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ABSTRACT This paper proposes an edge-centric workload orchestration approach that uses machine
learning in a three-tier vehicular architecture (edge, cloud via roadside unit, or cloud via cellular base station).
The orchestrator uses a wireless network at the edge to receive and send over-the-air requests from vehicles,
considering a metropolitan network connects the entire edge structure to support the high mobility of devices,
allowing vehicles to share information and resources. Additionally, suppose the edge is congested, or its
resources are unavailable. In that case, cloud resources will be used via roadside or cellular networks using a
wide-area network to meet the tasks’ time constraints. Moreover, the proposed machine learning model
uses variance-based sensitivity analysis to determine which inputs influence the model’s final decision.
The experiments performed on the EdgeCloudSim simulator are based on modelling computational and
network resources besides the representation of vehicles. The results indicate that our approach best fits task
offloading over-the-air, outperforming the comparative experiments between the one-stage(our approach)
model against two-stage and random models. Furthermore, by using our one-stage model that outputs the
average of the prediction interval and the variance of this interval, we can measure how confident our model

is in its prediction.

INDEX TERMS Vehicle workload, cloud, edge, machine learning, mobile nodes, task offloading.

I. INTRODUCTION
Within the context of a driverless vehicle, a real-time system
interacts with many other objects (cars, people and traffic
lights) and systems (cameras, GPS, Lidar, Radar) in the
real-world environment, which requires accurate and reli-
able run-time response even in failure or unknown situa-
tions. Moreover, in some real-time systems, accuracy and
response time may be safety-critical, such as transportation
and medical systems [1]. Thus, systems, especially safety
critics, must ensure task safety (assurance of the right task
and execution time) and its correct schedulability during
decision-making.

In the scenario of autonomous real-time systems, we have
to deal with the uncertainties arising from the opera-
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tional context of these systems to obtain safe and accurate
decision-making regarding the workload of these systems.
Therefore, during the event identification phase, these sys-
tems often need to respond to unplanned and unknown events,
which is responsible for generating tasks that need to be pro-
cessed urgently. Furthermore, this whole process is responsi-
ble for generating an extra workload that needs to be allocated
to some server.

One of the biggest challenges for driverless vehicles is
ensuring safe operation, considering the time constraints and
having to deal with a large amount of daily data. Intel,
for example, estimates that each driverless vehicle produces
more than four terabytes of data per day [2]. Likewise, the
work by [3] states that four terabytes only refers to the gener-
ation and processing of data from an autonomous vehicle with
scanning and imaging systems for each hour of autonomous
driving. Based on this, we should consider factors such as
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high mobility, bandwidth, latency, throughput, infrastructure,
context awareness and contextual information sharing.

Considering some of the system restrictions, like mobility,
bandwidth, and latency, listed above, one of the solutions
was the use of cloud infrastructure, as it allows on-demand
services and resource scalability [4]. Another alternative is
the fog computing paradigm proposed by Cisco Systems
researchers [5]. The fog computing proposal emerged amid
the mobility, locality, and low latency requirements that
extended cloud computing services closer to the network’s
border on a distributed scale [6].

Vehicle networks have to deal with highly dynamic envi-
ronments where vehicle dwell time under the covers of a
fixed-edge server component, such as a Roadside Unit (RSU),
is short. So there is a high demand for data processing and
resource sharing with low latency and increased mobility,
which gave rise to the Multi-access Edge Computing (MEC)
concept. Therefore, the main objective of MEC is to deploy
computing resources closer to end users, with processing and
storage performed closer to the origin place, further reducing
the latency of requests [7].

Edge computing resources, such as RSUs, are strategically
located at specific points along the road. Due to the high
mobility of vehicle traffic, we consider a handover approach
similar to the one proposed in [8], where the connection and
resource are shared among RSUs to meet vehicle requests
that move from one RSU coverage to another during the pro-
cessing time of a task. For this, we use the metropolitan area
network (MAN) [9], which is responsible for connecting all
RSUs and sharing resources and tasks migration. Therefore,
another point to be considered in this investigation is sharing
context information with vehicles on the same route. Thus,
in an edge-centric approach, a car can sense and detect an
incident, such as an accident or temporary road closure, and
send that information to an edge server. Therefore, at some
point, another vehicle that accesses the edge services of
an RSU and shares its itinerary promptly receives updates
uploaded to the network by other vehicles about the path
restrictions, allowing it to recalculate possible routes, for
example.

With data processing and resource sharing between over-
the-air (OTA) devices, we must highlight data security
concerns from hacker attacks and malicious intrusions,
as detailed in [10] and [11]. However, the cybersecurity
approach in MEC networks is outside the scope of this
research. Still, we stress the importance of implementing
robust security measures across all system components, from
edge devices to the task orchestrator. These may include data
encryption, user authentication, access control and constant
monitoring for suspicious and malicious activity [12], [13].

Since we have a variety of devices around us, high mobility,
dynamicity of the vehicular environment, and a requirement
of processing data and tasks in real-time, this paper proposes
amachine learning-based task orchestrator for intelligent sys-
tems on edge networks. Our approach allows the orchestrator
to manage vehicular processing and update workload through

33050

machine learning (ML) in a three-tier vehicular architecture
(edge, cloud via roadside unit, or cloud via cellular base
station). The advantage of our architecture is that it provides
better adaptability as machine learning-based task orchestra-
tors can adapt to changing conditions in the system, such as
changes in workload or availability of resources, and adjust
task scheduling and resource allocation accordingly. Further-
more, our proposed ML model is well defined in just one
stage, ensuring conciseness and consistency in our approach.

Among the contributions of this paper, we can highlight the
following:

1) A sensitivity analysis that the orchestrator does at the
beginning of receiving data from the vehicles. This step
is responsible for determining how changes in one or
more input variables can affect the outputs or results
of the model, helping to identify the most critical input
variables that the orchestrator should focus on.

