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ABSTRACT In the paper, the so-called region-invariance properties of discrete-time control systems are
considered. An already known notion of positivity of control systems has been generalized (using a kind
of geometric insight instead of a pure algebraic approach) to the general nonlinear discrete-time control
systems, general regions in state-space, and controls from polyhedral cones in input-space. The class of such
control systems has been characterized. Numerous numerical examples illustrating individual cases under
consideration are presented in the paper.

INDEX TERMS Linear and nonlinear discrete-time control systems, state-space invariance, positive
systems.

I. INTRODUCTION
It is generally known that modeling real phenomena and
objects that we want to control plays a huge role in con-
trolling. When determining the mathematical model of a
phenomenon, we try to make sure that it reflects best, from
the interest point of view, the phenomenon being described.
One thing is the need to know as much as possible about a
real object in order to determine its model, and another very
important issue is the knowledge and a good understanding of
the mathematical model itself, i.e., the properties that charac-
terize it. Commonly desired information about a real control
object that we infer and derive from a mathematical model
are, e.g., stability, reachability, controllability, observability.
When designing object control systems, we very often limit
ourselves only to this very information, without knowing any-
thing else. Is such knowledge really sufficient and we do not
need additional knowledge? Such statement may sometimes
be true. But as we know, there is never enough knowledge.
In recognition of the need for additional knowledge, this
article has been written to provide results in a form that gives
the opportunity to verify some additional properties about an
object model.

The associate editor coordinating the review of this manuscript and

approving it for publication was Laura Celentano .

This paper focuses on certain properties that describe the
behavior of mathematical models of discrete-time control
systems with respect to certain regions of its state-space. For
example, it may be desirable to know whether the trajectories
of a system are confined to a limited region or may never
reach it. In this article, systems whose trajectories evolve
only in constrained regions are defined as region-invariant (or
just invariant) with respect to these regions. The possibility
and ability to check such properties carries a lot of informa-
tion in itself, but can also provide very important additional
complementary knowledge regarding, for example, the issue
of testing reachability or controllability. For example, if we
know about a system that it is invariant with respect to a
certain region in the state-space, then we automatically learn
more about possible reachable sets (narrowing the search
area), or we can prejudge the controllability of the system—if
the target state of the system is outside the invariant region,
it will be known that it will never be reached (from a starting
point belonging to the invariant region) using admissible
controls.

The theory of invariant systems has been developed for
years. First significant concepts and results of the invariance
theory, concerning continuous dynamics, were established
by [1], [2], and [3]. The invariance and viability theory for
differential inclusions has been investigated and developed
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by [4], [5], [6], and [7]. Invariance theory of continuous-time
linear dynamical and control systemswere investigated in [8],
[9], [10], [11], [12], [13], and [14]. Invariance of nonlinear
continuous-time dynamical and control systems were studied
in [15], [16], and [17]. The theory of linear systems dealing
with the invariance of linear control systems in the areas
that are vector subspaces of the state-space—the issue of
the so-called geometric approach for linear systems—is well
known [11], [18]. This theory allows, for example, to define
the so-called controllability subspaces of linear systems. Also
the theory of invariant systems in areas that are not linear
subspaces is being developed. The flagship type of such
systems are positive systems, in which all state variables take
only nonnegative values with nonnegative initial state and
non-negative input values [19], [20]. The invariant region,
therefore, for such systems is the non-negative orthant.
The class of such systems is very much reflected in many
real-life phenomena or processes, e.g. in engineering, biol-
ogy, economics, chemistry, social science, etc. Well-known
examples of invariant systems are numerous phenomena
occurring in ecosystems, the behavior of which (from the
point of view of the population dynamics of different indi-
viduals) can be described, for example, using Lotka-Volterra
equations [21].

