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ABSTRACT Complex systems such as Industrial Control Systems (ICS) are designed as a collection of
functionally dependent and highly connected units with multiple stakeholders. Identifying the risk of such
complex systems requires an overall view of the entire system. Dependency modelling (DM) is a highly
participative methodology that identifies the goals and objectives of a system and the required dependants to
satisfy these goals. Researchers have proved DM to be suitable for identifying and quantifying impact and
uncertainty in complex environments. However, there exist limitations in the current expressions of DM that
hinder its complete adaptation for risk identification in a complex environment such as ICS. This research
investigates how the capability of DM could be extended to address the identified limitations and proposes
additional variables to address phenomena that are unique to ICS environments. The proposed extension is
built into a system-driven ICS dependency modeller, and we present an illustrative example using a scenario
of a generic ICS environment. We reflect that the proposed technique supports an improvement in the initial
user data input in the identification of areas of risk at the enterprise, business process, and technology levels.

INDEX TERMS Dependency modelling, industrial control system, risk, risk identification methodologies.

I. INTRODUCTION
Businesses no longer operate in isolation, and new business
processes and operational models of complex systems are
continuously expanding. Recent events such as the Colonial
pipeline attack have proved that the data exchange and depen-
dencies of the higher-level components within the enterprise
systems mean that a successful attack on the enterprise sys-
tem could impact the operability and function of the entire
enterprise [1]. This has necessitated the desire to explore
other techniques to identify risk in complex systems.

Cyber risk identification in ICS is non-trivial due to the
multifaceted and ever-changing requirements and dependen-
cies within the domain. Secondly, the security model of Con-
fidentiality, Integrity, and Availability (CIA triad) approach
in ICS is significantly limited in identifying risks due to the
characteristics of the ICS environment, such as the ability
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to control and observe the state of the environment, safety
control measures, and reliability of the system. These charac-
teristics are represented as the Safety, Reliability and Produc-
tivity (SRP) and Controllability, Observation and Operability
(COO) triad, without which a comprehensive identification
of risks is challenging [2]. In addition, recent literature on
the analysis of cyber incidents trends involving ICS indi-
cates that the adversary’s Tactics, Techniques, and Proce-
dures (TTP) are increasingly expanding the attack surface
beyond the traditional ICS technical processes, necessitating
a clamour for a new approach to risk identification in the
domain [3], [4], [5]. Other challenges are enumerated as
follows:

• An attack in one business vertical can now propagate
across interconnected supply chain. The recent attack
on a third-party service provider in the ICS domain
indicates that the previous assumption that malware can
only enter the ICS via internet-facing devices has been
debunked [6].
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• As businesses continue to undergo digital transforma-
tion, cyber risk has become an essential component of
enterprise risk [7]. While enterprise risk is the overar-
ching risk that defines what service is to be protected,
cyber risk examines all the associated factors that may
prevent service delivery, such as threats, equipment vul-
nerabilities, and other external factors. Current practices
however suggest that most cyber risk assessments are
system component-based [8].

A thorough understanding of the system under consider-
ation (SuC), including its topology, components, behaviour,
and operational objectives, is necessary to identify the risks
and vulnerabilities of the ICS (including safety and relia-
bility). Researchers have long employed modelling methods
and languages to understand the system, with DM being
one such approach. DM follows a top-down success-focus
(positivist) approach to express goals, objectives, and pre-
conditions required to meet these goals. DM decomposes
a system to provide observations and analysis, but its imple-
mentation in risk identification requires trust. As the critical-
ity of cybersecurity in ICS demands empirical and acceptable
riskmeasurement, DM’s input data is currently subjective due
to the limited availability of data regarding critical uncertain-
ties in risk identification. As a result, the empirical nature of
the risk measurement results is reduced

In this paper, we proposed a novel technique that improves
DM’s capability to systematically treat the initial data input
and ensure a pragmatic outcome. We summarise our contri-
butions as follows.

• We proposed a novel technique that improves DM’s
capability to systematically treat the initial data input
and ensure a pragmatic outcome. We examined DM as
a viable modelling tool for risk identification in ICS
and proposed a probability input that is based on prior
knowledge and the likelihood of evidence.

• We have shown that the proposed technique can be
applied in a typical real ICS scenario to reflect its prac-
tical impact. We introduced Security Posture as a list of
cybersecurity-related statements to enable us to extract
prior knowledge and likelihood from the asset and pro-
cess owners. This was another gap in prior techniques.
We compared the results of our technique to the classical
DM and highlight the differences.

• To the best of our knowledge, this is the first attempt at
applying the Bayes Posterior computational technique to
address the issue of the empirical input data to DM.

The rest of this paper is organised as follows: Section II dis-
cusses related work within the Dependency and risk domains,
Section III provides an overview of the cyber risk identifica-
tionmodelling in ICS, Section IV provides an analysis of DM,
showing its strengths and limitations, Section V discusses the
proposed technique and its application, Section VI presents
the analysis of results and discussions, and Section VII con-
cludes the paper.