2) Our proposed ML model has only a one-stage. This
ensures that the orchestrator’s decision-making is
faster, which helps to reduce latency between nodes.
We prove this with the Quality of Experience (QoE)
assessment that evaluates the service time provided by
the orchestrator and the number of lost tasks.

3) A detailed evaluation of different ML algorithms
to estimate the server with the best service time.
Implementing the orchestrator with the most suitable
ML algorithm allowed effective collaboration among
context-aware intelligent systems on edge networks.

4) A validation of our proposal from the comparative
evaluation between our approach and another approach
with a two-stage ML model.

We organize the remainder of this paper as follows: ini-
tially, we analyzed the related works to this research in
Section II. Then, we state the definition of the problem
for this study in Section III. Next, Section IV describes
the model setup steps we follow to design and develop our
approach. Next, Section V presents the description and details
of our performance evaluation, results, and discussions about
them. Finally, this study’s conclusion and future works are in
Section VI.

Il. RELATED WORK

When working with real-time autonomous systems, we have
to handle several constraints, such as resource limitations,
energy savings, storage, and processing capacity. As a result,
choosing a suitable mechanism that correctly manages tasks
is a crucial factor for the system’s success. Various proposals
in the literature for managing the workload on remote servers
use fuzzy-based models [14], [15], [16], [17]. For example,
a study presented in [14] proposes a task administration
system founded on approximate fuzzy inference. The authors
of that work consider the popularity of tasks being produced
as a critical requirement to determine whether to perform
the task locally or to download it to some remote server.
The popularity of the tasks in question is calculated based
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on the monitoring of recent historical data, which allows the
acquisition of the demand rate of each task within a time
window. Thus, the higher the demand rate, the higher the
popularity of the task.

The paper [15] is another work that also uses fuzzy logic
as a basis for its study. The authors use fuzzy logic to pro-
pose an edge computing infrastructure that must orchestrate
the workload coming from mobile devices. Furthermore, the
investigation in [15] declares that fuzzy logic is responsible
for orchestration actions that consider the requirements of the
network, computation, and tasks to decide where to execute
the tasks in their proposal. The justification for the wide
acceptance of the use of that technology is that fuzzy logic
is a well-known method to deal with uncertain systems in the
face of rapid changes [18].

Although several related works use fuzzy logic as a basis,
the difficulties in establishing rules correctly, the need to
perform numerous simulations and tests, and also the fact
that there are no precise mathematical definitions [19] are
disadvantages that need to be pointed out. Due to this, works
such as the ones developed in [20], [21], and [22] highlight the
importance of approaches focused on intelligent offloading.
Furthermore, the authors of [20], [21], and [22] emphasize
that due to random and uncertain contexts that vary over
time, decision-making scenarios have elevated complexity
to be optimized using traditional approaches, such as game
theory and fuzzy logic. Consequently, that study recom-
mends using artificial intelligence based on machine learning
for multi-access edge computing problems, with the justi-
fication that the edge network can self-optimize and self-
adapt in the constitution of an intelligent decision-making
system.

Inspired by the intelligent edge communication works,
researchers at a university in Istanbul, Turkey, published
a study [23] that uses machine learning as the basis of a
workload orchestrator for vehicular edge computing work.
That study uses supervised learning and two-stage archi-
tecture for the orchestrator’s decision-making. In the first
step, a classification indicates whether the target device has
a chance of success or failure. Thus, only for cases where
there is a prediction of success, the orchestrator moves to
the second ML step, which estimates the service time in that
target device. In this way, the orchestrator chooses the remote
server with the lowest expected service time. Unfortunately,
despite using machine learning, the proposal of [23] becomes
very extensive and expensive since it is necessary to train six
different models with different input features for each of those
models.

Another research paper about intelligent offloading [24]
introduces a decision-making model based on Reinforcement
Learning (RL). That work categorizes offloading options into
three levels, giving the RL-based decision maker the ability
to select between the edge server closest to the source of
demand, the best edge server based on factors like execution
time and energy consumption, or a cloud server. Nonetheless,
additional information is required to comprehend the testing
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process in that study [24], and the results necessitate more
detailed data regarding the success or failure rate of tasks.

lIl. PROBLEM STATEMENT

Considering that some specific systems, especially con-
nected autonomous vehicles, have limited processing capac-
ity locally, they can take advantage of the resources on remote
servers that can support processing their workload in many
situations. In this sense, this paper proposes a workload man-
agement system that is processed remotely and not on-board.
The offloading management of the tasks is the responsibility
of a context-adaptive orchestrator at runtime. This orches-
trator, located at the edge, predicts each available server’s
service time (S7). The task processing possibilities can be
at the edge, in the cloud via Roadside Units (RSU), or in the
cloud via Cellular Base Station (CBS). The service time of
the job offloaded is calculated using the following equation:

¢

ey

ST = communication_cost +
server

where C; is the computation required to complete a specified
task and Cjepyer is the computational capability of each server
which can be at the edge, cloud via RSU or cloud via CBS.
The communication_cost is calculated between edge and
cloud via RSU or between edge and cloud via CBS according
to the following equation:

D
communication_cost = NL + 7 2)

where NL is the network latency between the origin node and
destination node, D is data generated by the vehicle, and B is
the bandwidth between the origin node and destination node.
Then, the orchestrator chooses the server to process a task
assisted by an ML model to infer which server has the lowest
estimated service time. Machine learning (ML) is already
well-known for pattern detection, and decision-making with
supervised learning [25]. Therefore, the orchestrator must
guide its choices based on time constraints, available process-
ing power, bandwidth and network latency.