In this work, we focus on discrete-time control sys-
tems, where we deal with the generalization of non-negative
orthants (as in positive systems) into more general areas,
namely, we focus on: nonlinear regions that are the intersec-
tions of n inequalities defined by n independent functions
in n-dimensional state-space, and polyhedral cones in the
m-dimensional input-space. The great value of such gen-
eralized regions is their non-singular transformability into
corresponding regions in the form of non-negative orthants,
which yields the possibility of formulating quite simple and
practically verifiable conditions. A generalization of this kind
has been made before, but for continuous-time systems [21],
[22], and linear discrete-time systems (with polyhedral cones
in state- and input-space) [23]. The concept of invariance of
discrete-time control systems has been already made in [10]
with a very general result obtained for a specific class of
regions that do not have the property of transformability onto
non-negative orthants, so that the presented there invariance
condition—in a very general form—may not always be prac-
tically useful. Therefore, the motivation and purpose of this
work, is to contribute to existing knowledge by providing
a complete characterization of nonlinear discrete-time con-
trol systems (both in general and control-affine form) on
invariant nonlinear regions (with a corner), together with
the formulation of relatively simple and practically verifi-
able conditions, which is made possible thanks to the cho-
sen specific (although, as mentioned, quite general) form,
and, especially—their mapping onto non-negative orthants,
of both the regions in the state- and in input-space. Such a
result would constitute an innovation with respect to existing
knowledge.

In this work, we consider the following to be an orig-
inal new contribution to existing knowledge: generaliza-
tion of nonlinear positive discrete-time control systems into
nonlinear systems invariant on more general regions in
state-space—their characterization; providing verifiable con-
ditions for region-invariance of general and control-affine
form of nonlinear discrete-time systems; obtaining results on
invariance of discrete-time systems with respect to specific
regions in state- and input-space by approaching the problem
with a kind of geometrical insight that allows a better view
and understanding of the issue, in contrast to the purely
algebraic approach, known from the literature so far, to such
a class of systems. What distinguishes, among other things,
this contribution from that used in the literature, for example,
of positive systems, is that derivation and proving these con-
ditions is obtained without the need to know the solution to
the dynamics of the system.

Thanks to the fact that the region-invariant nature of
dynamical control systems is an intrinsic property of those
systems, i.e. independent of the choice of the coordinate sys-
tem in which the system is expressed, a geometric approach
in this work will be used.

The paper is organised as follows. Section II presents the
characterization of nonlinear discrete-time invariant control
systems on nonlinear regions in the state-space with con-
trols belonging to a region that is a polyhedral cone in the
input-space. In addition, cases resulting from the general
characterization applied to special classes of discrete-time
systems such as control-affine systems and linear systems,
and the special form of invariant regions in the state-space,
are given, thus obtaining some of the well-known results from
the literature achieved there by using an algebraic approach.
Section 4 summarizes the considerations presented in the
paper. The presented theory is illustrated with numerous com-
putational examples.

A. NOTATION AND PRELIMINARIES
Throughout the paper the following notation will be used.
The sets of natural numbers, and naturals with zero will be
denoted byN andN0, respectively. The set of all real numbers
is denoted by R. The notation Rn refers to n-dimensional
vector space over the field of the real numbers R. Non-
negative and non-positive real numbers (both including zero)
are denoted R+ and R−, respectively. By Rn

+ (Rn
−) we mean

the Cartesian product of n copies of R+ (R−) and call it a
non-negative (non-positive) orthant. By Rn×m we denote the
set of n×mmatriceswith entries from the fieldR. The identity
matrix of dimension n×n is denoted as In×n. Let P denotes a
matrix, vector or vector-valued function. The notation P > 0
(P < 0) means that all elements of P are positive (negative).
The notation P ≥ 0 (P ≤ 0) means that all elements of P are
non-negative (non-positive). By P ≱ 0 we mean that at least
one element of P is negative. If P is a matrix, its ith column
vector is denoted Pi. For a set S ⊂ V , by Sc we mean the

VOLUME 11, 2023 32955



W. Malesza, M. S. Wiraszka: State-Space Region-Invariance of Discrete-Time Control Systems

complement of S, i.e the set of elements of V that are not in
S. Operation ‘‘◦’’ denotes function composition.

II. MAIN RESULTS
Let us consider a discrete-time control system

5 : xk+1 = f (xk , uk ), (1)

where xk ∈ Rn and uk ∈ Rm are the values of state and input
vectors at time index k , respectively, and f : Rn

× Rm
→ Rn

is a system map. Superscripts will be used to denote the com-
ponents of a vector or vector-valued function (which directly
depend on time), e.g., x ik denotes the value at time instant k of
the ith component of the state vector xk . By x̄k = x̄k (x0, ūk )
we mean a trajectory of 5, i.e. the sequence (x0, . . . , xk )
of states x0, . . . , xk , issued from x0 and satisfying xj+1 =

f (xj, uj), 0 ≤ j ≤ k − 1, for a sequence ūk = (u0, . . . , uk )
of controls u0, . . . , uk . Sometimes, for the reason of presen-
tation transparency, we will use the simplified notation by
omitting the time index k , where its appearance is irrelevant
(or not essential) from the point of view of an issue under
consideration, e.g., f (xk , uk ) may be written as f (x, u), where
x and u obviously depend on k .
We define the following regions in both state- and input-

space. The so called nonlinear corner region in state-space
Rn is the following

K = {x ∈ Rn
: ϕi(x) ≥ 0, 1 ≤ i ≤ n}

=

n⋂
i=1

{ϕi ≥ 0}, (2)

where 8 = (ϕ1, . . . , ϕn)T : Rn
→ Rn is a diffeomorphism.

