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ABSTRACT Enhancing the operational resilience of the distribution system network (DSN) proactively
in a hurricane-prone region requires a pre-hurricane event DSN optimization model, built on accurate
hurricane-induced DSN line damage prediction scenarios. In the past, the resilience evaluation methods such
as statistical sequential and non-sequential Monte Carlo simulation (MCS) contingency-based technique,
and Machine learning-based Bayesian Networks (BN) technique, have been proposed to strengthen the
operational resilience of the DSN proactively against forecasted oncoming hurricane events. However,
a comparative study is largely unexplored to evaluate which of these two methods is best for proactive
operational planning decision-making against forecasted oncoming hurricane events. In this paper, the
Bayesian network (BN) and hybrid statistical DSN’s Fragility-curve (FC)-Monte Carlo simulation (MCS)-
Scenario reduction (SCENRED) predictive algorithms were developed. The DSN line fault prediction
scenarios simulated leveraging the predicted oncoming hurricane Ewiniar data were utilized to perform
pre-hurricane DSN optimization to proactively decrease the DSN expected load loss. The pre-event system
optimization problems were formulated in a mixed integer linear programming (MILP) approach and solved
using a CPLEX solver in the general algebraic modelling system (GAMS) on a redesigned 48-bus DSN.
The simulated initial expected load loss of 39% of 35 MW was decreased to 35.34%, and then to 30.71%
with the use of hybrid statistical DSN’s FC-MCS-SCENRED, and the BN-DSN predictive models. These
results were validated using the Electrical transient analyzer program (ETAP). This study confirmed that the
BN-DSN predictive model is a better operational planning tool compared to hybrid statistical DSN’s line
FC-MCS-SCENRED predictive model.

INDEX TERMS Bayesian network (BN) predictive algorithm, distribution system network (DSN), hurri-
cane events, hybrid statistical DSN’s line FC-MCS-SCENRED predictive algorithm, pre-hurricane event’s
optimal DSN reconfiguration and resource allocation.

NOMENCLATURE
A. SETS INDICES
x, y Indices for grid buses
a, b Indices for lines
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ψx Set of bus bar joined to bus x
l Line index
t Time index
PSN Power system network
HS Hurricane event wind speed data
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B. PARAMETERS
PDt,xQ

D
t,x Real and reactive power

expected at bus- bar ‘‘x’’,
time ‘‘t’’

Lcap Line capacity
EF Events forecast time
SRCSW a Consider that point ‘‘a’’ has a

remote-controlled switch, then
the binary parameter is equal
to 1

M A suitably large positive
number

RlXl Resistance, Reactance of the
line

Peopre, Pldspre pre-hurricane event DSN active
load.

SST(a) Total time required to change
switch status at point ‘‘a’’

RCS‘‘t’’ Remote-controlled switching
time.

ωF
x Weight factor at load bus ‘‘x’’.

LDS The binary parameter will be 0,
at a damaged scenario (s) of the
line‘‘l’’.

Vmax,Vmin Maximum and minimum oper-
ational constrained. Voltage(s),

Smax Grid maximum apparent
power.

PDGx,max,P
DG
x,min The maximum and minimum

real power output of the DGs at
bus ‘‘x’’.

QDGx,max,Q
DG
x,min The maximum and minimum

reactive power output of the
DGs at bus ‘‘x’’.

PPVt,x(max) The maximum PV active power
output at bus ‘‘x’’, time, ‘‘t’’

SL lol1 (I ) , SL lol2 (I ),
SL lol3 (I ) Value of load loss at the bus

‘‘x’’, in $/MWh

C. VARIABLES
OF Objective function

P
ACflow
t,l ,Q

ACflow
t,l Real and reactive AC power flow in

the line at a time ‘‘t’’.
PLSt ′,x , Q

LS
t ′,x Real and reactive load-shedding at

bus ‘‘x’’, time ‘‘t′’’.
PDGout@t,x ,Q

DG
out@t,x DG’s Real and reactive output power

at bus ‘‘x’’, time, ‘‘t’’.
PPVout@t,x ,Q

PV
out@t,x Photovoltaic Real and reactive out-

put power at bus ‘‘x’’, time ‘‘t’’
PWTout@t,x ,Q

WT
out@t,x Wind turbine (WT) real and reactive

output power at bus ‘‘x’’ time, ‘‘t’’.

Sw(t,l) The-binary variable= 1, for a closed
switch on line set ‘‘l,’’ otherwise =

0 at a time ‘‘t’’.
Ŕt′,l For a repairable line ‘‘l’’ status at

time ‘‘t’’, The binary variable = 1.
Otherwise, 0.

ςsw(t,l) Consider that the switch status
changes for line ‘‘l’’ at a time ‘‘t’’,
the binary variable = 1

δt,x If the DG at bus-bar ‘‘x’’, at a time
‘‘t’’ is planned then the binary vari-
able = 1, otherwise = 0.

Vt,x The magnitude of the voltage at bus
‘‘x’’, time, ‘‘t’’.

Vt,y The magnitude of the voltage at bus
‘‘y’’, time, ‘‘t’’.

γx,y,t If bus ‘‘y’’ is the parent of bus ‘‘x’’,
at a time ‘‘t’’, binary variable = 1.

PLSt,x Interrupted real power at bus ‘‘x’’,
in MW

I. INTRODUCTION
A reliable electricity supply supports human existence, soci-
etal growth, and civilization globally. Regrettably, power sys-
tem network (PSN) infrastructures are usually subjected to
damage during high impact low likelihood (HILL) events.
The HILL events could either be extreme weather events that
are predictable and unpredictable or human-induced power
system operational errors. These two major sources of fault
usually result in cascaded power outages with a lot of loss
of revenue. From the published literature, the study of the
causes of the widespread power blackout conducted in the
United States of America (U.S.A) in 2008, showed that
between 1984 and the year 2006, 933 events resulted in large-
scale power outages. 44% of these events were caused by
natural events such as hurricane events [1], [2]. The United
States Department of Energy (US-DOE) data showed that out
of 1,333 power system network damages recorded between
1992 and the year 2011, almost 78% were caused by extreme
weather events [3]. Hurricane event-induced power outages
on the DSN are very common around the globe these days due
to global warming [4]. For example, on the 11th of June 2018,
hurricane Ewiniar dumped very heavy rainfall in Vietnam
along the western coast of the South China sea. In this event,
fourteen (14) people died. Loss of social infrastructures worth
¥5.19 billion ($749 million) was recorded [5], [6]. Over the
past 50 years, it has been documented that more than 30 trop-
ical cyclones have affected the South African mainland [7].
On the 29th of August 2021, a catastrophic category-4
Hurricane Ida hit Louisiana tearing off the basic infrastruc-
tures like hospital roofs, the DSN, etc. In this incident, mil-
lions of people were thrown into a total power blackout. Over
1 million electricity end-users experienced a total blackout in
NewOrleans, Louisiana andMississippi, with a record of two
(2) lives lost in Louisiana [8]. In a report presented on CNN
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by Rachel Ramirez, it was noted that researchers raised alarm
on increased large-scale power outages due to the extreme
weather around Texas, Michigan and California. About 1,500
large-scale power outages were recorded from the year 2000
to 2022 [9]. The July 8th 2022 flood event in Nigeria threw
several people living around Lekki, Ikoyi, and Victoria Island
of Lagos State into a total blackout for several days due to
the power system sub-station and power equipment that was
submerged by the flood [10]. The Africa report states that
‘‘there is hardly any work done on improving the institution
that works on disaster management in Nigeria’’ [11]. This
was evident as the report of 29th October 2022, indicated
that twenty-seven (27) out of thirty-six (36) states in Nigeria
have been hit by the flood. In this event, six hundred and
three (603) people died. Two million-five hundred and four
thousand, and ninety-five (2,504,095) people were affected.
Two thousand four hundred and seven (2,407) people were
injured, while one-million, three hundred and two thousand,
five hundred and eighty-nine (1,302,589) people were dis-
placed [11]. In view of this, this article is motivated to focus
on improving the operational resilience of the DSN against
predictable extreme weather events like hurricanes. The goal
is to lessen the expected load loss, and the impact of the
protracted widespread power outages proactively, leveraging
the proposed DSN predictive algorithms in this paper for the
DSN proactive operational planning decision-making.