We have a given the task T to execute on a remote server
S onnode N = {ng,, ngsu,, ncBs;s - - - -» nE,, NRSU, » ”CBSp}a
where ng represents the edge node, ngsy the cloud node
via RSU and ncps the cloud node via CBS. Therefore, the
goal is to define the machine learning-based orchestrator O to
assign t to n that belongs N concerning finding the shortest
estimated service time for processing the task T to minimize
the processing time response R to the autonomous vehicle that
requested the processing of the task 7.

Accordingly, we propose a concise one-stage ML-based
task orchestrator to solve the limited on-board processing
capacity and minimize the response time for intelligent vehi-
cles. During the autonomous agents’ workload orchestrating,
the orchestrator counts on the support of ML to estimate the
services time that that workload would take to complete at
the edge, cloud via RSU or cloud via CBS. Based on this
estimation, the orchestrator chooses the target device with the
lowest estimated service time. Also, the orchestrator receives
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FIGURE 1. Centralized approach for remote workload processing.

numerous input features, and we cannot use all of them to
estimate the service time, as it would cause the orchestrator
to overload. Therefore, we use sensitivity analysis to decide
which input features of the model are decisive for predicting
the required service time.

IV. METHODOLOGY

Real-time intelligent systems are required to process
and interpret numerous data simultaneously, demand-
ing high-performance computing and rigorous real-time
responses to requested tasks. In the case of autonomous
vehicles, we deal with limiting factors such as battery life and
constricted computing power that restricts the processing load
supported on-board. In this scenario, we must take advantage
of external devices that can support the processing performed
by the intelligent system in real-time. Furthermore, with
over-the-air communication, the vehicle can update context
information regarding the places where it will be soon. This
context information can be loaded in real-time by other
cars at that location. Therefore, we can count on computing
assistance in the cloud, fog or edge. For example, Figure 1
presents a centralized architecture that each intelligent system
sends its workload to be processed in a digital infrastructure
(cloud, fog or edge), which updates the tasks those systems
are supposed to perform in real-time.

The features of fog and edge computing have attracted
extensive interest from academia and industry, as they signif-
icantly reduce the network latency, concentrating computing
services closer to consumers [26]. On the other hand, cloud
servers have unrestrictedly more extensive processing and
storage capacity than in the edge, and fog [26]. Therefore,
our system requires low network load, low execution and
response times, and occasionally high processing power. Due
to these characteristics, it is necessary to decide on the pro-
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cessing target device based on the characteristics of each
task and the moment it arrives at the orchestrator, as we
must consider vehicular network context situations. Thus,
this study intends to prioritize edge usage due to previ-
ously listed advantages. Also, a recent study [27] shows that
edge-offloaded services can emit less CO2, which is highly
relevant considering the current climate change situation on
our planet.

The communication system established by the pro-
posed orchestrator model has a significant impact on the
edge-centric connected autonomous vehicular system. As our
proposal predicts the server’s service time, we always con-
sider the latency between the task point of origin and destina-
tion for the orchestrator’s decision-making. Thus, the lowest
latency will be the best option [28] depending on the criti-
cality of the task to be executed. Therefore, as some papers
suggest [29], [30] and considering the available resources, the
recommended communication latency should be on the order
of 1 ms. Then, we need to consider the task deadline because
if the server’s predicted service time is less than or equal to
the task deadline, the communication latency meets system
requirements.

Figure 2 presents this paper architecture in more detail.
First, characterizing our systems as autonomous vehicles,
we offload the tasks using a wireless local-area network
(WLAN) at the edge, which has an ML-based orchestrator
that will estimate the best target device for that task process-
ing, whether on edge or cloud. If the chosen target device is
in the cloud, the best service time related to the task sending
should be calculated, whether using RSU or CBS. Commu-
nication between the edge and the cloud is established using
a wide-area network (WAN). Finally, the orchestrator returns
the result of the processed task to the vehicle.

Figure 3 presents the workflow of our edge orchestrator.
We start with connected autonomous vehicles sending the
tasks to the orchestrator. Then the shortest service time to
process the task is responsible for defining the node where
the task will be processed. After being processed, the task
result is sent back to the orchestrator, which sends it back
to the autonomous requesting vehicle. Besides workflow,
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Algorithm 1 brings the pseudocode to detail the edge orches-
trator implementation. In this way, the Algorithm 1 starts with
a task as input and initializes available options from remote
servers. Then, for each of these options, it estimates the task
processing time using a machine learning algorithm. Finally,
as the server with the shortest service time is chosen, the
algorithm checks which virtual machine (VM) is closest to
the user and returns the selected server as output so that the
task can be offloaded.

Algorithm 1 How Our Orchestrator Handles Task Offloading
Require: INPUT < task

var device : integer;

var selectedVM : VM,

var predictedServiceTime : double;

Initialize servers options list <« [
EDGE_DATACENTER,

CLOUD_DATACENTER_VIA_RSU,

CLOUD_DATACENTER_VIA_CBS]J;

for each server option in list do

predictedServiceTime =
ML_model(selected_input _features);
end for

if Edge < shortest predictedServiceTime then return
device < EDGE_DATACENTER;
else if Cloud_via_RSU <~
dictedServiceTime then return
CLOUD_DATACENTER_VIA_RSU;
else

return device < CLOUD_DATACENTER_VIA_CBS;
end if

shortest  pre-
device <«

if device = CLOUD_DATACENTER_VIA_RSU or device
= CLOUD_DATACENTER_VIA_CBS then
var CloudHosts <« get the number of cloud hosts avail-
able;
var hostIndex < get an index based on CloudHosts and
user location;
var vmIndex < get an index based on hostIndex;
return selectedVM with hostIndex and vmIndex;
else
var EdgeHosts <— get the number of edge hosts available;
var hostIndex <— get an index based on EdgeHosts and
user location;
var vmIndex <« get an index based on hostIndex;
return selectedVM with hostIndex and vmIndex;
end if