II. RELATED WORK
Based on the perception of risk, various authors and insti-
tutions have developed frameworks and techniques for risk
identification and analysis in the enterprise. Over the years,
stakeholders have used various methods such as Fault-Tree
Analysis (FTA), Attack-Defence Tree (ADT), Dependency
Modelling (DM), and Stochastic Modelling to address risk
identification [9], [10].

The work by the Open Group [11] and Cherdantseva et al.
[12] are complimentary. While [12] demonstrated how
dependency modelling could be utilised for risk assess-
ment, [11] provided a dependency modelling technique stan-
dard for building and decomposing a system’s abstract model.
Cherdantseva et al. [12] also presented a comprehensive
dependency template for a SCADA system and the appli-
cation of the model to the SCADA system, highlighting the
various features and validation of themodel. These twoworks
of literature provide the basis for our work as we examine the
model’s capabilities and propose a means to address one of
its limitations.

Burnap et al. [13] proposed an extension to dependency
modelling to determine and share risk data in distributed
systems. The authors postulated a zooming process where
inter-dependent entities can link to a repository of external
dependency data (risk model) to build a realistic ‘‘living’’ risk
model. While this work focuses on realistic risk modelling,
our work focuses on identifying such risk phenomena not
currently addressed by dependency modelling. It is hoped
that our work may in future incorporate the postulations as
contained in [13].

Alpcan and Bambos [14] developed a framework for mod-
elling and exploring how risk cascades between business
units, security vulnerabilities and people within an enterprise.
The authors used a risk-rank algorithm to systematically
prioritise risks based on the propensity to transfer and cas-
cade risk among the defined security risk factors (business
units, threats and vulnerabilities, and people). Although this
work presents a system-driven approach dependency model
based on the assumption that all risks come through inter-
dependencies, its aim and methodology are distinctly differ-
ent from conventional dependency modelling. The entirety of
the work is a variant of dependency modelling methodology
as described by [11] and [12]. While their framework used
the bipartite graph to identify failures, our proposal uses
directed acyclic graphs (DAG) to identify success factors
(causal effects) to achieve the enterprise goal.

Ani et al. [15] and Akbarzadeh and Katsikas [16]
introduced the concept of functional dependency modelling
analysis that evaluates the cascading effect of physical con-
nections of ICS components within a three-level architec-
ture and analyses the security features in each level. Based
on the identified assets, the authors used the Attack tree
method to define cyber events (what would happen to the
system), considering known threats and vulnerabilities within
the level. They also evaluated the probability of each event
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and estimated the consequences and the cascading impact
(cascading impact value metric). However, as opposed to our
research, the work by Ani et al. [15] and Akbarzadeh and
Katsikas [16] are component-driven, focusing on risk con-
cerning data exchange within components while excluding
information flow from the enterprise.

While focusing on constructing a dependency path,
Watters et al. [17] used a matrix table to analyse the rel-
ative importance of mission/business objectives. With this
approach, user provides a numerical factor to represent the
dependency of one objective (or sub-objectives) over the
other objectives within the business. The analysis results in a
RiskMap model representing the business’s dependency and
priority (weight) information. Although the goal might be
similar, the approach and measure of dependency in [17] are
significantly different from the traditional DM and our work.

Innerhofer-Oberperfler and Breu [18] used enterprise
architecture to define dependencies between relevant busi-
ness and technical objects. In proposing their method,
the authors sought to resolve the dependency complexity
between the various business-supporting information pro-
cesses and the responsibilities of the various stakeholders.
There are similarities in our approaches to defining the depen-
dencies, but the methodology for risk identification is signif-
icantly different.

The Crown Jewel Analysis tool by MITRE [19] provided
a failure-oriented attack modelling for identifying assets that
are critical to a mission (mission-based risk identification).
Unlike our approach, this model examines dependencies for
criticality candidacy and predicts failure impact for indi-
vidual assets without considering a combination of fail-
ures. Attack tree and fault tree analysis modelling adopt the
failure-oriented approach to address the need for a compre-
hensive analysis, using directed acyclic graphs whose leaves
represent component failures and whose gates represent fail-
ure propagation [20], [21]. Although these methods provide
for analysis of local dependencies, a fundamental limitation
is their inability to account for risk countermeasures. In addi-
tion, they do not show impact across the broader system,
particularly where the nodes do not share a common depen-
dency path. Similar limitations were observed in the work of
Abdo et al. [22] even though the attack tree technique was
extended using the bowtie technique.

III. CYBER RISK IDENTIFICATION MODELLING IN ICS
ICS describes a highly sophisticated hierarchically-structured
and complex system where control actions flow from the
higher level (Controller) to the lower level (Controlled Pro-
cess), and feedback flow from the lower level to the higher
level. In such architectures, the functionally dependent and
highly connected processes, services, components, and net-
works within the environment mean that the state of one com-
ponent or function can unilaterally or in combination with
other components influence the state of other components
within the system. However, this functional dependency is not

transparent or obvious, resulting in the exposure of the ICS to
a myriad of non-linear and sometimes intractable risks [2].