A comprehensive literature review of the steps and strate-
gies utilized to achieve power system resilience improve-
ment against HILL events such as hurricanes was presented
in [12] and [13]. These papers suggested the need to change
the reactive operational resilience improvement techniques
proposed by many researchers in assessing the resilience
improvement of the DSN against hurricane events, to a
more defensive proactive operational resilience improvement
approach [14]. In Omogoye et al., [15], [16], it was revealed
that the prospective statistical regressionmethods (such as the
generalized linear model (GLM), generalized additive model
(GAM), system tree-approach mining models (STMM),) and
the power system topology (PST)-based resilience evaluation
approach (such as the predictive DSN line’s FC-MCS) have
been utilized to assess hurricane-causedDSN line faults in the
past. The GLM, GAM, and STMM approaches are grouped
as system-level damage predictive algorithms [17]. These
approaches are appropriate for long-term PSN infrastructural
planning. However, an increase in PSN line fault prediction
approximation error limits their application for the short-
term operational resilience improvement planning against
predicted oncoming hurricane events. Similarly, the power
system topology (PST)-based resilience evaluation approach
which includes a combination of a statistical DSN line’s
FC-MCS predictive model is also known to introduce high
computational complexity due to the use of 1000 or more
predicted system line fault scenarios for a proactive stochastic
system optimization problem formulation and simulation as
demonstrated in [15], [16], and [18]. It is worth noting that

in all the prospective methods aforementioned above, the
uncertain nature of the hurricane event on the PSN was not
captured. Therefore, to address the problem of neglect of the
non-stationary nature of hurricane events on the PSN when
modelling the DSN line fault predictive algorithm, a machine
learning dynamic BN-DSN line fault predictive algorithm
was proposed in [19]. The proposed BN-DSN predictive
model considered fully the uncertainties of the hurricane
events on the modified IEEE 14-bus DSN lines, to predict
the DSN line faults. However, the BN-DSN line prediction
validation model was not developed in [19]. The improved
hybrid statistical DSN line’s FC-MCS-SCENRED predictive
algorithm that validates the proposed BN-DSN predictive
model in [19] was presented in [20]. The study where both
the proposed BN-DSN and hybrid statistical DSN line’s
FC-MCS-SCENRED predictive algorithms were developed
using IEEE 15-bus to determine their prediction accuracy can
be found in [21]. The study presented the full analysis of
the two predictive algorithms’ accuracy and concluded that
the proposed BN-DSN predictive model outperformed the
combined statistical DSN’s line FC-MCS-SCENREDmodel.
However, the proposed model in [21] was never tested with a
proactive system optimization model for impact assessment
as regards the reduction in the expected load loss. Other liter-
ature such as [16], [19], and [22] also supported the proposed
BN-DSN predictive model as a better operational planning
decision-making tool for the distribution system operators
(DSO) compared to the combined statistical DSN’s line FC-
MCS-SCENRED predictive algorithm. Generally, studies to
corroborate or support this claim are largely unexplored and
hence, presents a research gap.

To contribute to knowledge from this perspective, this
study presents a comparative performance-based analy-
sis between the proposed BN-DSN and combined statisti-
cal DSN lines FC-MCS-SCENRED predictive algorithms,
to determine the best DSN predictive algorithm that can
reduce the expected load loss proactively from unstoppable
forecasted oncoming hurricane events. This type of sys-
tem operation planning tool would enhance the best proac-
tive operational planning decision-making by the DSO to
strengthen the DSN operational resilience planning against
the forecasted oncoming hurricane event in the future. It will
also help the DSO to assess the power system network
risk and vulnerability against any future predictable extreme
weather events since the extreme weather events will not stop
and cannot be controlled.

The novelties introduced in the study, include the devel-
opment of different predictable weather-dependent DSN line
fault predictive algorithms, conducting performance-based
tests on them for proactive operational resilience enhance-
ment against hurricane events, and integrating the best pre-
dictive algorithm in a proactive system optimization model to
decrease the expected load loss. The objectives are to: reduce
the revenue deficit for the power utility companies; and
reduce the protracted power outages of electricity end-users
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FIGURE 1. Redesigned 48-bus DSN one-line diagram [18], [24].

to enhance electricity end-users’ survivability after a hurri-
cane event in the future. Hence, the operational resilience
of the DSN lines against predictable extreme weather events
like a hurricane is enhanced. This goal motivates this
study.

The remaining sections of this paper are arranged as fol-
lows: Section II presents research data and the methodolo-
gies. In section III, the comparative analysis of the efficiency
of the two proposed system line fault predictive algorithms
is presented. Section IV discusses the pre-hurricane event
DSN reconfiguration and resource planning for the system’s
operational resilience improvement. Section V gives detailed
information on the system optimization simulation results
analysis, while section VI, concludes the paper.

II. RESEARCH DATA AND METHODS
A. DESCRIPTION OF RESEARCH DATA, MODIFIED 48-BUS
DSN, AND SOFTWARE TOOLS
Hurricane event is the natural disaster considered in this
article. This is due to its harsh impact on the DSN [23].
The past hurricane events’ wind speed intensity measured
in meters per second (m/s) called ‘‘typhoon_data_mat’’ that
was collected between 1949 to 2019 from Shenzhen region
in China was utilised to train the prospective combined sta-
tistical DSN line’s FC-MCS-SCENRED and the BN-DSN
line fault predictive algorithms in this study. The predicted
oncoming hurricane Ewiniar data in [19], was utilized to
perform the DSN line fault prediction. The small size of the
redesigned 48-bus DSNwas selected for this research investi-
gation because of the experienced complexity associated with
the BN-DSN design calculation using a larger network. Fig.1
shows a region-bound one-line diagram of the redesigned
48-bus DSN with a voltage capacity of 200 kV, one (1)
transmission bus bar, four (4) distribution feeders (DF1, DF2,
DF3, and DF4) with an approximate thermal capacity of
10 MVA, three (3) assumed normally open remote-controlled
switches located on buses 9, 21, and 31, and six (6) assumed
normally closed remote-controlled switches located on buses

TABLE 1. The redesigned 48-bus system’s load demand profile [18], [24].

FIGURE 2. The proposed pre-hurricane events DSN optimization method.

8, 18, 25, 30, 38, and 42 respectively. It also has three (3)
wind turbines (WTs) located on buses 26, 33, and 37, five
dispatchable distributed generators (DGs) situated on buses 9,
19, 24, 33, 43, and a single photovoltaic (PV) panel installed
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FIGURE 3. The proposed BN-DSN line fault model flow chart [21].

on bus 20 [24]. The system MVA base is 10 MVA and the
minimum and maximum levels of voltage magnitude at the
DSN bus are 0.95 and 1.05 p. u, respectively [24]. Table 1
presents the redesigned 48-bus DSN’s daily load demand
profile. The distributed energy resources (DER) unit locations
and their ratings, the daily PV and WTs power output data
can be found in [24]. The DSN is assumed to have nine (9)
remote-controlled switches (RCSs) located on buses 8, 9, 18,
21, 25, 30, 31, 38, and 42. Software tools which include
Microsoft-word package, Excel spreadsheet, Mendeley refer-
encemanager, R-software, GAMS, and ETAPwere employed
for this research investigation. A personal computer with an
Intel core i3-6100UCPU@2.30 GHz processor with 8 GB
RAM was utilized to perform all simulations.

B. RESEARCH METHODOLOGIES
The prospective procedural steps to perform the pre-hurricane
DSN optimization to minimize the expected load loss using
the DSN line faults prediction scenarios from the two
prospective hurricane-inducedDSN line fault predictive algo-
rithms are presented in Fig. 2.

1) MODELLING OF THE PROBABILISTIC PREDICTIVE
BN-DSN MODEL BASED ON THE PREDICTED ONCOMING
HURRICANE EVENT
Figure 3 shows the overview of the proposed BN-DSN pre-
dictive algorithm flow chart. The detailed step-by-step design
procedures for the proposed BN-DSN predictive model can
be found in [21]. The prediction accuracy analysis is the
focus of the paper. The study demonstrated that the proposed

FIGURE 4. The DSN’s pole baseline dimension structure [26].