OUTPUT < selectedVM

Since vehicles have several sensors and send different data
to a remote server, we need to select which of these data are
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essential for what is being processed at the moment. Thus,
if the vehicle sends a task related to navigation to be pro-
cessed over-the-air, it does not matter at that moment the data
received and related to the infotainment system, for example.
Thus, according to our model presented in Figure 4, one of
the first steps at the beginning of our approach is selecting
the most relevant input features using sensitivity analysis.
Sensitivity analysis is critical because it indicates how
much each uncertain parameter contributed to generating
output uncertainty. Then we chose to do a variance-based
sensitivity analysis to determine how much the input variation
influences the output [31], [32]. Thus, we used the first-order
Sobol indices and the total Sobol indices. First-order Sobol
indices identify the input parameters that have the most sig-
nificant influence on outcome variability. Total Sobol indices
assess the impact of interactions between the various inputs
on outcome variability [33], [34], [35].
Sobol’s first-order sensitivity index is given by:
Var(E(H|P)) 3
"7 Var(H) )
where S; is the sensitivity index, H is the output result-
ing from the model with uncertain input parameters P =
[Py, P>, P3...P,]. Thus, if we have a low sensitivity index,
which can vary with the range [0, 1], we will find that the vari-
ance in this parameter will have little effect on the variance of
the final result. Therefore, if the parameter’s sensitivity index
is high, any variation in this parameter will lead to significant
variations in the model’s output.
The total Sobol index for the parameter P, is defined
according to the following equation:

Soi=1— Var(E(H|P_p)) @
Var(H)

We have that Var(E(H |P—,)) represents the variance of the
expected value of the output considering the simultaneous
variation of all uncertain parameters of the set P except for
P,.If we have S;; = 0, we say that the variability of P, and its
interactions has no influence on the results and can be ignored
in future analyses.

Initially, we had 12 different inputs to estimate the service
time for the chosen server. Thus, as shown in Figure 5, we had
the following features: Decision, VehicleLocation, Select-
edHostID, TaskLength, WANUploadDelay, WANDownload-
Delay, GSMUploadDelay, GSMDownloadDelay, WLANU-
ploadDelay, WLANDownloadDelay, AvgEdgeUtilization
and NumOffloadedTask.

Furthermore, we performed a sensitivity analysis to deter-
mine the importance of each of these 12 features. Thus,
the most priority feature to estimate the service time of
a server is WLANUploadDelay, followed by Decision,
TaskLength, NumOffloadedTask, then SelectedHostID and,
finally, GSMUploadDelay. The other features that were not
chosen did not present relevance to impact the machine learn-
ing model decision, as we can notice in Figure 5.

We used the sensitivity analysis explained above and
extracted our experiment’s main input features. Table 1 brings
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the specification of these features with a description for each

one.

Working with sensitivity analysis and feature selection has
been demonstrated to be essential for the system’s success.
Our goal is to allow our system to work only with the inputs
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Selected feature

Feature Description

Decision If is to edge (1), cloud
via RSU (2) or cloud
via CBS (3)

SelectedHostID Selected server hosting
id

TaskLength Offloaded task size

GSMUploadDelay Upload delay via Cellu-
lar Base Station (CBS)

WLANUDploadDelay | Upload delay using
wireless local-area
network (WLAN)

NumOffloadedTask Total number of tasks

transferred to the se-
lected server in a recent
past

essential for its decision. In the literature, many authors work
with the prior selection of inputs in their systems. For exam-
ple, the paper [36] points out that including excessive input
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variables that are not relevant to the target variable can not
only complicate the estimation and selection of the model but
also impair its performance. Similarly, the work [37] says that
incorporating an excessive number of variables in a model
can produce significant outcomes but may not hold true in
the current population context.

V. EXPERIMENTAL ANALYSIS

We used the EdgeCloudSim simulator [38] to analyze our
centralized approach that uses machine learning-based load
orchestration. We have chosen that simulator because it sim-
ulates computational and network resources inherent to edge
computing and supports cloud computing as well. There-
fore, the most vital point of EdgeCloudSim is the simulation
of mobile devices, making it possible to simulate WLAN
(wireless local-area network) and WAN (wide-area network)
networks. Those main simulator features are essential for us,
considering that we are working in the autonomous vehicle
domain, which has high dynamicity.

To carry out our experiment, we used as a basis the work
developed in [23]. The authors of [23] also propose a cen-
tralized, multi-tier architecture for vehicular networks, with
workload orchestration based on machine learning. However,
the two-stage structure based on ML presented (the red high-
light in Figure 6) may be simplified and improved to achieve
better results. The suggested two-stage architecture, shown
in Figure 6, is divided to respond to three tiers: i) edge; ii)
cloud via RSU (roadside unit); iii) cloud via CBS (cellular
network); and each of these layers needs two ML models.
The first model is to classify whether the unloaded task will
succeed or fail, and the other model calculates the service
time of the tier predicted to be successful in the offloading
process. In total, the two-stage architecture needs to train six
different machine learning models to make its predictions.
In addition, each of the six models uses various input features,
and the reasons for such a choice in the two-stage proposal are
unclear [23].