On the other hand, in the input-space we define a polyhedral
cone in the form

W = {u ∈ Rm
: wiu ≥ 0, 1 ≤ i ≤ m}

=

m⋂
i=1

{wiu ≥ 0}, (3)

where wi for i = 1, . . . ,m are rows of a non-singular matrix
W ∈ Rm×m.

In order to present the crucial, albeit rather obvious, prop-
erties of the region K , let us recall the notation in which K c

and
(
Rn

+

)c denote the complements in Rn of the sets K and
Rn

+, respectively.
Lemma 1: The map 8 : Rn

→ Rn defining K via (2) is
given in x-coordinates of the source Rn and x̃-coordinates of
the target Rn as x̃ = 8(x) and satisfies
(i) 8(K ) = Rn

+ = {x̃i ≥ 0} and 8−1(Rn
+) = K ;

(ii) 8(K c) =
(
Rn

+

)c and 8−1
((

Rn
+

)c)
= K c.

These quite evident properties follow naturally from the
definition of K and the bijectivity of the diffeomorphism 8.
Still, for a reason of clarity and in order to better understand
the essence of the future considerations, we will provide, in a
specially intended form, the proof of Lemma 1.
Proof of Lemma 1: (i) For any x ∈ K , from definition

of K , we have 8(x) = x̃ ≥ 0, i.e., x̃ ∈ Rn
+. Now, let us

assume that there exists some x̃ ∈ Rn
+ such that 8−1(x̃) =

x /∈ K . This in turn means that 8(x) = x̃ ≱ 0 which leads
to a contradiction.
(ii) Let x ∈ K c, which means that x /∈ K , then x̃ =

8(x) ≱ 0, i.e., x̃ /∈ Rn
+, so x̃ ∈

(
Rn

+

)c. Now, let us assume
that there exists some x̃ ∈

(
Rn

+

)c such that 8−1(x̃) = x /∈

K c, which corresponds to x ∈ K . This in turn means that
8(x) = x̃ ≥ 0, i.e., x̃ ∈ Rn

+, which leads to a contradiction.
Remark 1: Analogous results can be obtained for the lin-

ear map u 7→ Wu, being a linear isomorphism from Rm to
Rm, defining a polyhedral coneW via (3).
Definition 1: Let K be a nonlinear corner region in Rn

andW a linear corner region in Rm. A nonlinear system 5 of
the form (1), is said to be (K ,W)-invariant if x̄k (x0, ūk ) ∈

K for each x0 ∈ K , each ūk ∈ W , and all k ∈ N.
Below, we provide a general characterization of invariant

nonlinear discrete-time control systems.
Theorem 1: The following conditions are equivalent for a

nonlinear control system 5:
(i) 5 is (K ,W)-invariant;
(ii) (ϕi ◦ f ) (xk , uk ) ≥ 0 for all 1 ≤ i ≤ n, for each xk ∈

K , uk ∈ W and any k ∈ N0;
(iii) (8 ◦ f )

(
8−1(x̃k ),W−1ũk

)
≥ 0 for each x̃k ∈ Rn

+, ũk ∈

Rm
+ and any k ∈ N0.

Before proceeding to the proof of Theorem 1, we will
briefly explain the meaning of its conditions. Item (ii)
requires us to check the behavior of the vector-valued func-
tion f (xk , uk ) with respect to each constraint function ϕi,
1 ≤ i ≤ n, at each point xk ∈ K and for all inputs uk ∈ W .
The nonnegativity of this condition guarantees that the trajec-
tory x̄k will remain within K . Condition (iii), alternative to
condition (ii), results from the reformulation of condition (ii)
by checking the behavior of the modified function f for all
x̃k ∈ Rn

+ and all ũk ∈ Rm
+, which in many practical cases may

simplify the verification of system’s invariance.
The modification of the function f mentioned above is just

a transformation of the system5, both in the state-space—by
means of a nonlinear transformation x̃ = 8(x), as well as in
the input-space—by means of the linear transformation ũ =

Wu. Indeed, in order to get the transformed system dynamics
5̃, we express x̃ = 8(x) at time instant k + 1 obtaining

5̃ : x̃k+1 = 8(xk+1)

= (8 ◦ f ) (xk , uk )
∣∣
(8−1(x̃),W−1ũ)

=

(
8 ◦ f ◦ 8−1

)
(x̃k ,W−1ũk )

= f̃ (x̃k , ũk ).