BN-DSN line damage simulated are more accurate DSN line
fault prediction when compared with the combined statistical
DSN line’s FC-MCS-SCENRED predictive model [20], [21].
In [25], the proposed BN-DSN was also applied to a 48-bus
DSN to forecast the DSN line’s fault scenario leveraging the
predicted oncoming hurricane Ewiniar data. The DSN line’s
damage scenario prediction enhanced the DSO’s situational
awareness to perform a cost-effective system operational
planning against a predictable hurricane event. Therefore, for
the readers’ clarity, with no intention of repeating an already
established concept in our previous papers, the procedural
steps for the development of the proposed BN-DSN line fault
predictive algorithm were improved and abstractly presented
in this section.

To evaluate the reliability or failure probabilities of the
DSN components, one ought to consider the reality that the
DSN lines can fail due to one or more DSN components’
failure. In this paper, it is considered that the power outage
in the DSN in a particular area can lead to power supply
interruption in another area. This implies that power supply
service interruption may be caused by the failure of the DSN
components such as poles and overhead wires, due to the
dynamic impact of hurricane wind speed intensity across
the DSN. Therefore, the study of the DSN pole damage
as DSN line fault ‘‘causalities’’ are based on the elasticity
perseverance of the DSN poles amid hurricane wind speed
intensity (HS) and the DSN poles’ foundation’s quality that
provides resistance to the pole stretch against HS. Due to
the unavailability of all the required data about the DSN, the
conceivable overhead electrical cable structures are utilized
to depict the DSN topology structural reliability as shown in
Fig. 4 [26]. Therefore, this proposed DSN line fault predic-
tive model gives a sound premise to the BN-DSN line fault
prediction analysis.

Considering the flexural failure points of the DSN lines
shown in Fig. 4, both the pole structure and the overhead
conductors exposed to the hurricane event would experience
the stress of the HS that can possibly result to a pole bending
moment, to the ground. In this context, the DSN pole failure
under a hurricane event can be expressed as the peak bending
moment (BM) shown in (1):

Mmax = Mp +

∑
(Mw +Ww) (1)
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FIGURE 5. The pre-hurricane BN-DSN-DAG model [21].

where Mp is the DSN pole bending moment caused by HS,
Mw represents HS induced bending moment of the DSN’s
conductors, and Ww represents the conductor’s span length.
The inside strands of the DSN poles are packed and the
external filaments are stretched out because of the pole’s base
bending moment. In case the tensile stress of the extended
external fibre surpasses the most extreme pole crack stretch,
at that point the DSN pole will be broken. The breaking point
state capacity of the flexural failure mode G(x) is introduced
in (2) [26].

G(x) = R−W = δr − δg = δr −
Mg

Z
= δr −

32Mg

π D3
pole

(2)

whereR is the resistance capacity,W is the wind load, δr is the
mean modulus of rupture (MOR) of the DSN poles (r), and
ground line (δg) is the tensile stress of the DSN pole at the
ground line, Mg is the bending moment at the ground line, Z
represents pole section modulus, and D represents the diam-
eter of the pole at the ground line. The detailed modelling of
the designated fibre stress due to HS on various wooden poles
in the DSN has been proposed in [27], while the yardstick for
quantifying the resilience of the power utility DSN’s poles
is proposed in [28]. In the BN-DSN model, an all-inclusive
CPD related to hurricane event forecast is utilized to define
the DSN line fault forecast problem formulation. The failure
probabilities (FP) of the DSN lines under hurricane events
can be represented by (3) [29], [30].

In the development of the BN-DSN line fault predictive
algorithm, two factors were contemplated to be causing the
power outages on the DSN lines whenever a hurricane event
struck. These factors include the hurricane wind speed (HS)
measured in meters per second (m/s), and the situation of
the upper feeder pole (UFP) distributing power to the lower
feeder pole (LFP) lines. This study utilized these factors to
design the proposed BN-directed acyclic graph (BN-DAG)
shown in Fig. 5, based on graph theory concept.
A graph theory technique represented by G (N, B) was

utilized to evaluate the condition of the 48-bus DSN’s lines

status when a hurricane event struck. G is the graph, N depicts
the DSN’s parent (UFP and HS) and child nodes (SL)
condition respectively. B on the other hand, represents the
DSN link between the parents’ nodes and the child node.
To estimate the 48-bus DSN line fault’s probabilities using
the conditional probability distribution (CPD) of Shenzhen
region of China, the need to put into consideration the influ-
ence of the two independent random and continuous vari-
ables of the parents’ nodes become imperative. The con-
dition of the two parents’ nodes directly affects the child
node’s status (SL) as shown in Fig. 5. Therefore, the general
term to describe the regional CPD of the hurricane-prone
zone under study, that models the DSN line fault pre-
diction is presented in (3) as proposed in [29] and [30],
respectively.

P0Fl = P(SL = 0|HS) (3)

where P0Fl is the likelihood that the DSN line will be broken
or not broken when the hurricane events struck the grid ‘‘l’’
is a subset DSN line of the universal DSN line set ‘‘L’’.
SL depicts the DSN line’s condition after the hurricane event
(that is SL = 0, or SL = 1). HS represents the hurricane
event wind speed data. Therefore, if the probability distri-
bution function (PDF) of the hurricane-prone region and the
predicted approaching hurricane data are provided by the
weather station, the BN-DSN-DAG model in Fig. 5, can be
put in place to predict the maximum likelihood of the DSN
line fault. The mathematical expression for this formulation
is shown in (4) [29], [30].

BN = {NodesBN,LinesBN,CPDBN} (4)

where NodesBN = {ni}, i ∈ [1,N ] is the set of random
variables described in Fig. 5. LineBN =

{(
ni, nj

)}
, i ̸= j, rep-

resents the edge set, that is, the grid’s branch of the proposed
BN predictive model. LinesBN depicts the main causes of the
DSN line fault. The two parents and child node relationship
are described by the nodes (ni), and edges (nj). For instance,
consider ni,where all its parent nodes and child node are clas-
sified as the set of πUFP,HS,SL (ni) , therefore a parent node
with a known value can be defined as an independent node in
a BN-DSN-DAG model. Similarly, the dependent node (nj)
that utilizes the hurricane-prone region CPD, represented by
θBN, is also defined in the BN-DSN-DAG model, given that
the values of all its parent nodes are provided. The DSN-CPD
mathematical expression for the proposed BN-DSN line fault
model is presented in (5) [29], [30].

θBN = PF(ni |πUFP,HS (ni)) (5)

In this study, it was assumed that if the dynamic HS across
the 48-bus DSN is above 65 m/s (category 4-hurricane event)
and it is sustained for more than 60 seconds across the DSN,
any DSN pole hit with such HS will be broken, otherwise
it will not be broken. In the same vein, if UFP line of the
DSN is damaged, no power would be supplied to the LPF
lines. These two constraints were used to model the DSN line
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FIGURE 6. Structure of BN-DSN-DAG model for the establishment of
48-bus DSN -CPD [25].

status after a hurricane event. This relationship is presented
in (6).

NodesBN = {SL ,HS} , l ∈ L (6)

To model the BN-CPD between the HS and the DSN-UFP
lines, the past recorded and stored hurricane event data of the
Shenzhen region in China was utilized [19]. The goal of the
proposed BN-CPD is to generate the DSN line fault prob-
abilities using the CPD of the region under study to model
the DSN line damage or not damage conditions. Therefore,
using the proposed BN-DSN-DAG model structure in Fig. 5,
the 48-bus DSN line fault under the predicted oncoming HS
is modeled as presented in Fig. 6.
In Fig. 6, the DSN line 1, (SL1), is the root node (i.e.,

the transmission bus). SL2, SL10, SL22, and SL34 represent
the power supplying distribution feeders (DFs) 1, 2, 3, and
4 respectively. The BN-DSN predictive model mimics the
existing relationship between the 48-bus DSN’s poles and
HS, taking into account the conditional dependence between
the DSN parents and child nodes via the DSN branches. This
is translated as BN-DSN structure using the region’s PDF and
the CPD approaches shown in Table 3.