As exemplified in Figure 4, we have our one-stage pro-
posed architecture. First, we transmit the vehicle output to the
orchestrator, where we initially perform the sensitivity analy-
sis. Then the selected features go to our one-stage ML model
responsible for estimating the service time in interval ranges
for each tier: edge, cloud via RSU or cloud via CBS. We have
an output with the interval mean and its variance based on the
predicted ranges for each tier. Based on the variance, we can
estimate the degree of uncertainty of the model regarding its
prediction. Thus, the greater the variance, the more uncertain
the model prediction. From this, the choice for the offloading
process is made considering the lowest value of the mean
and the lowest variance value. Therefore, in addition to being
concise and consistent, our proposal considers the forecast’s
uncertainty, which is not made in absolute numbers, but in
intervals that estimate the minimum and maximum of the
service time may take. Consequently, we always consider the
service time estimation with the most minor predicted interval
for offloading.
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In our experiment, the EdgeCloudSim simulator was con-
figured to generate data during a vehicular mobility simu-
lation, in which 100 to 1800 vehicles were randomly dis-
tributed at the beginning of the simulation with dynamic
speeds, varying in each segment along the road to represent
different traffic densities. Figure 7 represents the number of
edge servers provided in the simulation, a total of 40 points
distributed in the RSUs identified on the road by the ““places
IDs”. This road was modelled in a circular path so that the
number of automobiles in the simulation remained constant.
From Figure 7, we can see the distribution of vehicles by
area as the number of these vehicles grows. The red areas
are the hotspot locations that represent the occurrence of
traffic jams. For all experiments, we used a notebook with
the following specification: AMD Ryzen 7 3800X 3.9 GHZ
8-core processor, 32GB DDR4 3600, SSD NVMe 500GB,
NVIDIA® GeForce RTX™ 2060 8GB and Ubuntu-based
Linux 20.04 operating system.

The data obtained from the simulation are related to three
applications: a navigation app, a danger assessment app,
and an infotainment app. Furthermore, the produced data
are as follows: Decision (edge, cloud via RSU or cloud
via CBS), Result (success or failure), ServiceTime, Pro-
cessingTime, VehicleLocation, SelectedHostID, TaskLength,
TaskInput, TaskOutput, WANUploadDelay, WANDownload-
Delay, GSMUploadDelay, GSMDownloadDelay, WLANU-
ploadDelay, WLANDownloadDelay, AvgEdgeUtilization
and NumOffloadedTask. Therefore, considering these data,
we used only Result-related entries with success values,
which gave us 11,533,902 entries. Furthermore, Table 2
presents a summary of the main characteristics defined for
each of the applications used.

The first part of our proposal is related to the selected
features to use as input entries for our ML model stated in
Figure 4. For this, we use variance-based sensitivity analysis,
with the first- and total-order Sobol indices [31], to determine
the inputs that most influence the ML model’s final decision.
From that, we select the most relevant input features. As Fig-
ure 5 shows, the main features chosen for our experiment are
Decision, SelectedHostID, TaskLength, GSMUploadDelay,
WLANUDploadDelay, and NumOffloadedTask.

In a comparative study, we trained six models pre-
cisely as specified in paper [23] for the two-stage archi-
tecture. First, we prepared three multilayer perceptron
(MLP) models for each tier (edge, cloud via RSU or
cloud via CBS) to classify success and failure cases.
The features used by the authors in [23] for each model
were divided as follows: the edge classifier used NumOf-
floadedTask, WLANUploadDelay, WLANDownloadDelay,
TaskLength and AvgEdgeUtilization as input; the cloud clas-
sifier via RSU used NumOffloadedTask, WANUploadDelay,
and WANDownloadDelay as input; the cloud classifier via
CBS used as input NumOffloadedTask, GSMUploadDelay,
and GSMDownloadDelay. Then, to predict the service time
for task offloading, three linear regression models also used
different entries: the edge regressor used TaskLength and
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FIGURE 6. Two-stage architecture proposed in [23].

TABLE 2. Defined characteristics for each of the applications used.

Navigation app | Danger assessment app | Infotainment app
Usage percentage ratio 30% 35% 35%
Task interarrival time (sec) 3 5 15
Max delay requirement (sec) | 0.5 1 1.5
Delay sensitivity 0.5 0.8 0.25
Upload/Download data (KB) | 20/20 40/20 20/80
Task length (GIPS) 3000 10000 20000
RSU/Cloud VM utilization 6%/1.2% 20%/4% 40%/8%

Mean number of vehicles per places

imulation

#Vehicle in s

SE R I LS EZZERAGASEREARRAATARREAR

Place IDs

FIGURE 7. Distribution of vehicles by area.

AvgEdgeUtilization as input; the cloud regressor via RSU
used TaskLength, WANUploadDelay and WANDownload-
Delay as input; the cloud regressor via CBS used TaskLength,
GSMUploadDelay and GSMDownloadDelay as input. The
regression models only estimated the service time of the clas-
sifier whose prediction was equal to success, allowing the
orchestrator to choose the shortest service time among the
estimated ones.

In the one-stage architecture proposed in this work,
we studied machine learning algorithms suitable for solving
our regression problem. Therefore, as shown in Table 3,
we analyzed the following algorithms: linear regression, mul-
tilayer perceptron, M5Rules, support vector machine (SVM)
and random forest. Having the cross-validation results of
Table 3 as a basis, we chose the Random Forest algorithm
that presented the best performance and, consequently, is the
one that best fitted the problem after our investigations.

Thus, we isolated all dataset entries whose “Result” col-
umn was equal to success and relabeled the “Decision”
column as edge = 1, cloud via RSU = 2 and cloud via
CBS = 3. In this way, we trained our model to predict the
service time on each tier using the following input features:
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Decision, SelectedHostID, TaskLength, GSMUploadDelay,
WLANUDploadDelay and NumOffloadedTask in only one-
stage architecture. Consequently, we use the same input fea-
tures and the same model to estimate the service time on edge,
cloud via RSU or cloud via CBS.