Obviously (we already know it from the definition of K or
from Lemma 1), the nonlinear corner region K is simultane-
ously (together with the transformation of5 into 5̃) mapped,
by means of x̃ = 8(x), to the region ˜K = 8(K ) = Rn

+

being a non-negative orthant.
Proof of Theorem 1: (i) ⇒ (ii): Since 5 is (K ,W)-

invariant, for any x0 ∈ K , state xk = f (xk−1, uk−1) ∈ K
for all k = 1, 2, . . .. It follows that xk+1 = f (xk , uk ) ∈ K .
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FIGURE 1. Nonlinear corner region K in the state-space R2 from Ex. 1.

Therefore, from definition of K , we have ϕi (f (xk , uk )) ≥ 0,
i.e., (ϕi ◦ f )(xk , uk ) ≥ 0 for all 1 ≤ i ≤ n, for each xk ∈ K ,
uk ∈ W and k ∈ N0.
(ii) ⇒ (iii): Since the nonlinear corner region K is trans-

formed onto Rn
+ with the help of the diffeomorphism 8 (by

definition of K ), and the coneW is transformed onto Rm
+ by

means of the transformation matrix W (by definition ofW),
putting x̃ = 8(x) and ũ = Wu, there exist x = 8−1(x̃) and
u = W−1ũ such that for any x̃ ∈ Rn

+ and ũ ∈ Rm
+, we have

x ∈ K and u ∈ W , respectively. Therefore, the condition
(ϕi ◦ f ) (xk , uk ) ≥ 0 for all 1 ≤ i ≤ n, all xk ∈ K and all
uk ∈ W is equivalent to (ϕi ◦ f ) (8−1(x̃k ),W−1ũk ) ≥ 0 for
all x̃k ∈ Rn

+ and all ũk ∈ Rm
+. So, taking into account all ϕi,

1 ≤ i ≤ n, we get (8 ◦ f )
(
8−1(x̃),W−1ũ

)
≥ 0 for each

x̃ ∈ Rn
+ and ũ ∈ Rm

+.
(iii) ⇒ (i): Since the dynamics f , being transformed by

means of x̃k = 8(xk ), and being a composition f̃ (x̃, ũ) =(
8 ◦ f ◦ 8−1

)
(x̃,W−1ũ) is always non-negative at any x̃k ∈

Rn
+ for ũk ∈ Rm

+, and k ∈ N0, it means, thanks to Lemma 1,
that xk = 8−1(x̃k ) always remains within K , because 8−1

maps Rn
+ onto K .

Remark 2: It is worth to notice that the above invariance
conditions, due to discrete-time nature of dynamics, have
to be verified at all points x of the region K (interior and
boundary of K ), and not only at the boundary of K as it is
the case of continuous-time systems.
Example 1: Let us consider the nonlinear control system

5, where (we dropped for transparency the time index k)

f (x, u) =

(
x1u2

ex
1u2

+
x1

x2+u1−u2

)
, (4)

where

x =

(
x1

x2

)
∈ R2, u =

(
u1

u2

)
∈ R2,

and the following regions K ⊂ R2 and W ⊂ R2 defined
(see Figs. 1 and 2, respectively) by

8(x) =

(
x1

−ex
1
+ x2

)
and W =

(
1 −1
0 1

)
,

respectively.
It is worth noticing that (4) is well defined andC∞-smooth

at any x ∈ K and u ∈ W; indeed x2 ≥ 1 and u1 − u2 ≥ 0,
thus excluding the denominator to vanish.

FIGURE 2. Cone W in the input-space R2 from Ex. 1.