In Table 3, P (SL2 = LB or LNB|HS2) represents the
probability that the SL2 ‘‘will not be broken’’ or ‘‘will not be
broken’’ given that it is struck by hurricane wind speed inten-
sity 2 (HS2). In the same vein, P (SL3 = LB or LNB|HS3,
SL2) means the probability that the SL3 ‘‘will be broken’’ or

TABLE 2. The BN Probability Distribution Function (PDF) and Conditional
Probability Distribution (CPD) chart.
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TABLE 2. (Continued.) The BN Probability Distribution Function (PDF) and
Conditional Probability Distribution (CPD) chart.

TABLE 2. (Continued.) The BN Probability Distribution Function (PDF) and
Conditional Probability Distribution (CPD) chart.

‘‘will not be broken’’ provided that, it is connected to SL2
when it was hit by the HS3. Using this approach, the PDF
is computed for each pole in the 48-bus DSN as presented
in Table 3. The derived 48-bus DSN poles’ failure proba-
bilities under hurricane event are presented in Table 3, and
plotted in Fig. 7 respectively. The generated 48-bus DSN
pole failure probabilities in Table 3, are then compared with
the random numbers generated ranging between 0 and 1.
The decision-making condition for the predictive probabilis-
tic failure model states that, if the 48-bus DSN line failure
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FIGURE 7. The representation of BN-DSN’s pole failure probabilities.

probability of each line is less than the random number, the
DSN pole is not broken (LNB), otherwise, the DSN pole is
broken (LB). This approach is established using Monte Carlo
Simulation (MCS) algorithm to generate the 48-bus DSN
line fault scenarios data. The data is used alongside with the
historical hurricane event data to train the proposed BN-DSN
predictive model for future DSN line fault prediction. The
mathematical expression for the data set DHS is presented in
(7).

DHS = {SL ,HS} l ∈ [1,L] , 1 ∈ [1,HS] (7)

To ascertain the CPD of the 48-bus DSN lines, the softmax
approach presented in (8) is employed to handle both the
discrete and continuous parents’ nodes of Figs. 5 and 6 [31].

Pr (SDSN = V|UFP,HS)

=
ℓ
(wlV ,UFP ×UFP+wLV ,HS ×HS+blV )∑

V∈(0,1) ℓ
(wlV ,UFP ×UFP+wlV ,UFP ×HS+blV )

(8)

where V ∈ {0, 1} is the DSN line condition. The W l
V ,p ∈

ℜ
1×1,V = 0, 1 are the DSN line conditions based on

the DSN line’s UFP. TheW l
V ,HS ∈ ℜ

N×1 represents the
relative weight of the normal vector for the HS within
the 48-bus DSN, and blV depicts softmax offset. The rel-
ative weight and the biases/offset of the softmax in (8) is
defined by (9) as indeterminate parameters of the 48-bus DSN
line ‘‘l’’ [31].

∅l =

{
wlV ,UFP,w

l
V ,HS , b

l
V

}
,V ∈ {0, 1} (9)

For every DSN line ‘‘l,’’ in the 48-bus DSN, ∅l determines
their CPD. Also, ∅l can be expressed in term of the BN-DSN
predictive model undefined parameters as provided in (10):

∅l {∅l |l ∈ L} (10)

The BN-DSN predictive model’s training goal is to determine
the DSN’s optimal CPDs represented by ⊖

∗

BN. The optimal
learning process is carried out using the offline stored data
set in (7). The 48-bus DSN’s optimal learning problem for-
mulation is presented in (11) [29], [30].

⊖
∗

BN = arg⊖BN
maxPr (DHS |NodesBN,LineBN,CPDBN)

(11)

Therefore the ⊖
∗

BN problem formulation of (11) can then be
written in terms of φ∗ as shown in (12) [29], [30].

φ∗
= arg⊖BN

maxPr (DHS |NodesBN,LineBN,CPDBN )

(12)

The criterion of (11) can be learned by the use of a gradient-
descent algorithm, given that the actual mastering rate of η ∈

(0,1) are provided and the initial value of the optimal CPDs
of φ(0) is known. Subsequently, after a few simulations, the
parameter of the BN-DSN predictive model will accomplish
convergence based on the guideline of maximum probabil-
ity assessment of the preparing data set. At this stage, the
complete proposed BN-DSN line fault predictive algorithm
is presented as a joint probability distribution (JPD) using
the 48-bus DSN nodes (NodesBN ). The BN-DAG random
variables from Fig. 5 are presented, using (13), [29], [30].

BN ⇔ Pr(S,HS) (13)

where S = {SL l ∈ [1,L]}, SL represents the vector quantity
with binary values of 0 and 1 showing the whole system
line status after the hurricane event. S represents the whole
scenarios of the 48-bus DSN line status. Therefore, the CPD
of the random variables for the 48-bus DSN line status (S) is
given by (14), [29], [30].

Pr (S|HS) =

L∏
l=1

Pr (Sl |π(UFP,HS) BN (Sl))

=∈

L∏
l=1

Pr (Sl |UFP,HS) (14)

where HS = [HS1 . . . ,HS l . . . ,HSL] is the set of hurricane
speeds across the 48-bus DSN. Equation (14) is assessed
with the hurricane Ewiniar prediction data to determine the
likelihood of the hurricane event occurrence and the range
of the 48-bus DSN line damage. Therefore, the BN-DSN
line fault model estimates the DSN line status based on the
rule of highest probability of the DSN line fault when the
forecasted oncoming hurricane event struck the grid as given
in (15), [29], [30].

S∗
= argS maxPr (S|HS) = argS maxPr (S|HS) (15)

where S∗ represents the 48-DSN line fault range. S∗ is also
the DSN line fault prediction results presented in terms of LB
or LNB in this study or better presented as Sl = 0 or Sl =

1, that is 0 means line damage, and 1 means otherwise.
The proposed BN-DSN predictive model is implemented on
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FIGURE 8. The BN-DSN line fault prediction simulation flowchart on the
DSN [21].

TABLE 3. BN-DSN line fault prediction for the 48-bus DSN.

the modified 48-bus DSN using the CPD of the proposed
BN-DSN-DAG predictive algorithm. The hurricane-induced
power system line fault prediction was carried out using
Hurricane Ewiniar data [32], with its corresponding sim-
ulated system line fault scenario. The BN-DSN predictive
model program written with MATLAB toolbox by Murphy
in [31] and [33] was studied and modified using R pro-
gram [34], to suit our BN-DSN line faults prediction goal.
The detailed algorithm flow chart for the BN-DSN line fault
simulation is presented in Fig. 8. The resulting 48-bus DSN
line fault prediction under hurricane Ewiniar is presented in
Table 3.

2) MODELING OF THE PROPOSED HYBRID STATISTICAL
DSN LINE’S FC-MCS-SCENRED LINE DAMAGE PREDICTIVE
ALGORITHM FOR THE PREDICTED ONCOMING
HURRICANE EVENT
To model the proposed combined statistical DSN line’s
FC-MCS-SCENRED predictive algorithm, it is important
to keep in mind the same condition considered in (1) and
(2) respectively. Having stated this fact, our past work that
presents the detailed procedural steps for the development
of the proposed combined statistical DSN line’s FC-MCS-
SCENRED predictive model can be found in [20]. However,

TABLE 4. Statistical approach to pole’s failure probability caused by
anticipated HS.

for readers’ convenience, this concept is abstractly presented
in this section using a modified 48-bus DSN.

The DSN’s wooden pole and conductor are considered for
this investigation. The first task is to establish the risk of
a wooden pole’s failure under HS and scale this risk over
the DSN configuration as displayed in Fig. 4. The DSN
maximum bending moment under HS is defined by (1) [26].
According to the rule of structural reliability in Civil Engi-
neering field, which states that if electric pole cracks caused
by an extreme weather condition are distributed within the
component, as component’s failure probabilities, the crack
propagation of the DSN pole can eventually cause the elec-
tric line to fail under extreme weather conditions causing a
large-scale power blackout [35]. Therefore, the DSN pole
failure probabilities under hurricane events were modelled as
presented in (16) [36], [37].

