recorded by an infor-
mation system in a hospital that contains 15214 events and
16 unique activities performed for 1050 patients (cases).
We demonstrated five different types of interoperability
including chained execution, subcontracting, case transfer,

capacity sharing, and loosely coupled. Assuming that han-
dover tables are provided by the organizations involved in a
process, the most challenging part of the abstraction-based
approach is the update operation. The update operation for
case transfer, capacity sharing, and loosely coupled relies
on the information regarding handover indications in directly
follows relations. Given such information, the update opera-
tion is a straightforward task. Thus, we mainly focus on the
chained execution and subcontracting types of interoperabil-
ity. We implemented a Python script for our evaluation. The
implementation is available as a GitLab repository1 and can
be installed as a Python package.2

A. SCENARIO DISCOVERY
In this subsection, we demonstrate the process of discovering
the chained execution and subcontracting types of interop-
erability from the Sepsis event log. As described in [47],
Sepsis is an event log collected from three main departments:
Emergency Room (ER), Labratory (LB), and Financial (FI).
Table 3 shows our categorization for the activities in the
Sepsis event log. Note that to avoid having uncategorized
activities, our categorization for the activities is more general
compared to the categories discussed in [47]. Namely, we

1https://git.rwth-aachen.de/majid.rafiei/pp-iopm/
2https://pypi.org/project/pp-iopm/

33710 VOLUME 11, 2023



M. Rafiei, W. M. P. van der Aalst: Abstraction-Based Approach for Privacy-Aware Federated Process Mining

FI
G

U
RE

20
.

Th
e

D
FG

of
th

e
m

er
ge

d
D

FR
s

w
it

ho
ut

ha
nd

ov
er

re
la

ti
on

s
fo

r
th

e
su

bc
on

tr
ac

ti
ng

sc
en

ar
io

.

consider “Return ER” as an activity performed by the finan-
cial department and admission activities performed by the
laboratory.

To discover the chained execution scenario based on the
Sepsis event log, we generalize the activities to their depart-
ment level. A DFG discovered from the generalized event log
shows the paths that patients (cases) follow at the department
level. The set of cases following a path that corresponds to
the department-level DFG shown in Figure 15 generates a
sub-event-long from Sepsis that matches a chained execution
scenario. We name this event log Sepsis-CE. By projecting
Sepsis-CE onto the activities of each department, we get three
event logs for three different departments. We name these
event logs Sepsis-CE-ER, Sepsis-CE-LB, and Sepsis-CE-FI.

To discover a subcontracting scenario, we generalize ER
and FI to one department, called Emergency Ward (EW).
After this generalization, the same set of cases, as the ones
in Sepsis-CE, follow a subcontracting scenario, i.e., the cases
follow a path that corresponds to the department-level DFG
shown in Figure 16. Although the set of cases is the same,
for the sake of simplicity, we name this event log Sepsis-
SB. By projecting Sepsis-SB onto the activities of each
department, i.e., EW and LB, we get two event logs for two
different departments. We name these event logs Sepsis-SB-
EW and Sepsis-SB-LB. Note that Sepsis-SB-LB is also the
same as Sepsis-CE-LB. Table 4 shows the general statistics
of the event logs that we obtained for the above-mentioned
scenarios.

B. THE MERGING CHALLENGE
In this subsection, we show the results of applying our
approach to the event logs explained in the previous section.
Figure 17 shows the original DFG for the main event log in
both scenarios, i.e., Sepsis-CE/SB.As explained in SectionV,
the first step in all the scenarios is that each organization
applies the abstraction function to its own private event log
and shares the resulting DFRs.

Figure 18 shows the DFG of the merged DFRs without
handover relations for the chained execution scenario. Since
handover relations are missing, one can see three submodels
with their own start and end activities, and there is no connec-
tion between the activities of different departments. In fact,
the concept of chained execution has completely vanished.
Based on our scenario for the chained execution type of
interoperability, all the cases follow a path matching the DFG
shown in Figure 15. Thus, we expect to see the activities of
the ER department at the beginning and the activities of the FI
department at the end (as shown in Figure 17). By applying
Algorithm 1 to the handover tables of all the departments,
we retrieved 1198 missing handover relations. Figure 19
shows the DFG of the merged DFRs updated with these
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FIGURE 21. The DFG of the updated merged DFRs with handover relations for the subcontracting scenario.

missing handover relations exploiting the coupling update
operation. This DFG is exactly the same as the original one.