Cyber risk is an operational disruption or damage intro-
duced by digital technologies to an ecosystem’s informational
and operational functions. The consequences of disruption
in the ICS environment could be severe and catastrophic,
leading to damage to the environment, endangerment of life,
heavy financial losses, and damage to equipment [23].

Understanding the cyber risk to the ICS environment is
key to identifying risk and vulnerability in the environment.
Traditional risk analysis of the ICS environment is based
on the likelihood that a threat would exploit a vulnerability,
and impact analysis results from the inability to achieve the
desired outcome. It is a process of seeking answers to the
three basic questions of (a) what could fail in the system
operation?, (b) how likely is it to fail?, and (c) what are
the consequences of failure? [24]. The first question seeks to
define a failure scenario (Si), the second question explores the
probability of the failed scenario (Pi), and the third question
dwells on the likely outcome described by the scenario (Yi).

Ri = (Si,Pi,Yi)

These hypothetical questions define the traditional approach
to risk management, and they are still relevant. However,
Hubbard and Seiersen [25] described (Cyber) risk as a state of
uncertainty, where uncertainty is the existence of more than
one possibility out of many unknown outcomes. Here, the risk
is measured as a set of uncertainties (possibilities), each with
quantified probabilities, providing a perfect alignment toDM.

The criticality of cybersecurity in ICS requires that risk
measurement be empirical and acceptable. DM has provided
a means to decompose a system into what we want to observe
and analyse, but the result of its application to risk identifi-
cation must be trusted. In view of the limited availability of
data regarding some critical uncertainties in risk identifica-
tion, this paper focused on the DM’s capabilities to represent
uncertainties in terms of probability distributions in Proba-
bilistic Risk Assessment (PRA). This allowed us to consider
users’ input information in terms of probability distributions.

A considerable amount of individual intuition is involved
in risk management, resulting in various methods to score
and scale a widely endorsed risk matrix for aggregated risks
based on a subjective scale of ‘‘likelihood’’ and ‘‘impact’’.
Colour-coded in green and red (and a shade of yellow), this
qualitative method provides less intuitive information about
how a certain event impacts a system, and to what degree.
Hubbard and Seiersen [25] and Cox [26] argued that these
methods only add noise to the risk assessment process, but
do not improve it. On the contrary, DM enables us to ask
factual questions such as ‘‘what is within the system that
makes it functional?’’ and ‘‘what could have greater influence
within the system?’’ Christopher and Dragos [27] suggested
that cyber risk management in ICS requires multiple stake-
holders’ contributions to aggregate the various views across
verticals. This means new approaches to provide greater
visibility to the ICS environment are required to capture
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some foundational assumptions, such as resiliency, reliabil-
ity, and inter-dependencies among processes, and address
the unique characteristics and complexity of the whole ICS
environment [28].

This new approach requires viewing the ecosystem of the
ICS domain (such as the people, technology, process and
supply chain) as a collection of functional parts, where the
whole is greater than the sum of its parts and the overar-
ching system’s goal overrides the operational objective of
the individual functions that make up the system. Here, the
focus of cyber risk is no longer about the technology alone
but about how the enterprise function. It is about understand-
ing the behaviour, interactions, dependencies, and associated
vulnerabilities inherent in the system, including seemingly
non-critical cyber components that are capable to bypass
security controls and other defences [5], [28].

The recent rise in cyberattacks on ICS is evidenced in
the various academic research publications [1], [4], [29],
[30], [31], [32]. In particular, the rise in ransomware attacks
and recent concerns about supply-chain attack vectors have
proved that external events outside of the ICS environment
could impact the ICS environment, if there is a functional
dependency on the external factor [1]. To address this new
approach, the UK’s National Cyber Security Centre (NCSC)
provided a guideline for cyber risk management that covers
a variety of approaches, particularly from a business point of
view [8].

The guideline provided the core concepts behind the dif-
ferent risk analysis approaches and viewed risk analysis from
two broad concepts: (i) component-driven and (ii) system-
driven. The component-driven concept (bottom-up) is a tac-
tical, threat-based approach that focuses on a specific risk
to a technical component, while the system-driven concept
(top-down) analyses a system as a whole. The comparative
benefits of the system-driven framework have inspired var-
ious models and techniques to perform cyber risk identifi-
cation and analysis. Some of the existing adaptations of the
system-driven framework are shown in Table 1.

IV. DEPENDENCY MODELLING
DM belongs to the family of PRA methods and focuses on
the capability of the System under Consideration (SuC) to
identify their controllable and uncontrollable phenomenon
and provides a platform for multi-stakeholder participation
and holistic analysis of a complex system. Advocates of its
application argue that it enables a comprehensive identifi-
cation of dependencies and improves understanding among
stakeholders by revealing other intrinsic values that other
techniques may otherwise miss [11], [12], [13].