We present in Figure 8 the result of the performance eval-
uation for the two approaches to predict the task offloading
service time. We use the R2 score, mean squared error (MSE)
and mean absolute percentage error (MAPE) as the proposal’s
quality evaluation metrics. As shown in Figure 8, the result
of our approach, the one-stage architecture, significantly out-
performs the results of the two-stage architecture. The one-
stage architecture’s R2 is incredibly better than the two-stage
architecture’s R2. Furthermore, the two-stage architecture’s
MAPE has a significantly poor result, and its MSE is also
worse than the one-stage architecture’s MSE in all three
tiers. The results in Figure 8 demonstrate that in addition
to our proposal being concise, the results of the one-stage
architecture are still much more promising.

After these preliminary results, we used the EdgeCloudSim
simulator to perform task-offload simulations on a remote
server managed by the ML-based orchestrator. Therefore,
we compared the performance of our one-stage orchestrator,
a two-stage orchestrator by [23], and a random orchestrator.
The experiments performed on the EdgeCloudSim simula-
tor were based on modelling computational and network
resources and the representation of mobile vehicles. We use
the random orchestrator to select the offload server randomly,
so the probability of selecting a specific target server is
equal to the possibility of choosing any of the other available
servers. A random technique is used to represent the worst-
case scenario.
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TABLE 3. Performance evaluation with 10-fold cross-validation.

Linear Regression | Multilayer Perceptron | M5Rules | SVM Random Forest

Total Number of Instances 1048575 1048575 1048575 1048575 1048575
Correlation coefficient 0.7678 0.9986 0.9985 0.7281 0.9991

Mean absolute error 0.1874 0.0133 0.0139 0.1138 0.0099

Root mean squared error 0.2541 0.0209 0.0218 0.2791 0.0168
Relative absolute error 77.2125% 5.4683% 5.7302% | 57.2074% | 4.0636%

Root relative squared error | 64.0659% 5.2775% 5.4848% | 80.1651% | 4.2359%

Edge Cloud via RSU

g o 40
os —*—DML-based (one-stage(our))
’ 35t |—O0—ML-based (two-stage)

0.6

0.4

0.2

0 0.0080.0002
R2 score MSE

0

R2 score MSE
Cloud via CBS
1.0 0963 .

B Tvo-stage
08 I Cne-stage (Our)

MSE- Mean squared error

0.6 MAPE- Mean absolute percentage error

0.4

0.2

0.0 000300002
R2 score MSE

FIGURE 8. Comparison of our proposal with the proposal presented
in [23].

In the simulated vehicular network, vehicles had some
tasks that did not need to be processed locally, so sending
them to remote servers on the edge or cloud is possible.
Cloud servers can be accessed in two different ways, through
RSU or CBS. Therefore, the orchestrator is responsible for
choosing the remote server based on the computational load
of the task and the execution time estimated through machine
learning. The base configuration of the simulator used in
our experiment was the same as described in the paper [23].
Thus, the vehicle applications used to generate the offloaded
tasks had different characteristics regarding the arrival time,
duration, and size of the upload and download data.

The results of the experiments performed with the Edge-
CloudSim simulator are presented below. In these results,
we can visually compare the performance of the approaches
following different criteria. For example, Figure 9 demon-
strates the average failure rate of tasks according to the num-
ber of vehicles in the simulation. In this way, our one-stage
proposal outperforms the other two approaches. Initially, the
two ML-based model starts with the same margin of task
failures. Then, as the number of vehicles increases and passes
1,200, the one-stage model starts to reduce the average num-
ber of failed tasks and consolidates as the best model.

Figure 10 shows the overhead suffered by the orchestra-
tion algorithms as the number of vehicles in the simulation
increases. The random model has little overhead because
it pushes random choices, making decisions fast, and not
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FIGURE 9. Number of tasks that failed during simulation in
EdgeCloudSim.

generating overhead, but there is no service quality guarantee.
The other two models, based on ML, need time to make their
decisions, which results in overhead. However, our one-stage
proposal presents the best results, considering that it also has
the lowest average of failed tasks.

Figure 11 illustrates the average network delay at the time
of operation of each approach. The random model has many
inconsistencies. However, the two ML-based models, one-
stage and two-stage, have the same average network delay
during their performance, demonstrating that both have sim-
ilar quality in this criterion.

Figure 12 presents the simulation time in minutes for each
orchestrator. Based on this, the random algorithm has the
shortest simulation time because of the arbitrary decisions
made with no elaborated rules. The other two algorithms
spend more simulation time. However, the one-stage model
still has a significantly better simulation time than the two-
stage model.

Overall, the results indicate that our approach best fits what
is proposed, having outperformed the experiments. In addi-
tion, we can save computational resources when conducting
sensitivity analysis, as there is no need to process all the data
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FIGURE 11. Network delay of approaches during simulation in
EdgeCloudSim.

received. Furthermore, by using the one-stage ML model that
outputs the average of the prediction interval and the variance
of this interval, we can measure how confident our model is
in its prediction. Finally, the Equation formula 5 defines the
Quality of Experience (QoE) that evaluates the service time
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FIGURE 13. Average QoE for the number of vehicles.

provided by the orchestrator and the number of lost tasks.

0, if T; > 2R;
Ti — R; .
QoE; = 1 (1 — T).(l -8, ifR; <T; <?2R;
i
1, ifT; < R;
)
where T;, as defined in [23], is the current service time, R;
is the delay requirement, and S; is the delay sensitiveness
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of a task 7;. The delay requirements define the maximum
available service time for the corresponding task. The aver-
age QoE value decreases as task t; is completed after R;.
Delay sensitivity guides delay tolerance. This value ranges
from O to 1 and higher for applications with delay intolerance.
Figure 13 shows the average QoE associated with the number
of automobiles. We determine the delay requirements (by task
sizes) and task delay sensitivities as in Table 2.

