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ABSTRACT Gesture recognition defines an important information channel in human-computer interaction.
Intuitively, combining inputs frommultiplemodalities improves the recognition rate. In this work, we explore
multi-modal video-based gesture recognition tasks by fusing spatio-temporal representation of relevant
distinguishing features from different modalities. We present a self-attention based transformer fusion
architecture to distill the knowledge from different modalities in two-stream convolutional neural networks
(CNNs). For this, we introduce convolutions into the self-attention function and design the Convolutional
Transformer Fusion Blocks (CTFB) for multi-modal data fusion. These fusion blocks can be easily added at
different abstraction levels of the feature hierarchy in existing two-streamCNNs. In addition, the information
exchange between two-streamCNNs along the feature hierarchy has so far been barely explored.We propose
and evaluate different architectures for multi-level fusion pathways using CTFB to gain insights into the
information flow between both streams. Our method achieves state-of-the-art or competitive performance
on three benchmark gesture recognition datasets: a) IsoGD, b) NVGesture, and c) IPN hand. Extensive
evaluation demonstrates the effectiveness of the proposed CTFB both in terms of recognition rate as well as
resource efficiency.

INDEX TERMS Self-attention, transformer, gesture recognition, multi-modal fusion.

I. INTRODUCTION
Multiple sensors provide diverse and complementary infor-
mation about the same object, scene or action. RGB images
are rich in color and texture information, depth maps contain
geometric shape cues and infrared images can be captured
under different illumination conditions. Integration of mul-
tiple such modalities each with high-level semantic features
results in a descriptor that leads to robust and reliable recog-
nition. Multi-modal learning has proven to be successful in
many machine learning tasks, such as object recognition,
scene understanding, action recognition, and audio-visual
interaction. Our work focuses on gesture recognition using
multiple modalities such as RGB, depth, and optical flow.

Gesture recognition has several applications in enter-
tainment, autonomous vehicles, gaming, etc. For example,
in the context of intermediate levels of autonomous driving,
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recognizing the gestures of a driver can be important to enable
seamless interaction with the vehicle and increase safety. The
interaction has to be robust and reliable and needs to function
under different conditions independent of weather, illumina-
tion, and varying cluttered background.Multi-modal learning
can help to achieve this robustness, by fusing complementary
features from each modality.

Multi-modal fusion predominantly focuses on (a) feature
extraction and representation for each modality, (b) how the
information from each sensor stream needs to be fused, and
(c) determining which level of the model is suitable for
fusion. Earlier methods used traditional (handcrafted) image
processing algorithms for feature extraction. In more recent
work, deep neural networks are utilized as common feature
extractors for different modalities. In general, two-stream or
multi-stream networks are employed to learn multi-modal
fusion where each stream computes the features for one
modality. In this work, we use two-stream networks to extract
the features from gesture videos of two different modalities.
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FIGURE 1. Illustration of different fusion techniques: (a) early fusion (b) late fusion (c) mid fusion (d) multi-level fusion. Each stream represents a CNN
model with a hierarchical structure. The yellow stream takes modality1 as input while the blue stream takes modality2 as input. B1, B2, and B3 blocks
contain a series of convolution (conv) layers with an activation function followed by pooling (pool) layers. Here, the 1 × 1 × 1 conv layer is used for mid
fusion. Our proposed CTFB is used for multi-level fusion. ⃝• denotes the fusion operations such as addition, multiplication, or concatenation.

The primary challenge of multi-modal deep learning is the
fusion of different modalities to exploit complementary cues
to generate robust representations. Many existing methods
fuse information through various operations, such as addition,
averaging, multiplication [9], concatenation [10] or gating
mechanisms [15]. Recently, transformer-based fusion net-
works [5], [17], [24] have been proposed to fuse multiple
modalities such as lidar-images, video-text, video-speech,
text-speech, etc. The self-attention operation used in these
fusion architectures can learn and exploit global dependen-
cies but is less sensitive to the local neighborhood structure
that exists in images or videos. However, Convolution oper-
ations are specialized in capturing local neighborhood pixels
from a grid structure in images or videos. It is important to
encode both the local and global spatio-temporal features for
various tasks, for example, video-based multi-modal hand
gesture recognition tasks.