DM views risk as the degree of uncertainty - uncer-
tainty that a system will be at a required (desired) state.
This is expressed as the probability of achieving the desired
state of a goal and how it is impacted by things beyond
the control, predictability or understanding of the sys-
tem/process owner [11]. This probability is a measure of
being in a state and not the severity of impact. It is typically

a quantitative measure that presents a graphical description
of a complex network of systems, using statistical inferences
to compute the likelihood of the ‘‘state’’ (not the likelihood
of an ‘‘event’’) of each node (sub-system goal) in the graph.
The graph reflects the impact of dependencies as it computes
the backup propagation of the changes in the state of a lower
node (sub-system goal) on the upper nodes that depend on it,
up to the root node (system goal).

While other techniques andmethods such as Consequence-
driven Cyber-informed Engineering [28], Attack Tree
modelling [42], and Bow-Tie modelling [43], [44] use a
consequence-focused methodology to identify the most crit-
ical processes or functions that must not fail, or finding
what factors could lead to failure (threats), DM focuses on
the interactions and behaviours within the system and the
required dependencies for desired outcomes. Similarly, while
other methodologies focus on the capability of the adversaries
and how to defend against their threats, DM reflects on what
the impact of a manifested threat might look like. Rather than
finding how the system could be compromised, DM is about
what a successful attack on the system could mean. This is
a paradigm shift in the risk identification model, to which
Young and Porada [45] subscribed as a viable alternative to
understanding vulnerabilities in the system. Furthermore, the
three-point Sensitivity (3PS) plot included in DM analyses
the root node’s exposure (sensitivity) of the root node to each
of the leaf nodes (the uncontrollable dependencies) in the
dependency tree. The 3PS report helps the business owner
determine where to effectively focus resources to mitigate
the threats.

The goal-oriented approach of DM makes the technique
well suited for identifying risks associated with process inter-
action flows such as in ICS, allowing for multiple optimi-
sations and ‘‘what-if’’ analysis that aid in the prioritisation
of responses [46]. The technique is widely accepted and has
been adopted by the Open Group as a standard tool (O-DM)
to highlight areas of highest risk sensitivity in a complex
system [34].

A. RISK IN THE CONTEXT OF DEPENDENCY MODELLING
From the ICS risk identification perspective, DM provides
an excellent way of describing the interaction and exploring
the relationship between procedures, processes, technology,
and communication within and about the ICS environment.
Cherdantseva et al. [12] classified DM as a PRA method
where DM views a system as a combination of pro-
cesses working together. Here, each process (‘‘clients’’)
depends either structurally or semantically on other pro-
cesses or entities (‘‘suppliers’’), and the degree of dependency
(‘‘coupling’’) is a function of how much a change in the
‘‘supplier’’ impacts the ‘‘client’’. That is, based on the evi-
dence available to the asset owner or the relevant subject
matter experts (SME), the user provides a scoring (based on
the scale of either 0-10 or 0-100) of how close to the desired
state the leaf nodes are. The leaf nodes are the last (terminal)
nodes towards the right of the graph.

37232 VOLUME 11, 2023



A. O. Rotibi et al.: Extended Dependency Modeling Technique for Cyber Risk Identification in ICS

TABLE 1. Existing Adaptations of the System-driven Framework.

As shown in Figure 1, the concept of dependency con-
ditional probability is represented in a Probabilistic Graph-
ical Model (PGM), where the nodes in the graph represent
goals (and sub-goals) and the edges (acyclic) that connect
the nodes represent the probabilistic dependency relationship.
The conditional probability of a successful parent node is
derived based on the success probabilities of child nodes. The
leaf nodes are the ‘‘uncontrollable’’ – nodes that cannot be
controlled. The colour coding indicates that the red segment is
the probability that the required state will not be attained, and
the green segment indicates the probability that the desired
state will be attained.

FIGURE 1. Dependency modelling graph.

In effect, the quantitative probability estimates of the leaf
nodes produce quantitative estimates of the states of all the
parent nodes that are dependent on a collection of child nodes.
That is; if the parent node is represented as A, and child

nodes are represented as B, then the probability estimate that
parent A will be in the required state is:

P(A) =

N∏
i=1

P(Bi) (1)

The above is true where the relationship between the child
nodes of one parent is an ‘‘and’’ relationship. Where the
relationship is an ‘‘or’’ relationship (which means that one
node is a countermeasure), then the probability estimate of
the parent node is:

P(A) =

N∏
i=1

P(1 − Bi) (2)