PF(σ ) = 1 − e−( σσ0 )
m

= PLF
(
HHS
l

)
(16)

where, PF (σ ) is the electric pole probability of failure, as a
function of failure stress(σ ) of HS. σ0, represents the ref-
erence pole stretch under HS, and m represents the statisti-
cal Weibull modulus. Both (σ0,m) are calculated from the
available historical hurricane data. Given historical hurricane
Ewiniar data, the zonal HS, PDF, CDF, and the redesigned
48-bus DSN poles failure probabilities are calculated by
rewritten (16) to obtain (17) [38].

1 − PF (σ ) = e−( σσ0 )
m

(17)

By taking the log of both sides of (17), (18) is obtained.

m ln
( σ
σ0

)
= ln

(
ln

1
(1 − PF (σ ))

)
(18)

Equation (18) is presented as a straight-line equation, in the
form of y = mx + b shown in (19). The breakdown is
presented in Table 4.

ln

(
ln

(
1

1 − PF (σ )

))
= m ln σ − m ln σ0 (19)

It was modeled such that the HS that passed through the 48-
bus DSN began to stress the DSN’s poles from hurricanewind
speed of 24.85 ms−1 to 79.59 ms−1, and at 80 ms−1 and
above, the pole starts to fail. The corresponding DSN line’s
failure probabilities is presented in Fig. 9, having duly con-
sidered the impact of hurricane wind speed’s PDF and CPD
of the region under study. The Statistical Weibull parameters
of slope m = 3.862 and σO= 60.958, derived from (16) were
used for graph plotting shown in Fig. 9.
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FIGURE 9. The 48-bus DSN line’s failure probabilities under hurricane
event.

Using (16), the redesigned 48-bus DSN’s poles failure prob-
abilities due to HS are obtained. The data is then compared
with their corresponding generated random numbers (rn)
ranging between 0 and 1 (rn∼0, 1), (See Table 5). The rule
that determines the condition of the redesigned 48-bus DSN
line status as presented in (20), states that, if each generated
random number for each DSN line is compared with its cor-
responding DSN’s line failure probabilities under a hurricane
event, and the random number is less than the DSN pole’s
failure probabilities, the line is damaged ‘‘1’’, otherwise the
line is not damaged ‘‘0’’ [39]. But in this article, ‘‘0’’, is
used to represent line fault while ‘‘1’’ is used to represent
DSN line, not damage. This is the condition used to model
this combined statistical DSN line’s FC-MCS-SCENRED
predictive algorithm.

PLF
(
HHS
l

)
=

{
0, if rn < PF(I )
1, if rn > PF(I )

(20)

where PLF
(
HHS
l

)
= 0 is the likelihood that the redesigned

48-bus DSN lines will fail or be broken, whereas when
PLF (H

HS
l ) = 1 is the likelihood that the redesigned 48-bus

DSN lines will not fail or will not be broken.
In the same vein, due to the need to take into account

the probabilistic nature of the hurricane event across the
redesigned 48-bus DSN, the MCS model is employed to
forecast the possibleDSN line fault scenarios due to hurricane
Ewiniar [40]. The MCS has been employed in many studies
in the past without defining proper stopping criteria. This
usually affects its prediction accuracy since there are no
universally accepted stopping criteria currently [22]. How-
ever, some studies such as [18] and [39], in power system
resilience, claimed that 1000 DSN line fault scenarios pre-
diction from the MCS model is enough to guarantee power
system line fault prediction accuracy under extreme weather
events like hurricane events. Therefore, 1000 MCS line fault
prediction is adopted in this study. In this view, the DSN line

fault prediction was simulated using the redesigned 48–bus
DSN, on an excel spreadsheet. The samples of the redesigned
48–bus DSN line fault prediction from the DSN line’s
FC-MCS model is shown in Table 5. Each DSN line fault
prediction scenario represents the system line status and the
DSN’s response to the hurricane events. It should be noted
that the combined statistic stochastic system optimization
simulation result’s accuracy largely depends on the higher
number of the DSN line fault scenarios generated from the
predictive statistical DSN line’s FC-MCS model. Alas, these
higher DSN line fault scenarios generated usually result
in computational high time costs when the generated large
numbers of system line fault scenarios are used to perform
stochastic system optimization simulation. In this context,
one of the ways around this problem of computational time
cost is to apply the scenario reduction (SCENRED) algorithm
to the modified 48-bus DSN’s 1000 line fault prediction
scenarios. This is to reduce the generated system line fault
scenarios to a smaller desired number of the DSN line fault
scenarios without jeopardizing the precision of the predicted
DSN line damages scenarios [20]. The reduced DSN line
fault scenarios are then used to perform the pre-hurricane
events stochastic system optimization [41]. The developed
SCENRED program in GAMS [42], was applied to the mod-
ified 48-bus DSN line damages scenarios predicted from
combined statistical DSN’s line FC-MCS model, to reduce
its predicted 1000-line fault scenarios to 10 with their corre-
sponding optimum probabilities of system line fault for each
reduced system line fault scenario generated. See Table 6 for
the 10 reduced DSN line fault scenarios.

III. DISCUSSION ON THE PROPOSED BN-DSN AND
HYBRID STATISTICAL DSN’S LINE FAULT
PREDICTION MODELS
The efficiency of the proposed predictive BN-DSN and the
combined statistical DSN line’s FC-MCS-SCENRED pre-
dictive models under hurricane events was studied through
the DSN line fault simulation on the 48-bus DSN. In both
cases, the algorithm solvers depend on adaptive search tech-
niques, particularly, the Branch-and-Bound method [43]. So,
the closeness in the prediction time and memory as presented
in Table 7, is not surprising because of the hybridization
of SCENRED algorithm to the combined statistical DSN
line’s FC-MCS model. The improved statistical predictive
algorithm optimally reduces the system line fault prediction
to a small sizable number without jeopardizing the system
line fault prediction accuracy [41], [44]. Comparing the DSN
line fault prediction time and computer memory usage in both
predictive algorithms as shown in Table 7, the proposed pre-
dictive BN-DSN line fault model still predicted the DSN line
fault scenario faster because it works based on the principle of
predicting the maximum probability of DSN line fault based
on the predicted oncoming hurricane event when compared
to the combined statistical DSN line’s FC-MCS-SCENRED
model, justifying the efficacy of the proposed BN-DSN
model over all the existing combined statistical DSN line’s
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TABLE 5. Statistical approach to pole’s failure probability caused by
anticipated HS.

TABLE 5. (Continued.) Statistical approach to pole’s failure probability
caused by anticipated HS.

FC-MCS-SCENRED predictive model. The accuracy of both
the proposed DSN line fault predictive algorithms can be
confirmed as the scenario 7 of Table 6, which recorded the
highest probability of DSN line fault scenario to occur, if a
hurricane event struck the DSN, matched the single line fault
prediction scenario in Table 3. The detailed explanation of
prediction accuracy analysis can be found in [21] and [25].

The predicted DSN line’s fault scenarios from both the
predictive algorithms under hurricane event are leveraged,
by the DSO as power system resilience proactive operational
planning tool to decrease the expected load loss. In this
context, the pre-hurricane event DSN optimization prob-
lems were formulated based on the two predicted DSN line
fault scenarios. The impact of the two predictive algorithms
was quantified and compared using minimization of the
expected load loss as the resilience metric. The modelling
of the pre-event DSN optimization is detailed in the next
section.

IV. PRE-HURRICANE EVENT DSN RECONFIGURATION
AND RESOURCES PLANNING FOR RESILIENCE
IMPROVEMENT
The review of system network reconfigurationmethodologies
presented in [17], [22], and [45] provide a guide in choos-
ing the most appropriate DSN reconfiguration optimization
problem formulation approach employed in this study. More-
lato and Monticelli [46], revealed that due to the magnitude
and non-linear nature of the DSN, a combination of system
optimization and heuristic approaches could not achieve an
optimal solution [46]. It then suggested that, since it is possi-
ble to linearize the pair of objective function and the system
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TABLE 6. The 10 reduced Statistical System Line fault Prediction
Scenarios.