We will verify, using conditions of Theorem 1, whether
system (4) is (K ,W)-invariant. Using (ii) we obtain

(ϕ1 ◦ f )(x, u) = x1u2 ≥ 0

(ϕ2 ◦ f )(x, u) =
x1

x2 + u1 − u2
≥ 0

for all x ∈ K and u ∈ W . From condition (iii), we get

(8 ◦ f )
(
8−1(x̃),W−1ũ

)
=

(
x1u2
x1

x2+u1−u2

)(
8−1(x̃),W−1ũ

)
=

(
x̃1ũ2
x̃1

ex̃1+x̃2+ũ1

)
≥ 0

for all x̃ =
(
x̃1, x̃2

)T
∈ R2

+ and all ũ ∈ R2
+, where

8−1(x̃) =

(
x̃1

ex̃
1
+ x̃2

)
and W−1

=

(
1 1
0 1

)
.

Finally, both conditions (ii) and (iii) show that system (4) is
(K ,W)-invariant.
Based on Theorem 1 we can establish the following partic-
ular cases of region-invariance for different types of control
systems and regions in state-space.

Let us consider the identity map 8 = idRn defining a
corner region K , for which we have

K =

{
x =

(
x1, . . . , xn

)T
∈ Rn

: x i ≥ 0, 1 ≤ i ≤ n
}

,

therefore K = Rn
+. Consider also a polyhedral cone W in

the input-space withW = Im×m, for which

W =

{
u =

(
u1, . . . , um

)T
∈ Rm

: ui ≥ 0, 1 ≤ i ≤ m
}

,

therefore W = Rm
+. For such regions, we can present the

following, already known (see, e.g., [24]), result.
Corollary 1: The nonlinear system 5 is (Rn

+, Rm
+)-

invariant if and only if

fi(xk , uk ) ≥ 0, 1 ≤ i ≤ n (5)

for all xk ∈ Rn
+ and all uk ∈ Rm

+.
Proof: Having known that the non-negative orthant Rn

+

is described by 8 being the identity map, the property (ii) of
Theorem 1 implies (ϕi ◦ f ) (xk , uk ) ≡ fi(xk , uk ) ≥ 0 for all
1 ≤ i ≤ n and each xk ∈ Rn

+ and uk ∈ Rm
+. □
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Remark 3: A system 5 that is (Rn
+, Rm

+)-invariant is usu-
ally called a positive system, see e.g. [20] and [19] for
an extensive literature on positive systems. Corollary 1 is
then a well-known characterization of positive systems, see
e.g. [24].
Example 2: Let us consider a system 5, where

f (x, u) =

(
(x1)2 + x2

√
u

(x2)2

)
,

with the regions K = R2
+ and W = R+. Checking condi-

tion (5) of Corollary 1

f (x, u) =

(
(x1)2 + x2

√
u

(x2)2

)
≥ 0

for all x ∈ R2
+ and all u ∈ R+, and finding that it is fulfilled,

yields the (R2
+, R+)-invariance of the system.

Quick analysis of the above system dynamics shows that
the values of x that constitute the trajectories emanating from
any given point x0 ∈ R2

+ can only increase in value with
respect to both components, or remain the same, which yields
them being always fully within the desired region, implying
the (R2

+, R+)-invariance of the system.
Let us consider a control-affine system of the form

6 : xk+1 = f (xk ) + G(xk )uk , (6)

where state vector xk ∈ Rn, input vector uk ∈ Rm, matrix
G(x) = (g1(x), . . . , gm(x)), with vector-valued functions

gj(x) =

(
g1j (x), . . . , g

n
j (x)

)T
, 1 ≤ j ≤ m, and obviously

G(xk )uk =

m∑
j=1

gj(xk )u
j
k .

For such a system, we can present the following corollaries.
Corollary 2: The control-affine system 6 is (K ,W)-

invariant if and only if

ϕi ◦ (f (x) + G(x)u) ≥ 0, 1 ≤ i ≤ n

for all x ∈ K and all u ∈ W or, equivalently,

8 ◦

(
f
(
8−1(x̃)

)
+ G

(
8−1(x̃)

)
W−1ũ

)
≥ 0

for all x̃ ∈ Rn
+ and all ũ ∈ Rm

+.
Proof: It follows directly from Theorem 1, where the

right-hand side of the system 5 is just replaced by the
right-hand side of the system 6. □
Remark 4: Although Corollary 2 does not add anything

particularly new, it is presented here to signal that for a
control-affine system6 and a nonlinear corner regionK , the
conditions are not simplified, unlike for the continuous coun-
terpart [21]. This is due to the lack, in general, of the linearity
property of function composition operation, i.e. with8 being
nonlinear, as opposed to the continuous-time case, where the
conditions are expressed using directional derivatives, which
are linear.