B. LIMITATIONS OF DEPENDENCY MODELLING
The accuracy of the risk identification using DM depends
on the quality of the input data because DM is subject
to a domino effect of wrong probability assumptions if
the input is inaccurate. Cherdantseva et al. [47] stated this
as a major obstacle for PRA methods. In further work,
Cherdantseva et al. [12] suggested that the input data be
objective and pragmatic.Where there is historical data to sup-
port its assertion, the input data will produce accurate results,
however, in its current state, there is no known or standardised
form to subject the input data to any acceptable objectivity
and practicability. The consequence of this limitation is that
the probability values could be subjective without empirical
evidence [47], [48], [49]. Furthermore, DM technique is
limited in its primary function to calculate the impact of the
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failure of subsystems and components function. While it can
show impact to a smaller degree on the local process (leaf
of a dependency tree back up to its root), it cannot show
impact across the broader system and across other branches of
the tree. This limits the ability to understand and accurately
access any direct or indirect impact of a change of state on
other parts of the tree. Thirdly, from the perspective of the
ICS, the binary probability equations 1 and 2 formalise the
likelihood of each node at the exclusion of other factors,
pieces of evidence (prior knowledge) and characteristics of
the system (such as the level of coupling, resiliency and
control measures) that may influence the outcome.

In addition, the typical composition of the ICS environment
meant that multiple independent failures could occur simulta-
neously or sequentially within the system. Here, the nature of
dependencies and coupling within the ICS (interaction fail-
ures), where the combination of seemingly low-level impact
could result in a higher impact. Presently, DM is not able to
analyse this phenomenon. Lastly, DM requires all ‘‘what-if’’
analyses to start from the leaf node. This practice limits the
stochastic scenarios that could be created.

V. PROPOSED TECHNIQUE
Complex systems such as ICS have emergent properties
and can fail due to a combination of unrelated stochastic
events and phenomena. This makes risk identification non-
trivial. A business-oriented approach to security analysis
of enterprise information systems requires recognising and
understanding the dependencies and interrelationships of the
business-supporting information process and providing suf-
ficient and relevant security requirement information at the
right level of abstraction. To address the issue of data sub-
jectivity in DM as discussed in Section IV-B, we propose an
extension to the capabilities in the context of the unique ICS
characteristics and phenomenon.

A. METHOD
Since Dependency Modelling (DM) relies on probability the-
ory, we introduced the concept of posterior probability to
derive empirical data from initial subjective data, in order
to improve its accuracy. We compared the results obtained
by using the two types of inputs and observed the differ-
ences in the outcomes. Leveraging DM’s Directed Acyclic
Graph (DAG) structure and the independence properties
of Probability Graphical Models (PGMs), we proposed an
extension that leverages Bayes’ Posterior probability to draw
inferences from evidence [48], [49]. Our proposed exten-
sion involves defining security requirements (SR) for the
enterprise and each business objective, along with expand-
ing the set of determinant factors for the state of each
node to include security-related coefficients classified under
four categories of System, Process, People, and Technology
Detailed list of security-related coefficients are enumerated
in Subsection V-C.

There are four steps to derive the posterior probability from
the users’ data input and build the dependency model for

FIGURE 2. Four steps to build dependency model from posterior
probability.

the SuC. Figure 2 shows these steps and a description of each
step is enumerated in Section VI.

B. POSTERIOR PROBABILITY (A POSTERIORI)
A Posteriori relates to information (data) that was derived
by reasoning from observed facts. Bayes’ rule is a rigorous
method for interpreting evidence in the context of knowledge
or previous experience. Posterior probability or ‘‘weighted
likelihood’’ is the conditional probability of a given event.
It is computed based on observing the known conditional
and unconditional probabilities of a prior event [49]. This
is the probability of effects, based on causes where, causes
are the things we know about the node (sub-goal) based on
observation, history, records or data, and effects are the things
we do not know. The posterior distribution is interpreted as a
summary of information from two sources: information we
know about the system and the information we observe or
recorded about the system. This is expressed as follows:

Posterior =
Likelihood × Prior

Evidence

P(A|B) = P(A) ×
P(B|A)
P(B)

(3)

where:
• P(A|B) is the posterior probability - updated probabil-
ity after the evidence is considered

• P(A) is the prior probability - the probability based on
prior knowledge

• P(B|A) is the likelihood of evidence, given the belief
is true

• P(B) is themarginal probability of the evidence
We chose Posterior probability because it enables us to

consider available knowledge of the system, such as its level
of dependency, functional success rate (over a time period),
and compliance with security requirements as stipulated in
ISA/IEC 62443 [23]. For convenience’s sake, we represent
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TABLE 2. Example of Bayes Computation Table.

all these as Security Posture (SP). The result will produce the
probability of the desired state of each node. The probability
P(Sn|SP) can be read as: ‘‘what is the probability that node
Sn will be in the desired state, given that SP is true.’’ The
computation is derived as shown in the example of People
OK in Table 2.

Here, the user’s input for Training OK was 0.96 which
represents the prior probability. The posterior probability
P(People=OK|System=OK) is derived as 0.97 from the com-
putation of both the conditional probability and marginal
probability.