As shown in Figure 13, the average QoE of models that use
machine learning presents the best results, as its objective is
to minimize the service time for task processing. On the other
hand, the random approach does not seek to reduce the service
time and has the worst result.

VI. CONCLUSION
The purpose of this work was to develop an edge-centric
workload orchestration proposal that takes advantage of the
benefits offered by machine learning. In this way, we man-
aged the limited on-board processing capacity and minimized
the response time for connected autonomous vehicles. Thus,
we could show that our proposal is more concise and consis-
tent through the results of the evaluations and comparisons.
In future work, we intend to implement vehicle-to-vehicle
(V2V) communication and fog layer in the existing three-
tier architecture, further improving our ML-based orches-
tration proposal. In addition, we also plan to compare the
performance of this centralized architecture with a distributed
offloading architecture. Finally, we also intend to evaluate our
proposal with other intelligent connected vehicles, such as
object localization drones.

REFERENCES

[1] C.Koulamas and M. T. Lazarescu, “‘Real-time embedded systems: Present
and future,” Electronics, vol. 7, no. 9, p. 205, 2018.

[2] D. Aguiari, A. Ferlini, J. Cao, S. Guo, and G. Pau, “Poster abstract:
C-continuum: Edge-to-cloud computing for distributed Al,” in Proc. IEEE
Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), Apr. 2019,
pp. 1053-1054.

[3] E. Curry and A. Sheth, ‘“Next-generation smart environments: From sys-
tem of systems to data ecosystems,” IEEE Intell. Syst., vol. 33, no. 3,
pp. 69-76, May 2018.

[4] R.K.Naha,S. Garg, D. Georgakopoulos, P. P. Jayaraman, L. Gao, Y. Xiang,
and R. Ranjan, “Fog computing: Survey of trends, architectures, require-
ments, and research directions,” IEEE Access, vol. 6, pp. 47980-48009,
2018.

[5] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, ‘“‘Fog computing and its
role in the Internet of Things,” in Proc. Ist Ed. MCC Workshop Mobile
Cloud Comput., New York, NY, USA, Aug. 2012, pp. 13-16.

[6] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog computing: A plat-
form for Internet of Things and analytics,” in Big Data and Internet of
Things: A Roadmap for Smart Environments. Cham, Switzerland: Springer,
2014, pp. 169-186.

[7] Y. Jararweh, A. Doulat, A. Darabseh, M. Alsmirat, M. Al-Ayyoub, and
E. Benkhelifa, “SDMEC: Software defined system for mobile edge com-
puting,” in Proc. IEEE Int. Conf. Cloud Eng. Workshop (ICEW), Apr. 2016,
pp. 88-93.

[8] P. Liu, J. Li, and Z. Sun, “Matching-based task offloading for vehicular
edge computing,” IEEE Access, vol. 7, pp. 27628-27640, 2019.

[9] J. Crowcroft, Metropolitan Area Network (MAN). Hoboken, NJ, USA:
Wiley, 2003, pp. 1155-1157.

[10] R. A. Nafea and M. A. Almaiah, “Cyber security threats in cloud:
Literature review,” in Proc. Int. Conf. Inf. Technol. (ICIT), Jul. 2021,
pp. 779-786.

VOLUME 11, 2023

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

[21]

[22]

(23]

(24]

[25]

(26]

(27])

(28]

[29]

(30]

(31]

(32]

W. Ahmad, A. Rasool, A. R. Javed, T. Baker, and Z. Jalil, “Cyber security
in IoT-based cloud computing: A comprehensive survey,” Electronics,
vol. 11, no. 1, p. 16, Dec. 2021.

P. Dini and S. Saponara, “Analysis, design, and comparison of machine-
learning techniques for networking intrusion detection,” Designs, vol. 5,
no. 1, p. 9, Feb. 2021.

P. Dini, A. Begni, S. Ciavarella, E. De Paoli, G. Fiorelli, C. Silvestro,
and S. Saponara, “Design and testing novel one-class classifier based on
polynomial interpolation with application to networking security,” IEEE
Access, vol. 10, pp. 67910-67924, 2022.

C. Anagnostopoulos, T. Aladwani, I. Alghamdi, and K. Kolomvatsos,
“Data-driven analytics task management reasoning mechanism in edge
computing,” Smart Cities, vol. 5, no. 2, pp. 562-582, Apr. 2022.

C. Sonmez, A. Ozgovde, and C. Ersoy, “Fuzzy workload orchestration
for edge computing,” IEEE Trans. Netw. Service Manag., vol. 16, no. 2,
pp. 769-782, Jun. 2019.

V. Nguyen, T. T. Khanh, T. Z. Oo, N. H. Tran, E.-N. Huh, and C. S. Hong,
“Latency minimization in a fuzzy-based mobile edge orchestrator for
IoT applications,” IEEE Commun. Lett., vol. 25, no. 1, pp. 8488,
Jan. 2021.

M. D. Hossain, T. Sultana, M. A. Hossain, M. I. Hossain, L. N. T. Huynh,
J. Park, and E.-N. Huh, “Fuzzy decision-based efficient task offload-
ing management scheme in multi-tier MEC-enabled networks,” Sensors,
vol. 21, no. 4, p. 1484, Feb. 2021.

D. Zhou, F. Chao, C.-M. Lin, L. Yang, M. Shi, and C. Zhou, “Integration
of fuzzy CMAC and BELC networks for uncertain nonlinear system
control,” in Proc. IEEE Int. Conf. Fuzzy Syst. (FUZZ-IEEE), Jul. 2017,
pp. 1-6.

G. Gursel, “Healthcare, uncertainty, and fuzzy logic,” Digit. Med., vol. 2,
no. 3, pp. 101-112, 2016.

B. Cao, L. Zhang, Y. Li, D. Feng, and W. Cao, “Intelligent offloading in
multi-access edge computing: A state-of-the-art review and framework,”
IEEE Commun. Mag., vol. 57, no. 3, pp. 56-62, Mar. 2019.