The only additional information arising from the
control-affine form of the system is the following necessary

FIGURE 3. The nonlinear corner region K from Ex. 1.

condition that gives a preliminary opportunity to verify the
invariance of 6 on the nonlinear corner region K .
Corollary 3: A necessary condition for the (K ,W)-

invariance of the control-affine system 6 is

(ϕi ◦ f ) (x) ≥ 0, 1 ≤ i ≤ n

for all x ∈ K .
Proof: This condition follows from the 1st condition

of Corollary 2 expressed for u = 0, because it holds for all
u ∈ W , in particular for u = 0. □
Example 3: Let us consider the nonlinear control system

6, where

f (x) =

(
x1

sin x1

)
, g(x) =

(
0

sin x1 − x2

)
(7)

and the following regions K ⊂ R2 andW ⊂ R defined by
(see Fig. 3)

8(x) =

(
sin x1 − x2

x1

)
and W = −1,

respectively. We will verify, using conditions of Corollary 2,
whether system (7) is (K ,W)-invariant. We have

ϕ1 ◦ (f (x) + g(x)u) = sin x1 − sin x1 −

(
sin x1 − x2

)
u

= −

(
sin x1 − x2

)
u ≥ 0

ϕ2 ◦ (f (x) + g(x)u) = x1 ≥ 0,

for all x ∈ K and u ∈ W . From the alternative condition,
we get

8 ◦

(
f
(
8−1(x̃)

)
+ G

(
8−1(x̃)

)
W−1ũ

)
=

(
−
(
sin x1 − x2

)
u

x1

)(
8−1(x̃),W−1ũ

)
=

(
x̃1ũ
x̃2

)
≥ 0,

where

8−1(x̃) =

(
x̃2

−x̃1 + sin x̃2

)
and W−1

= −1,

for all x̃ =
(
x̃1, x̃2

)T
∈ R2

+ and ũ ∈ R+. Finally, from each
of the two alternative conditions follows that system (7) is
(K ,W)-invariant.

32958 VOLUME 11, 2023



W. Malesza, M. S. Wiraszka: State-Space Region-Invariance of Discrete-Time Control Systems

FIGURE 4. The nonlinear corner region K from Ex. 4.

The following example shows that it is incorrect to split the
conditions of Corollary 2 into two conditions ϕ ◦ f and ϕ ◦ g,
in contrast to continuous-time nonlinear systems.
Example 4: Let us consider the following nonlinear

control-affine system of the form (6), where

f (x) =

(
x1

0

)
, G(x) =

(
ex

1

e2x
1

)
(8)

and the following regions K ⊂ R2 andW = R+ defined by
(see Fig. 4)

8(x) =

((
x1
)2

− x2

x1

)
and W = 1,

respectively. From Corollary 2 we get

8 ◦ (f (x) + g(x)u) =

(x1 + ex
1
u
)2

− e2x
1
u

x1 + ex
1
u

 ,

which, e.g., for x = 0 ∈ K , is

[ϕ ◦ (f (x) + g(x)u)]x=0 =

(
u(u− 1)

u

)
and thus takes negative values (actually, its first component
does) for u ∈ (0, 1) ∈ W . Therefore, system (8) is not
(K ,W)-invariant.

However,

(ϕ ◦ f ) (x) =

((
x1
)2

x1

)
≥ 0

(ϕ ◦ g) (x) =

(
0
ex

1

)
≥ 0

for each x ∈ K and all u ∈ W .
Now, let us consider a corner region defined by a linear

map 8(x) = Kx, where K ∈ Rn×n is an invertible matrix,

obtaining the following polyhedral cone

K = {x ∈ Rn
: k ix ≥ 0, 1 ≤ i ≤ n}

=

n⋂
i=1

{k ix ≥ 0}, (9)

where k i, 1 ≤ i ≤ n, are rows of K . Then, we get the
following result.
Corollary 4: The control-affine system 6 is (K,W)-

invariant if and only if

k if (x) ≥ 0 and k iG(x)u ≥ 0, 1 ≤ i ≤ n,

for all x ∈ K and all u ∈ W or, equivalently,

Kf (K−1x̃) ≥ 0 and KG(K−1x̃)W−1
≥ 0

for all x̃ ∈ Rn
+.