C. SECURITY POSTURE (SP)
Hansson and Aven [50] used a model that incorporates
domain experts and decision-makers in risk analysis. Lever-
aging on some of the elements of the model namely: evi-
dence, managerial review and judgement, and knowledge
base, we proposed SP as a set of security enterprise-specific
statements that require responses from domain experts and
decision-makers. It is assumed that the response is based on
evidence and knowledge, offering a different perspective on
the cyber risk posture of the enterprise that enables us to
establish a baseline of security posture for the ICS environ-
ment and provides a formality by which we could use some
of the responses as empirical evidence to improve the initial
data input. To do this, we present a set of security-related
and cyber resilience statements to the asset owners using
the following sources as a guide: (1) IEC-62443 [23] - a
suite of standards that relates to clearly defined obligations
and responsibilities for maintaining resilient cyber secu-
rity programs in industrial and automation control systems
(IACS), (2) Dragos Annual Industrial Cybersecurity ‘‘Year in
Review’’ Reports [51], (3) MITRE cyber resilience engineer-
ing framework (CERF) [52], and (4) SANS Annual OT/ICS
Cybersecurity Survey [53]. In particular, we adopted some of
the standardised cyber resiliency objectives. Each statement
measures confidence and coverage of response. For example,
where a user is asked to respond to a statement such as There
are security controls within the system,, theremay be effective
controls, but they do not apply to all parts of the system.
In this case, the user will scale the confidence higher than
the coverage. User’s response is a scale of weighted scale
of Strongly agree, Agree, Neutral, Disagree and Strongly
disagree, where 5means Strongly agree and 1means Strongly
disagree. A full list of all the statements is shown in Table 3.

Responses obtained are classed as ‘‘Evidence’’. This is
applied to the user’s probability input for leaf nodes to com-
pute the posterior probability for each leaf node. We restrict
our focus to the role and responsibilities of asset owners – the
end users of the ICS devices. The ISA/IEC 62443-2 standard
provides guidance to asset owners on how to create and main-
tain a secure system, define their system-level requirements,
and how to measure these requirements. We assume two
scenarios for our SP; (a) that the asset owner has some level of
security program in their system, and (b) that the asset owner
rely on services provided by third-parties suppliers such as
system integrator. In this case, they will be keen to ensure
that those suppliers meet their security requirements.

However, the sum of the scale values obtained from the
table is not a probability distribution, we, therefore, applied
normalisation to get a probability distribution such that the
total sum will always be less than or equal to 1. This becomes
the security posture coefficient for the category and it is
applied to the user input for each leaf node. The initial
probability value for each of the 73 leaf nodes is received
and the dependency coefficient for the 34 dependants (nodes)
are computed. A high-level algorithm for the application is
shown below.

Algorithm 1 Security Posture
1: for statements = 1, 2, . . . do
2: Accept user’s response
3: Compute mean of each response
4: Apply normalisation to responses by category
5: end for
6: Normalise responses by category
7: Compute security coefficient by category
8: for node = 1, 2, . . . do
9: Accept user input values
10: Compute posterior probability
11: end for
12: Compute dependency without SP
13: Compute extended dependency with SP

D. DESCRIPTION OF ICS SCENARIO
The description of a typical ICS scenario is non-trivial
given that the enterprise management requirement verticals
are not distinctly differentiated between an ICS environ-
ment and a larger ICT environment, for example, a large
retail shop. The top-Level entities of a SCADA System by
Cherdantseva et al. [12] could otherwise apply to a non—
SCADA environment as well as to a SCADA environment.
To address this, we build an abstract model of a typical ICS
enterprise by simplifying the top six key areas of a SCADA
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TABLE 3. ICS Security Statements For Risk Identification.

system [12] to three broad areas of abstraction, namely Peo-
ple, Process and Technology, and associated predetermined
sub-goals based on the IEC 62443 requirements for ICS
asset owners. Figure 3 provides a high-level description of
a generic ICS environment and Figure 4 enumerates the
security requirements of such environment.

Here, the enterprise model is adapted to represent the three
broad areas of abstraction, namely People, Process and Tech-
nology, and associated predetermined sub-goals based on the

FIGURE 3. ICS top-level dependency.

FIGURE 4. ICS dependency goals.

IEC 62443 [22] and SABSA Institute [35] security enterprise
architecture requirements for ICS asset owners. The depen-
dency relationships among the various nodes (or paragons)
are decomposed to the fourth level as a minimum requirement
as shown in Figure 5 below. The user could provide further
levels of abstraction if so desired. In this paper therefore,
we have expanded to the fifth level to provide some ICS-
specific requirements, as shown in Figure 6.We postulate that
beyond this level of granularity, the modelling may become
component-driven.

FIGURE 5. Minimum levels of model abstraction.

E. USER DATA INPUT
Based on the ICS scenario, we designed a user input interface
that accepts information from the users to build the ICSmodel
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FIGURE 6. ICS dependency model: Technology.

for the user. The interface includes pre-populated informa-
tion about the model to align with the dependency model
in Figure 5. Users provide information for each node. If the
value for dependants is zero, it is a leaf node and a second
screen comes up to accept the probability value for the node
as shown in Figure 7. If, however, the value for dependants
is greater than zero, the node is not a leaf node and the
probability screen will not be displayed.