TABLE 7. The comparative analysis of the BN-DSN and combined
statistical DSN line’s FC-MCS-SCENRED predictive models.

operational constraints, to change the non-linear nature of
the DSN reconfiguration problem to a MILP system opti-
mization [45], [47], the MILP problem formulation approach
was a choice employed in this paper. The prospective optimal
DSN reconfiguration and resource allocation MILP problem
formulations were employed to conduct a performance-based
comparative study to determine the prospective predictive
algorithm that is most appropriate to execute pre-hurricane
event DSN operational planning in the future. The formulated

MILP optimization problems in the two cases, were solved
using a CPLEX optimizer in GAMS. The DSN optimization
solution proposed in this paper drew its inspiration from the
pre-hurricane event DSN optimization problem formulated
as the crew dispatch and transportation problem in [18],
the pre-and post-event system optimization under hurricane
event in [48] and [49], and the prospective two-stages system
optimization under hurricane event in [50] respectively.

A. PRE-HURRICANE EVENT DSN OPTIMIZATION
PROBLEMS FORMULATION USING PREDICTIVE DSN’S
LINE FC-MCS-SCENRED AND BN-DSN
PREDICTIVE MODELS
Based on the predicted 48-bus DSN line fault scenarios from
the prospective combined DSN line’s FC-MCS-SCENRED
model, and BN-DSN model, the DSO proactively optimizes
the DSN operation to obtain the best optimal network recon-
figuration for proactive network reconfiguration and DER
planning using optimal switching. These actions are aimed
at proactively minimizing the value of the expected load loss
(MW). The redesigned 48-bus DSN optimization simulations
were performed considering the BN-DSN line fault scenario
of Table 3 in (22) and all the reduced 10 predicted system line
fault scenarios in Table 6 in (21). The prospective formulated
system optimization problems are formulated as a MILP
problem in (21) and (22) respectively.

Min OF = Min
lds∑

lds=10

∑
∀t

∑
∀x

Pldspre × wFx ×EPLSlds,x ×dt

(21)

Min OF = Min
∑
t,x

Peopre × ωxF ×EPLSt,x ×dt (22)

Equations (21) and (22) are subjected to the following oper-
ational constraints one after the other.

To ensure balanced power flow, the real and reactive power
flow within the redesigned 48-bus DSN at a time ‘‘t’’ are
modelled as (23) and (24),

PDt,x −

(
PDGout@t,x +PPVout@t,x +PWTout@t,x +PSubout@t,x

)
+

∑
t

∑
l

P
ACflow
t,l = 0,∀x, t (23)

QDt,x −

(
QDGout@t,x +QPVout@t,x +QWTout@t,x +QSubout@t,x

)
+

∑
t

∑
l

Q
ACflow
t,l = 0,∀x, t (24)

where PDt,x and Q
D
t,xare the active and reactive power demand

at the bus ‘‘x’’ at a time ‘‘t’’. PDGout@t,x and QDG
out@t,x, P

PV
out@t,x

and QPV
out@t,x, and PWT

out@t,x and QWT
out@t,x are the active and

reactive power output of the distributed energy resources
injected at the bus ‘‘x’’, time ‘‘t’’. PSubt,x andQ

Sub
t,x are variables

that indicate the active and reactive power injected from the
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transmission line, while∑
t

∑
l

P
ACflow
t,l and

∑
t

∑
l

Q
ACflow
t,l

represent the active and reactive power flowing in the grid
lines (l), at time ‘‘t’’.
To ensure that the power that is flowing through a line does
not exceed the DSN line’s power flow carrying capacity,
constraint (25) is employed.

− Sw(t,l) Lcap(l) ≤ P
ACflow
t,l ≤ Sw(t,l) Lcap(l), ∀t, l (25)

Constraints (26) and (27) are based on the Distflow model
of a linear AC power flow proposed in [51]. Constraints
(26) and (27) are relaxed through the big-M technique [52],
provided all other attached lines to the bus ‘‘x’’ are in the
open state to adhere to network operational constraints [53].
An explanation of how the big-M technique is utilized to relax
the constraints in (26) and (27) can be found in [52].

Vt,y−Vt,x+

(
Rl P

ACflow
t,l + XlQ

ACflow
t,l

)
(
Vt,l

) ≥
(
Sw(t,l) −1

)
M , ∀t, l

(26)

Vt,y−Vt,x+

(
Rl P

ACflow
t,l + XlQ

ACflow
t,l

)
(
Vt,l

) ≤
(
1 − Sw(t,l)

)
M , ∀t, l

(27)

In making sure that the magnitude of voltage experienced at
all buses of the redesigned 48-bus DSN is within the normal
operating range, constraint (28) is employed.

Vmin ≤ |Vt,x | ≤ Vmax, ∀x, t (28)

To ensure that the maximum capacity limit of complex power
flowing in a line’s is within the line operating limit, (29)
is used. Also, to maintain the linearity of the model, the
special-ordered-sets-of-type 2 (SOS2) approach is employed
to linearize (29), [54].

(
Scomp

)2
≥

∑
t,l

P
ACflow
t,l

2

+

∑
t,l

Q
ACflow
t,l

2

∀t, l

(29)

The power output ranges for the DGs, the PV, and the WTs
are modelled with the consideration that the PV and WTs
are environmental time-varying solar irradiation and wind
speed dependent energy-generating components. Therefore,
this study assumed that the WTs and PV have a constant
power factor, and that the power output sources are P-Q
sources. Constraints (30) and (31) are utilized to design the
real and reactive power output bound of the DG units.

δt,x PDGmin,x ≤ PDGout@t,x ≤ δt,x PDGmax,x ∀t, x (30)

δt,x QDGmin,x ≤ QDGout@t,x ≤ δt,x QDGmax,x ∀t, x (31)

Furthermore, (32) and (33) ensure that the output power of the
photovoltaic panel and the wind turbine units did not exceed

their respective maximum power output limits.

0 ≤ PPVout@t,x ≤ PPVmax,t,x ∀t, x (32)

0 ≤ PWTout@t,x ≤ PWTmax,t,x ∀t, x (33)

To ensure that the DSN is kept in a radial configuration, the
constraint proposed in [55], the spanning-tree approach for
the power system network analysis is employed for (34), (35),
and (36) respectively. The constraints make sure that line ‘‘l ′′

at a time ‘‘t’’ in the spanning tree structure is kept in a radial
configuration. That is, Sw(t,l) = 1, if either of γx,y,torγy,x,t =

1. This implies that when γy,x,t = 1, ‘‘y’’ represents the
parent bus of ‘‘x’’ at a time ‘‘t’’, and when γx,y,t = 1 ‘‘x’’
is the parent bus of ‘‘y’’ at a time ‘‘t’’ respectively.

γx,y,t + γy,x,t = Sw(t,l) ∀l ∈ (x, y), y ∈ ϕx , t = EF (34)∑
y∈ϕx

γx,y,t = 1, ∀y ∈ ϕx , t = EF (35)∑
y∈ϕx

γ1,y,t = 0, ∀y ∈ ϕroot , t = EF (36)

To put in check the number of times the RCS status changes,
constraint (37) is introduced. If the switch status changes for
line ‘‘l’’ at a time ‘‘t’’, the binary variable RCSsw(t,l) will be
1, otherwise 0. ∑

t

RCSSw(t,l) ≤ 1,∀t, l (37)

The change in switch status can be detected using, constraints
(38) and (39) respectively.

−RCSSw(t,l) ≤ Sw(t,l) − Sw(t−1, l) ≤ RCSSw(t,l) ∀t, l (38)

RCSSw(t,l) ≤ Sw(t,l) + Sw(t−1,l) ≤ −RCSSw(t,l) ∀t, l

(39)

The time limit to operate the RCSs before hurricane event can
be mathematically formulated as (40) and (41) respectively.
That is the RCS actions to optimally reconfigure the network
modelled in (40) must be performed under the bound of (41),
otherwise the pre-hurricane event optimal DSN and resource
scheduling will be defeated.∑

t

t × RCSSw(t,l) ≥ RCST , ∀l ∈ SwRCSl (40)∑
t

t × RCSSw(t,l) ≤ EF , ∀l ∈ SwRCSl (41)

The DSN optimization problems formulated inMILPmethod
in this section, are solved using a CPLEX solver in the
GAMS, making use of a branch and bound algorithm. The
solution encourages the deployment of specially ordered sets
of variables SOS1, SOS2, semi-continuous, and semi-integer
variables proposed in [56]. The algorithm also provides
a detailed technique to solve a linearized MILP prob-
lem by modifying the constraints in the state-space search
approach [43]. It is worth to note that the following assump-
tions were made prior to the formulation of the pre-hurricane
DSN optimization problems:
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TABLE 8. System performance loss function (MWh) metrics.