Proof (Necessity): Since 6 is (K,W)-invariant, first con-
dition of Corollary 2 is satisfied, and thanks to the linearity
of 8 = Kx, takes the form

k i (f (x) + G(x)u) = k if (x) + k iG(x)u ≥ 0, 1 ≤ i ≤ n

for each x ∈ K, u ∈ W . Since this condition holds for
u = 0 ∈ W , we get k if (x) ≥ 0, 1 ≤ i ≤ n, for each
x ∈ K. Because x = K−1x̃, we get Kf

(
K−1x̃

)
≥ 0 for

all x̃ ∈ Rn
+. Let us assume that k iG(x)u < 0 for some

u ∈ W and some 1 ≤ i ≤ n. Since u = W−1ũ, where
ũ ∈ Rm

+, we have k
iG(x)W−1ũ < 0 for some ũ ∈ Rm

+. Thus,
we can find a large enough ũbig ∈ Rm

+ such that k if (x) +

k iG(x)W−1ũbig < 0, or thereby, k if (x) + k iG(x)ubig < 0 for
some ubig = W−1ũbig ∈ W , which leads to a contradiction.
Then, k iG(x)u ≥ 0 for each u ∈ W and also k iG(x)W−1ũ ≥

0 for each ũ ∈ Rm
+, which obviously implies k iG(x)W−1

≥ 0.
Finally, since x = K−1x̃, we getKG(K−1x̃)W−1

≥ 0 for each
x̃ ∈ Rn

+.
(Sufficiency) Conditions k if (x) ≥ 0 and k iG(x)u ≥ 0, 1 ≤

i ≤ n, for all x ∈ K and all u ∈ W , imply k if (x)+k iG(x)u =

k i (f (x) + G(x)u) ≥ 0, 1 ≤ i ≤ n, for all x ∈ K and all
u ∈ W , which means that the first condition of Corollary 2 is
satisfied, thus 6 is (K,W)-invariant.

Likewise, conditionsKf (K−1x̃) ≥ 0 andKG(K−1x̃)W−1
≥

0 for all x̃ ∈ Rn
+ imply K

(
f (K−1x̃) + G(K−1x̃)W−1ũ

)
≥

0 for all x̃ ∈ Rn
+ and all ũ ∈ Rm

+, which, thanks to the second
condition of Corollary 2, means that 6 is (K,W)-invariant.
For K ≡ Rn

+ and W ≡ Rm
+ we have a result, which

immediately follows from Corollaries 1 and 4.
Corollary 5: The control-affine system 6 is (Rn

+, Rm
+)-

invariant if and only if

f (x) ≥ 0 and gj(x) ≥ 0, 1 ≤ j ≤ m

for all x ∈ Rn
+.

Proof: It follows directly from Corollary 4, with K =

In×n and W = Im×m. □
Example 5: Let us consider a control-affine system 6

described as follows

xk+1 =

(
x1k +

(
x2k
)4(

−x1k
)2

)
+

((
−x2k

)2
0

)
uk ,
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FIGURE 5. The cone K from Ex. 6.

FIGURE 6. The cone W from Ex. 6.

with the regions given as K ≡ R2
+ andW ≡ R+. Checking

the conditions of Corollary 5, we can trivially conclude that
the system 6 is (R2

+, R+)-invariant.
Let us consider a linear discrete-time control system

4 : xk+1 = Axk + Buk ,

where x ∈ Rn, u ∈ Rm, and matrices A ∈ Rn×n and B ∈

Rn×m. Consider also cones K andW defined by (9) and (3),
respectively.

For such a system, based on Corollary 4, we can present
the following (already known, see [23]) result.
Corollary 6: The linear system 4 is (K,W)-invariant if

and only if

KAK−1
≥ 0 and KBW−1

≥ 0.

Proof: Making the substitution f (K−1x̃) = AK−1x̃ in
the condition of Corollary 4, we get KAK−1x̃ ≥ 0 for each
x̃ ∈ Rn

+, which implies KAK−1
≥ 0. Similarly, substituting

G(K−1x̃) = B, we get KBW−1
≥ 0. □

Example 6: Let the linear system 4 be described by the
following matrices

A =

(
2 4
3 7

)
, B =

(
2 1
1 3

)
with the cones K and W defined by (see Figs. 5 and 6,
respectively)

K =

(
1 1
0 1

)
and W =

(
−4 2
3 −1

)
,

respectively. Let us investigate, whether the given system is
(K,W)-invariant. From Corollary 6, we find that

KAK−1
=

(
1 1
0 1

)(
2 4
3 7

)(
1 −1
0 1

)
=

(
5 6
3 4

)
≥ 0

and

KBW−1
=

1
2

(
1 1
0 1

)(
2 1
1 3

)(
1 2
3 4

)
=

1
2

(
15 22
10 14

)
≥ 0,

which means that the system is (K,W)-invariant.
For K ≡ Rn

+ and W ≡ Rm
+ we have a result, which

immediately follows from Corollary 6.
Corollary 7: A linear system 4 is (Rn

+, Rm
+)-invariant

(that is positive) if and only if

A ≥ 0 and B ≥ 0.