FIGURE 7. User data input screen.

VI. RESULT ANALYSIS AND DISCUSSION
In this analysis, we explain the derivation of the posterior val-
ues from users’ initial input to the leaf nodes (uncontrollable)
and analyse the results. The four steps to derive the results
and the statistical computations are enumerated as follows:

1) The user provides responses to a list of cybersecurity-
related statements. These responses serve as a secu-
rity indicator (we refer to it as the security posture of
the enterprise) and are analysed to derive a security
coefficient for each of the four categories: System,
People, Technology, and Process.We compute the stan-
dard deviation of all the responses based on categories.
We divided each response by five (the response scale
is one to five [1], [2], [3], [4], [5]) to standardise

them. We then summed by category for each of confi-
dence and coverage. Sample Standard Deviation is then
applied to the sums. An example of the computation for
People and Process SP categories is shown in Table 4.
Here, the sum for confidence and coverage for People
category are 4.2 and 5, respectively, and the standard
deviation of the two values is 0.565. Standard deviation
helps to determine how far apart the two responses
of ‘‘confidence’’ and ‘‘coverage’’ are from each other.
The farther apart, the higher the standard deviation
value. If the standard deviation values are high, it indi-
cates an inconsistency in the responses with a category.
Table 5 is the result (SP coefficient) of the responses by
category.

2) The user is presented with a window (Figure 7) to
provide information to build the model and probability
for the leaf node. This probability value is used as input
to the Bayes computation.

3) The SP coefficient is applied to the leaf nodes (nodes
without dependants) using the Bayes computation
table [54] in Table 2. In the Bayes table, the user’s input
is the Prior probability, representing what the user
already knows. The SP coefficient is the Conditional
probability, representing the evidence. From these two
probabilities, we compute the Joint probability and
Marginal probability and finally derive the Posterior
probability.

4) DM is applied to compute the results for all nodes
across the tree and the root node as shown in Figure 8
and Figure 9.
A 3-point sensitivity for the model is computed for as
shown in Figure 10 and Figure 11.

The result of our computation is shown in Table 6. The
Probability Prior column (third column in the table) showed
the user’s input, and the Probability Posterior (fourth col-
umn in the table) showed the computed values. Obtaining
empirical data input is not necessarily a reduction in the
value provided by the user, rather, it is a combination of
factors, the chief of which is the SP responses. Specifically,
in this table, the SP coefficient for the ‘‘People’’ category was
0.566 (the highest value among the categories). This value
impacted the outcome of the posterior probability for all the
nodes in the ‘‘People’’ category, i.e. The difference between
the user input and the computed posterior is an increase.
On the contrary, most of the posterior values in the Process
category were decreased. As mentioned earlier, when the SP
coefficient is high, it may be an indication that the responses
are not consistent. This could be because Human Resources
(HR) was not involved, or the risk analyst does not have
enough knowledge to respond to the statements in this cat-
egory accurately. For example, responses to a statement such
as Personnel understand their roles and responsibilities can
only be provided by the HR team based on the performance
of individual personnel. On the other hand, the fact that the
SP coefficient for the People category is the highest in this
experiment may not necessarily indicate wrong responses as
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TABLE 4. Example of security posture coefficient computation.

TABLE 5. Security posture (SP) coefficient.

the difference to other SP coefficients is marginal (0.124),
with the exception of the Technology category. This indicates
consistency in the responses which may therefore represent
the true security posture. This research work has avoided
defining a ‘‘high’’ SP coefficient.

Two dependency modelling outcomes are presented:
(1) dependency analysis based on users’ input data - Figure 8,
and (2) dependency analysis based on posterior - Figure 9.
The proportion of the two colours (red and green) is equiv-
alent to a probability value. For example, the Secure ICS
(goal/root node) in Figure 8 is 48.5% and the value for the
equivalent node in Figure 9 is 4.9%. As previously discussed,
the numbers are not the severity of impact but the degree of
uncertainty that a system will be at a required (desired) state
based on the input provided by the user. Both charts indicate
that the success probability of the goal is low. Figure 9 shows
a 4.9% probability that the system would be in a secured
state based on the posterior data. This was because the fac-
tors/nodes (process, people, and technology) that directly
support the goal (Secure ICS) are 83.8%, 89.4% and 6.5%
respectively. Of particular concern to the risk analyst and the
business owner would be the Technology OK node. This has
raised a red flag that requires investigation. However, our
analysis is focused on the comparison between the two out-
comes. There is a significant difference in the probability of
the root (goal) of the two results. The result of the modelling
using nominal values (Figure 8) indicates that the degree of
certainty to achieve a desired ‘‘Secure ICS’’ is 48.5% when
the DM is computed using the nominal data provided by
the user. However, this degree falls to 4.9% when we apply
posterior probability to the input data based on the user’s
response to the security statements. This is due in part to the
impact of the responses and the depth of dependency level.
Particularly, the difference in users’ data input and derived

posterior for the ‘‘Technology’’ category is significant
(up to 8% reduction in some cases). Analysing the depen-
dencies in Figure 8 and 9 reveal that the People node in 9
has a higher probability of success when compared to its
equivalent in 8. However, the low probability of success on
the Technology node reduced the overall probability due to
the multiplication effect.