1) All switches are remote-controlled switches.
2) The distributed energy resources (DERs) have been

optimally placed in the redesigned 48-bus DSN [24].
Therefore, problems related to voltage fluctuation from
the DERs are ignored in this paper.

3) It was assumed that the forecasted oncoming hurricane
event is to hit the 48-bus DSN in 60 minutes ahead.

B. THE MILP SIMULATION PLATFORM
The MILP model is fed with the detailed redesigned
48-bus DSN data, remotely controlled switches locations, and
predicted DSN line-fault scenarios from both the prospective
predictive algorithms. The proposed formulated MILP opti-
mization simulation constraints described in Section IV-A,
are used to perform the two cases of pre-hurricane event
DSN optimization simulations. The next section describes the
system resilience metrics adopted for the simulation results
analysis.

C. THE SYSTEM RESILIENCE METRICS
The resilience metrics proposed in [39], shown in Table 8
were adopted to analyze the redesigned 48-bus DSN
resilience simulation results since there is no universally
accepted standard power system resilience metric at the time
of compilation of this study report [22], [57].

V. PRE-HURRICANE DSN SIMULATION RESULTS
ANALYSIS
A. EVALUATION OF THE EFFECTIVENESS OF THE
PROPOSED BN-DSN PREDICTIVE MODEL AND HYBRID
DSN’S LINE FC-MCS-SCENRED MODEL
To investigate the impact of the proposed system network
line fault predictive algorithms as regards the DSN’s opera-
tional resilience enhancement against hurricane events, three
simulation case studies were considered. The simulation
results are discussed in the context of the DSN’s operational

resilience improvement against predicted oncoming hurri-
cane events. The simulated case scenarios include:

1) A simulation scenario where no proactive DSN recon-
figuration and resource planning operation is per-
formed against the forecasted oncoming hurricane
event. In this case, the most probable DSN line’s
FC-MCS-SCENRED line fault scenario of Table 6
was taken to be the actual system network line fault
scenario. This is because the prospective BN-DSN
predictive line fault scenario in Table 3 matched this
DSN line fault scenario 7, of Table 6, that recorded
the maximum probability of DSN line fault due to
the approaching hurricane event. Therefore, the system
line fault scenario is used to simulate the active power
flow on the grid to determine the expected active load
loss that would be experienced. The simulated expected
active load loss in this case is then used as a reference
active load loss for further active load loss reduction
analysis when the proactive DSN’s reconfiguration and
resource planning are applied using the simulated dam-
age scenarios from the two prospective DSN predictive
algorithms.

2) A simulation scenario where the pre-hurricane event
system optimization is performed based on the com-
bined statistical DSN line’s FC-MCS-SCENRED pre-
diction results of Table 6.

3) A simulation scenario where the pre-hurricane event
system optimization is performed based on the
BN-DSN predicted line fault scenario of Table 3.

Since the forecasted oncoming hurricane event was due to
hit the 48-bus DSN in 60 minutes ahead, the DSO per-
forms the pre-hurricane event prediction simulation to deter-
mine the DSN’s most probable line fault scenarios using
the two proposed predictive algorithms in this study. The
analysis of the simulation results is reported in the next
section.

B. ANALYSIS OF SIMULATION RESULTS OF THE
PRE-HURRICANE EVENT DSN EXPECTED LOAD LOSS
BASED ON THE PREDICTED MOST PROBABLE DSN LINE
FAULT SCENARIO
Initially, before the hurricane event, the redesigned 48-bus
DSN’s peak active load demand of 3.5 p. u (35 MW) was
met between the 19th and 22nd hours of the day. See Table 1.
Considering Table 6, scenario 7 that matched the damage
scenario in Table 3, the DSN fault scenario is regarded as
the most probable DSN line fault to be experienced when the
hurricane struck. In this case, the expected load shedding was
simulated to be 1.365 p. u. This means 13.65 MW of loads
would be unserved when the predicted oncoming hurricane
event hit the DSN. Therefore, 1.365 p. u (13.65 MW) was
used as the benchmark to quantify the operational resilience
enhancement that would be achieved, after the application
of the pre-hurricane event system optimization based on pre-
dicted DSN line fault scenarios in Tables 3 and 6 respectively.
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TABLE 9. System FC-MCS-SCENRED model pre-hurricane events optimal
switching sequence for the 10 scenarios (0 = open, 1 = close).

Decrease in expected active load unserved of 13.65 MW
using the DSN line fault prediction scenarios from both
BN-DSN and combined statistical DSN’s line FC-MCS-
SCENRED predictive algorithms are of the main interest in
this comparative analysis study.

C. THE DSN LINE’S FC-MCS-SCENRED BASED
PRE-HURRICANE-EVENTS SYSTEM OPTIMIZATION
SIMULATION RESULTS ANALYSIS
The objective function is to minimize the expected load loss
via pre-hurricane events’ optimal DSN reconfiguration and
resource planning, via optimal switching sequence of the
RCS operations. The pre-hurricane event system optimiza-
tion simulation solution was proven optimal with a CPLEX
execution time of 1.78 seconds. The MILP optimization
solution of 2.263 p. u (22.63 MW) with its absolute and
relative optimality gap of zero (0), was obtained. Optimal
load shedding of 1.237 p. u (12.37 MW) was recorded over
all the possible reduced predicted 10 system line fault sce-
narios in Table 6. The MILP program generates one opti-
mal DSN reconfiguration switching sequence and resource
planning shown in Table 9 and Fig. 10, respectively. These
actions are capable of minimizing the expected load shedding

FIGURE 10. Pre-hurricane event optimal network reconfiguration and
resource planning (0-1 hour).

TABLE 10. Pre-hurricane events optimal DGs planning (scheduled = 1,
otherwise = 0) between 0-1 hour).

over all the reduced predicted 10 DSN line fault scenarios
in Table 6. Table 9 shows the pre-hurricane optimal switching
sequence to mitigate the impact of the forecasted oncoming
hurricane event on the DSN. Initially, the RCS 1, 3, 5, 7,
8, and 9 are normally closed switches whereas the RCS 2,
4, and 6 are normally open switches. The simulated optimal
switching sequence for the first 60 minutes shows that RCS 2
was closed from the initial open state, RCS 3 was opened
from the initial closed state, RCS 4 was closed from the
initial open state, and RCS 9 was opened from the initial
close state position. The total pre-event switching time of
20 minutes was recorded. After 1 hour, switch RCS 3 and 9
were now closed. The simulated optimal pre-hurricane event
DSN’s DGs planning is presented in Table 10. The corre-
sponding hourly (0-1 hour) DG’s active and reactive power
planning are presented in Table 11. In Table 12, the active
and reactive power output of the scheduled PV and WTs
against the oncoming hurricane event is presented. Fig. 11
shows that the voltage magnitudes of all the buses in the
redesigned 48-bus DSN are within the DSN normal operating
condition voltage magnitudes of 0.95 ≤ |V | ≤ 1.05 respec-
tively when power flow analysis was performed indicating
the steady state performance of the system network operating
condition.
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TABLE 11. An hour (0-1) before the hurricane event, DG scheduling.

D. PRE-HURRICANE EVENT SYSTEM OPTIMIZATION
SIMULATION RESULTS ANALYSIS BASED ON THE
PROSPECTIVE BN-DSN PREDICTIVE MODEL
In this section, the objective function of the pre-hurricane
event system optimization is to minimize the expected load
loss on the redesigned 48-bus DSN using the prospective
BN-DSN line fault prediction scenario. The simulated solu-
tion was proven optimal with a CPLEX execution time
of 1.56 seconds. The variable objective function of the
MILP solution of 2.425 p. u (24.25 MW) with relative and
absolute optimality gap of 0.085819 and 1.5228 respec-
tively were obtained. Table 13 provides information about
the pre-hurricane event DSN optimal switching actions for
this case. The total switching time recorded was 20 min-
utes. with the assumed 5 minutes. each, switching time-

TABLE 12. An hour (0-1 hour) before hurricane event PV and WTs’ active
power output scheduling.