Proof: It follows directly from Corollary 6, with K =

In×n and W = Im×m. □
Example 7: Consider the following system

xk+1 =

(
1 0
0 0

)
xk +

(
0
1

)
uk .

Since A ≥ 0 and B ≥ 0 the system is (R2
+, R+)-invariant.

Calculating the trajectories yields the same result, because
x1k = x10 = const for each k and x2k = uk−1 which can
remain constant or grow depending on whether uk = 0 or
uk > 0, respectively, therefore proving that any trajectory
x̄k = (x0, . . . , xk ) satisfies xj ∈ R2

+, 0 ≤ j ≤ k .
Remark 5: Obviously, the system from Ex. 6 is both

(K,W)-invariant and (R2
+, R2

+)-invariant (that is positive)
since A > 0 and B > 0, where R2

+ ⊊ K and W ⊊ R2
+.

It means that a trajectory x̄k starting from x0 ∈ R2
+ will

remain within R2
+ for any ūk = (u0, . . . , uk ), with uj ≥ 0,

0 ≤ j ≤ k , which means that an invariant region can contain
smaller invariant regions within it, however, in this case, with
different cones in the input-space.
Below, some region-symmetry property of (K,W)-

invariant linear systems 4, is presented. In order to give it,
let us define the cones that are reflections about their system
coordinates origins of K andW , respectively:

K̄ =
{
x ∈ Rn

: − Kx ≥ 0
}

=
{
x ∈ Rn

: Kx ≤ 0
}

and

W̄ =
{
u ∈ Rm

: −Wu ≥ 0
}

=
{
u ∈ Rm

: Wu ≤ 0
}
.

That is, for any x ∈ K and any u ∈ W , we have −x ∈ K̄ and
−u ∈ W .
Corollary 8: If a system 4 is (K,W)-invariant, then it is

also (K̄, W̄)-invariant.
Proof: It follows directly from Corollary 6, that is

−KA(−K )−1
= KAK−1

≥ 0

and

−KB(−W )−1
= KBW−1

≥ 0

due to the (K,W)-invariance of 4. □
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III. CONCLUSION
This paper presents a characterization of nonlinear
discrete-time control systems on invariant regions in the
state-space with controls belonging to constrained sets in the
form of polyhedral cones in the input-space. The obtained
necessary and sufficient conditions for determining the
invariance of discrete-time control systems are given in prac-
tically verifiable forms. They are distinguished from those
for continuous-time systems primarily by the fact that there
is a need to check the behavior of the dynamics at every point
of the region in the state-space, as opposed to continuous-
time systems, where it is sufficient to check the dynamics
only at the edges of the region in the state-space, which is
due to the infinitesimal nature of continuous-time systems.
This difference is an illustration, for example for linear
systems, of the fact that the state matrix of continuous-time
systems is Metzler, and of discrete-time systems—positive.
Another difference observed from the obtained results is the
impossibility—for a nonlinear region in the state-space—
of splitting the condition for discrete-time control-affine
systems, as opposed to continuous-time systems. The rela-
tionships between the already known facts and the presented
new approach, thus confirming its truthfulness and generality,
have been presented.

The results obtained in this paper provide a set of tools
which allow to gain additional insight into the nature and
behavior of nonlinear discrete-time control systems in a rel-
atively transparent way. These results can offer an important
support, for example, in analysis of reachability or controlla-
bility of nonlinear discrete-time control systems.

Possible directions for further research on region-invariance
may be to generalize the control cone region to a nonlinear
region, or even depending on the state vector of the system.
This could make it possible, for example, to study the equiv-
alence of invariant nonlinear discrete-time control systems to
invariant linear systems. In addition to the study of region-
invariance, it may also be interesting to study, using the
approach proposed here, other behaviors of system dynamics
relative to fixed regions in the state-space, what will be
addressed in a next paper.
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