In addition to the above factors, the technology node
showed the lowest degree of certainty (highest degree of
uncertainty) among the child-nodes to the goal (root node).
This is due to the number of dependants in the technology
node. In Figure 8, the probability of the technology node
(65%) means that the nominal probability (root node) is low
due to the cascading nature of the model. Figure 6 provides
a clue as to the low probability value; where the number of
dependencies in a branch is many, the dependency value is
low. Both charts indicate that the success probability of the
goal is low.

Further analysis of the results is the impact of posterior
probability on the input data. Here, we compare the sensitivity
to uncontrollable (leaf nodes). The 3-point sensitivity graphs
in Figures 10 and 11 represent the degree towhich the chances
of achieving goals are affected by the uncontrollable – where
the bars indicate the degree of sensitivity of each leaf node
to the goal. The red colour segment (to the left) indicates
a decrease (how much worse) in success probability for the
goal, while the green indicates an increase (how much better)
in success probability could be as the probability of each node
is increased. The intersection between the two colours repre-
sents the nominal success probability for the goal (i.e. Secure
ICS). Using Figure 10 as an example, the nominal success
probability for the goal is 48.5% (0.45), and the sensitivity of
system reliability monitoring OK to the Secured ICS is 49%
(0.49). The red colour segment shows the decrease in success
probability for Secured ICS if system reliability monitoring
OK fails (or has zero probability of success). The green colour
segment shows the increase in success probability for Secured
ICS if system reliability monitoring OK has 100% success
probability.

Comparing the outcomes from the two results revealed
contrasting sensitivities of the uncontrollable. The nominal
probability in Figure 10 is 48.5%, compared to 4.9% (0.049)
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TABLE 6. Posterior data input computation.

in Figure 11. This means the probability of a successful
Secured ICS is higher when we used the user data input

FIGURE 8. Dependency model graph - user input.

than when we used derived (posterior) data input. Signif-
icantly different is the list of the top 10 nodes with the
highest sensitivity values. The top-ten nodes list in both
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FIGURE 9. Dependency model graph - adjusted.

Figures (10 and 11) are different. The top-three on the list
in Figure 10 are the bottom-three in 11. That is; the three
most-sensitive nodes in Figure 10 are the three least-sensitive
nodes in Figure 11 list in One node made the top 10 list of

most sensitive nodes on both graphs. So, Redundancy policy
OK appeared as the third most sensitive node in Figure 10
and the 10th most sensitive in Figure 11. It means the node
(Redundancy policy OK) is more sensitive to success Secured
ICS in Figure 10 than in Figure 11. That is, if its value of
Redundancy policy OK changes negatively (tending to zero),
it will have a greater impact on the success of (Secured ICS) in
Figure 10 than in Figure 11. Conversely, if the value changes
positively (tending towards one), the Redundancy policy OK
in 11 has a higher sensitivity to the success of the goal. One
other significant difference between the two graphs is the
scale of measurement which makes the nodes in Figure 10
100% more sensitive to changes that those in Figure 11.

FIGURE 10. 3-Point sensitivity analysis - prior.

FIGURE 11. 3-Point sensitivity analysis - posterior.

It was also observed that the level of granularity (the depth)
in DM impacts the nominal probability. Limiting themodel to
four levels resulted in a 0.75 and 0.32 nominal probability for
DM and extended DM, respectively. This was a significant
improvement on the five-level model analysed earlier.

VII. CONCLUSION
In this literature, we have explored the various capabilities of
DM and proposed ways to extend these capabilities. In par-
ticular, we proposed a technique to support an improvement
in the initial user data input. We developed an application
that accepted user input and we analysed the results, com-
paring the existing DM offering to the proposed extension.
The comparison showed that the proposed technique would
improve the accuracy, confidence and reliability of the risk
identification process using DM methodology.
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DM offers a considerable advantage over other methods
where the graph is capable to reveal areas of immediate inter-
vention needs. As enumerated in Section IV-B, however, there
are yet a few issues that require further work with the space.
DM is incapable to provide an analysis of impact across the
broader system and lacks formalism on how to measure the
direct and indirect impact of a change of state on other parts of
the tree. It also lacks the formalism to stochastically test the
multiple and independent failures in a system – a common
phenomenon in an ICS environment.

In the future, we seek to research exploring how to observe
the stochastic values of one or more of the nodes using
probabilistic reasoning principles and providing a significant
extension to the power of the dynamic Bayesian network and
graphical models and also to explore ways by which DM
could be extended to analyse the combination of independent
events within the dependency graph and the propagation
impact across sub-system goals, as well as up to a root goal.
We believe this would further increase the understanding
of the behaviour, interactions, dependencies, and associated
vulnerabilities inherent in the system.
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