Figure 20 shows theDFGof themergedDFRswithout han-
dover relations for the subcontracting scenario. One can see
two submodels corresponding to two departments, EW and
LB. There is no connection between the activities of the two
departments, and the submodels have their own start and
end activities. Based on our scenario for the subcontracting
type of interoperability, the activities of the LB department
should appear between the activities of EW. Similar to the
chained execution scenario, we apply Algorithm 1 to retrieve
the missing handover relations. Then, the decoupling update
operation is applied to update the merged DFRs with the
missing handovers. Figure 21 shows the DFG of the merged
DFRs which is exactly the same as the original event log.

VII. CONCLUSION AND DISCUSSION
In this paper, we proposed an abstraction-based approach
for privacy-aware federated process mining. We employed
DFRs as abstractions of event logs. We introduced the risk-
aware reveal method to overcome its data utility limitations.
In Section V, we specialized our approach to federated
process mining for five different interoperability scenarios.
We introduced the concept of handover relations and han-
dover tables and demonstrated an algorithm for retrieving
missing handover relations in an inter-organizational set-
ting. We also demonstrated update operations to update

directly follows relations with missing handover relations.
We employed Sepsis as a real-life event log to evaluate our
approach for reproducible scenarios.

In our problem setting, we assumed that privacy concerns
are at the level of individuals, i.e., traces are sensitive infor-
mation that need to be protected. However, our approach can
also support the department level of sensitive information.
If we assume that the entire internal activities of an organi-
zation are private, the organization can share only its han-
dover table. As a result, the generated DFG in the untrusted
environment only represents the communication points of the
organization.

For explaining the risk-aware reveal method, we focused
on an intuitive type of attack and the corresponding disclosure
risks. However, attack scenarios and their corresponding risk
analysis can be done more extensively. Since organizations
are not aware of the event logs and risk thresholds required by
other organizations, they may provide responses that violate
the risk requirements of one another. Namely, intersection-
based attacks can be launched [15]. For example, consider
the following scenario. In organization o1, the age attribute
is considered as a sensitive attribute and it gets generalized
before publishing. However, in organization o2, age is not
considered as a sensitive attribute and it is shared without
generalization. If there exists only one case in a specific range
in the response provided by o2, the privacy requirement of
o1 is violated.
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Moreover, provided privacy guarantees can be degraded
by integrating individual responses. Consider a scenario
where there are two organizations o1 and o2 that provide
a trace-based response including three cases c1, c2, and c3.
Assume these responses to be as follows: Reso1 = {(c1, ⟨a,
b, c⟩, {(1, c1, o1, c,⊥, o2)}), (c2, ⟨a, b⟩, {(1, c2, o1, b,⊥,

o2)}), (c3, ⟨b, c⟩, {(1, c3, o1, c,⊥, o2)})}, Reso2 = {(c1, ⟨d, e,
f ⟩, {(1, c1, o2, d, o1,⊥)}), (c2, ⟨d, e⟩, {(1, c2, o2, d, o1,⊥)}),
(c3, ⟨e, f ⟩, {(1, c3, o2, e, o1,⊥)})}.
Each individual response contains more than one case

considering a sequence of activities with a maximum length
of 2 as the background knowledge. However, the integrated
responses for cases are as follows:
Resc1 = ⟨a, b, c, d, e, f ⟩,Resc2 = ⟨a, b, d, e⟩,Resc3 =
⟨b, c, e, f ⟩. As can be seen, there are sequences of activities
with length 2 that single out a case. For example, ⟨c, e⟩ singles
out the case c3, or ⟨c, d⟩ singles out the case c1.

Such risks can be mitigated using an integration engine
that considers the risk thresholds of all the organizations and
re-evaluates the risks associated with integrated responses
before exposing them to the untrusted environment. Such an
integration engine can be considered as a semi-trusted third
party that never gets unprotected information and may not
misbehave. Nevertheless, we still need to realize third-party
independent solutions for such scenarios.

Moreover, the current risk-aware reveal engine employs
no privacy-preserving technique. It solely analyzes the risks
associated with a single response and either refuses the cor-
responding request or shares the response. In the future,
the engine can be equipped with privacy preservation tech-
niques, e.g., differential privacy, that provide privacy guaran-
tees for responses. The engine is also stateless, i.e., it does
not keep the track of queries. In the future, the engine can
be upgraded to a stateful one that tracks queries to avoid
privacy leakage resulting from responses provided to several
queries.

We described our approach for the synchronous type of
communication. However, the approach can also support the
asynchronous type of communication using modeling tech-
niques that can represent concurrencies. In the future, we plan
to extend this technique with other representation models to
support the asynchronous type of communication. We also
plan to perform a case study to comprehensively evaluate the
effectiveness of the risk-aware reveal method.
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