FIGURE 11. The pre-hurricane event DSN voltage magnitude monitoring
report at all 48- bus DSN nodes.

step. The graphical representation of the switching sequence
leading to proactive optimal network reconfiguration and
resource scheduling based on the BN-DSN predictive line
faults of Table 3 is presented in Fig. 12. Information con-
cerning hourly scheduling of the DSN’s DG can be found
in Table 14. The hourly DER active power planning is
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FIGURE 12. The pre-hurricane event DSN reconfiguration and resource
planning based on Table 3.

TABLE 13. BN-DSN based pre-Hurricane events optimal switching
sequence for the scenario 7 (0 = open, 1 = close).

TABLE 14. Pre-hurricane event status of DGs, scheduled (1) otherwise (0).

presented in Table 15. All the BN-DSN based pre-event volt-
age magnitudes of all buses are within the allowable voltage
range of 0.95 ≤ |V| ≤ 1.05 respectively. The analysis of
the system optimization simulation results in this paper for
the three cases study showed decrease in the initial expected
load loss from 39% to 35.34%, and finally to 30.71% respec-
tively (See Table 16). The pre-hurricane event simulation
time of 1.78 seconds and 1.56 seconds were recorded for
each system optimization simulation using the two predictive
models. The simulation time in both cases was less than 2
minutes. confirming the efficacy of the formulated system
optimization problems in Section IV-A. The reduction in the
expected load loss simulated, simply means a reduction in
the expected loss of revenue to the power utility company.

TABLE 15. Pre-hurricane event hourly DER’s active power output
scheduling.

TABLE 16. One hour redesigned 48-bus DSN optimization simulation
results for Tables 3 and 6.

This justifies the fact that the proposed proactive predictive
BN-DSN line fault model that produced the least expected
load loss improves system operational resilience against hur-
ricane events, when compared to the proposed combined
statistical DSN line’s FC-MCS-SCENRED predictive model.
The impact of the prospective predictive BN-DSN line fault
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FIGURE 13. Modelling of the redesigned 48-bus BN-DSN line fault
scenario using ETAP.

model as it enhances the DSN resilience proactively against
hurricane events from an operational point of view has been
demonstrated.

E. SYSTEM OPTIMIZATION SIMULATION RESULTS
VALIDATION WITH ETAP
To validate the system optimization simulation results of
the prospective BN-DSN model, the redesigned 48-bus DSN
line fault in Table 3 was used to model a fault scenario
on Electrical Transient Analyzer Program (ETAP) platform.
However, ETAP was unable to handle a stochastic system
optimization which is possible with Table 6. Fig. 13 shows
the modelled redesigned 48-bus DSN network in ETAP. The
load restoration data of 2.441 p. u (24.41 MW) reported in
Table 17 is similar to the restoration values of 2.425 p. u
(24.25 MW) obtained for the pre- hurricane event system
optimization simulation result based on the prospective pre-
dictive BN-DSN model in Section V(D). Thereby validat-
ing the accuracy of the proposed system restoration scheme
employed for the system optimal pre-hurricane event network
reconfiguration and resource planning in this study.

VI. CONCLUSION
In this article, the pre-hurricane event DSN optimization
simulation results have been analyzed to showcase the impact
of the two proposed resilience evaluation methods as regards
to proactively enhancing the operational resilience plan-
ning of the DSN against the predicted oncoming hurricane
event.

Firstly, the efficiency of the proposed BN-DSN predic-
tive model was compared with that of the hybrid statistical
DSN line’s FC-MCS-SCENRED predictive model. It was
demonstrated that the stochastic pre-hurricane event system
optimization simulation performed using 10 reduced DSN
line fault scenarios attained optimality at a CPLEX optimizer
time of 1.78 seconds whereas the pre-hurricane event system
optimization simulation that was based on the prospective

TABLE 17. ETAP power flow analysis to validate the prospective BN-DSN
pre-event system optimization result of GAMS.

BN-DSN line fault scenario converged at a CPLEX opti-
mizer time of 1.56 seconds. From these simulation results,
it can be deduced that if the predictive hybrid statistical DSN
line’s FC-MCS-SCENREDmodel’s 1000-line fault scenarios
were not optimally reduced to 10, using the DSN line FC-
MCS-SCENRED model, the 1000 DSN line fault scenarios
would have resulted in higher computational time during
stochastic system optimization, compared to the system opti-
mization simulation time of 1.56 seconds that was seen in
the case of system optimization simulation based on the
prospective BN-DSN line fault scenario. Inferentially, the
prospective proposed BN-DSN predictive model can sig-
nificantly enhance the pre-hurricane event DSN operational
planning at a reduced system optimization simulation time
compared to the combined statistical DSN line’s FC-MCS-
SCENRED predictive algorithm. The reduction in simulation
time will lead to improved electricity end-users’ survivabil-
ity before and after hurricane events, and also reduce the
revenue deficit to the power utility companies in future.
However, it is very important to note that to implement
the state-of-the-art algorithms’ solvers for the prospective
BN-DSN structure learning problem, an adaptive search tech-
nique, precisely the Branch and Bound method, and integer
linear programming technique are required. Currently, we
noticed that there is no single solver that dominates the
other in speed. Therefore, the number of DSN line fault
scenarios to be optimized would always determine the system
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computational time in any case scenario as shown in this
study.

Secondly, to assess the DSN operational resilience
enhancement level against hurricane events, the predicted
most probable DSN line fault scenario was used to perform
load flow analysis. 1.365 p. u (13.65 MW) load loss was
recorded without any pre-event system optimization scheme.
With system optimization based on the prospective hybrid
statistical DSN line’s FC-MCS-SCENRED predicted DSN
line damage scenario 1.365 p. u (13.65 MW) active power
supply loss was reduced to 1.237 p. u (12.37MW) at 1.78 sec-
onds simulation time, with 25 minutes switching time respec-
tively. Similarly, the pre-event system optimization that was
carried out based on the prospective BN-DSN predictive
model, also reduced the expected load loss from 1.365 p.
u (13.65 MW) to 1.075 p. u (10.75 MW) at 1.56 seconds
with 20 minutes switching time. The ETAP simulator system
optimization results confirmed the correctness of the system
optimization results from the BN-DSN system optimization.
Therefore, with the reduction in active load shedding, and
switching time, it is reasonable to conclude that the predictive
BN-DSN line fault model helps theDSO to operationally plan
and prepare the redesigned 48-busDSN against the forecasted
oncoming hurricane event, to lessen the hurricane event’s
impact on the DSN significantly.

Conclusively, the comparative analysis study on the DSN
operational resilience enhancement model against HILL
events in this article showcases the usefulness of the predic-
tive algorithms as system resilience evaluation techniques.
It is demonstrated that the pre-hurricane events system opti-
mization built on the predictive BN-DSN line fault model
can greatly enhance the operational resilience of the DSN
against hurricane events in the future to reduce the expected
active power supply loss when compared with the load
loss reduction obtained using hybrid statistical DSN line’s
FC-MCS-SCENRED predictive model. However, the goal of
the DSO is to minimize the load shedding and restore the
DSN to normal operational status in the shortest possible time
in any case of contingency. In this study, total restoration
of the DSN loads is not possible under this research scope.
This article did not cover the system components’ harden-
ing that bothered on infrastructural resilience improvement
planning. In such a situation, one of the reported problems
of the infrastructural resilience improvement is insufficient
funding or the high cost of system hardening. Therefore,
to achieve total power supply restoration in future research,
a cost-effective hardening and operational system resilience
improvement algorithm is recommended to be developed as
a combinatorial optimization approach to solve the proba-
bilistic load restoration problem under both the operational
and infrastructural planning approaches. In the same vein,
the use of renewable energy resources to serve the loads
after a hurricane event is promising in enhancing the system
performance. However, the uncertainty associated with DER
energy productions because they are weather dependent is
a major problem that needs holistic research investigation

for proper proactive planning to meet the load demand after
hurricane events. It is therefore recommended that this model
be developed to improve this current research results in the
future.
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