S. Yu, X. Chen, L. Yang, D. Wu, M. Bennis, and J. Zhang, “Intelli-
gent edge: Leveraging deep imitation learning for mobile edge compu-
tation offloading,” IEEE Wireless Commun., vol. 27, no. 1, pp. 92-99,
Feb. 2020.

N. A. Abu-Taleb, F. H. Abdulrazzak, A. T. Zahary, and A. M. Al-Mqdashi,
“Offloading decision making in mobile edge computing: A survey,” in
Proc. 2nd Int. Conf. Emerg. Smart Technol. Appl. (eSmarTA), Oct. 2022,
pp. 1-8.

C. Sonmez, C. Tunca, A. Ozgovde, and C. Ersoy, ‘““Machine learning-based
workload orchestrator for vehicular edge computing,” IEEE Trans. Intell.
Transp. Syst., vol. 22, no. 4, pp. 2239-2251, Apr. 2021.

O. Baslaim and A. Awang, “Intelligent offloading decision and resource
allocation for mobile edge computing,” in Proc. Int. Conf. Future Trends
Smart Communities (ICFTSC), Dec. 2022, pp. 204-209.

S. M. D. A. C. Jayatilake and G. U. Ganegoda, ‘“Involvement of
machine learning tools in healthcare decision making,” J. Healthcare Eng.,
vol. 2021, pp. 1-20, Jan. 2021.

T. K. Rodrigues, K. Suto, H. Nishiyama, J. Liu, and N. Kato, “Machine
learning meets computation and communication control in evolving edge
and cloud: Challenges and future perspective,” IEEE Commun. Surveys
Tuts., vol. 22, no. 1, pp. 38-67, 1st Quart., 2020.

D. Kimovski, R. Mathd, J. Hammer, N. Mehran, H. Hellwagner, and
R. Prodan, “Cloud, fog, or edge: Where to compute? IEEE Internet Com-
put., vol. 25, no. 4, pp. 30-36, Jul./Aug. 2021.

Y. Wang, Q. Cui, and K.-C. Chen, “Machine learning enables predictive
resource recommendation for minimal latency mobile networking,” in
Proc. IEEE 32nd Annu. Int. Symp. Pers., Indoor Mobile Radio Commun.
(PIMRC), Sep. 2021, pp. 1363-1369.

C. Li, C.-P. Li, K. Hosseini, S. B. Lee, J. Jiang, W. Chen, G. Horn, T. Ji,
J. E. Smee, and J. Li, “5G-based systems design for tactile internet,” Proc.
IEEE, vol. 107, no. 2, pp. 307-324, Feb. 2018.

R. Chen, C. Li, S. Yan, R. Malaney, and J. Yuan, “Physical layer security
for ultra-reliable and low-latency communications,” IEEE Wireless Com-
mun., vol. 26, no. 5, pp. 6-11, Oct. 2019.

1. M. Sobol, “Global sensitivity indices for nonlinear mathematical models
and their Monte Carlo estimates,” Math. Comput. Simul., vol. 55, nos. 1-3,
pp. 271-280, 2001.

S. Tennge, G. Halnes, and G. T. Einevoll, “Uncertainpy: A Python toolbox
for uncertainty quantification and sensitivity analysis in computational
neuroscience,” Frontiers Neuroinform., vol. 12, p. 49, Aug. 2018.

33059



IEEE Access

M. J. P. Peixoto, A. Azim: Design and Development of a Machine Learning-Based Task Orchestrator

[33]

[34]

[35]

[36]

[37]

[38]

A. Saltelli, “Making best use of model evaluations to compute sensi-
tivity indices,” Comput. Phys. Commun., vol. 145, no. 2, pp. 280-297,
May 2002.

A. Saltelli, Global Sensitivity Analysis: The Primer. Hoboken, NJ, USA:
Wiley, 2008.

A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto, and S. Tarantola,
“Variance based sensitivity analysis of model output. Design and estimator
for the total sensitivity index,” Comput. Phys. Commun., vol. 181, no. 2,
pp. 259-270, Feb. 2010.

H. Yang and J. Moody, “Feature selection based on joint mutual infor-
mation,” in Proc. Int. ICSC Symp. Adv. Intell. Data Anal., vol. 23, 1999,
pp. 1-8.

M. Z. 1. Chowdhury and T. C. Turin, “Variable selection strategies and
its importance in clinical prediction modelling,” Family Med. Community
Health, vol. 8, no. 1, 2020, Art. no. e000262.

C. Sonmez, A. Ozgovde, and C. Ersoy, “EdgeCloudSim: An environment
for performance evaluation of edge computing systems,” in Proc. 2nd Int.
Conf. Fog Mobile Edge Comput. (FMEC), May 2017, pp. 39-44.

MARIA J. P. PEIXOTO received the bachelor’s
degree in digital systems and media and the mas-
ter’s degree in computer science from the Federal
University of Ceard, Brazil. She is currently pur-
suing the Ph.D. degree in electrical and computer
engineering with Ontario Tech University. She has
experience in machine learning, multimedia sys-
tems, ubiquitous computing, and robotics.

33060

neer in Ontario.

AKRAMUL AZIM (Senior Member, IEEE) is cur-
rently an Associate Professor with the Depart-
ment of Electrical, Computer, and Software Engi-
neering and the Head of the Real-Time Embed-
ded Software (RTEMSOFT) Research Group,
Ontario Tech University, Oshawa, ON, Canada.
His research interests include real-time systems,
embedded software, software verification and val-
idation, safety-critical software, and intelligent
transportation systems. He is a Professional Engi-

VOLUME 11, 2023