We design an Efficient Convolutional Self-Attention
(ECSA) module that aims to compute attention maps on the
local features. For this, we modify the standard self-attention
block in [43] by replacing fully connected layers in it with
3D depthwise separable convolutions to capture the local
spatio-temporal structure in videos. A multi-layered percep-
tron (MLP) captures the global dependencies between the
attention maps generated by the ECSA module. We propose
a new block called Convolutional Transformer Fusion Block
(CTFB) that assembles ECSA andMLPmodules in a specific
order to fuse multiple modalities and captures both local and
global representations from the fused information. CTFBs
can be added straightforwardly at different hierarchical levels
of existing unimodal CNN architectures. In this work, we use
CTFB to study the interaction between two-streamCNNs that
take two different modalities as inputs.

Another challenging question is to identify which level of
CNN models is suitable to fuse the information. There have
been several attempts in fusing multi-modal information at
different levels: (a) early fusion [16], (b) late fusion, (c) mid
fusion [25], and (d) multi-level fusion [24], [38]. Figure 1

schematically depicts all these fusion schemes. Early fusion
combines features at the input level and feeds them to a
common predictor. But it assumes that a single predictor is
sufficient to capture the representation from all modalities.
Late fusion [4], [27] integrates the predictions from individual
models. Although late fusion uses individual predictors for
each modality, it neglects the interaction between mid-level
features of those predictors. Some methods have shown that
mid fusion [25] is more effective because it captures the use-
ful early correlations between the features of different modal-
ities. However, it is difficult to choose one mid fusion point.
Also, mid fusion neglects the interaction between features
with varying coarseness. Despite several works [24], [30], the
possibilities of information exchange between intermediate
layers of two-stream CNNs have been barely investigated.
In this work, we propose and evaluate different architectures
using CFTB to explore multi-level fusion along the feature
hierarchy (with varying coarseness) to explore the interaction
between multiple modalities. The key contributions of this
paper are as follows:

• We propose CTFB, a novel Convolutional Transformer
Fusion Block, to integrate salient features from each
modality.

• We design three different architectures for multi-level
fusion pathways using CTFB and compare their per-
formances. We refer them as 1) Shared Pathway, 2)
Bidirectional Pathway, and 3) Central Pathway.

Our experiments demonstrate state-of-the-art or compet-
itive results on benchmark gesture recognition datasets: a)
IsoGD, b) NVGesture, and c) IPN hand.

II. RELATED WORK
A. TRANSFORMERS FOR VISION
The success of self-attention [43] in the natural language
processing (NLP) community motivated researchers in the
computer vision community to explore transformer architec-
tures for vision tasks like object detection and recognition
in images, segmentation, video action recognition, and many
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more. Vision Transformer (ViT) [7] leads the way in this
direction and proposes a pure transformer model without any
convolutional layers to perform image classification. In this,
an image is split into 2D patches, each of which is flat-
tened into a 1D vector and fed to the transformer model.
Hence it disregards the grid structure with neighbourhood
pixels and only focuses on the global representation of image.
ViT adopts the same self-attention function from [43]. Local
ViT [18] focuses on learning local features by replacing an
MLP module in transformers with the locality feedforward
network. Some recent works [26], [33] focus on exploit-
ing the benefits of both transformer nets and convolutional
nets. Convolutional vision Transformer (CvT) [33] introduces
convolutions into self-attention block [7], [43]. CvT [33] is
a hierarchical structure that consists of a token embedding
convolution layer and convolutional transformer block. But
computational and memory costs of CvT [33] grow with
the input size as it uses dot-product attention. An efficient
transformer [26] addresses this issue by replacing dot-product
attention with an efficient attention mechanism that has linear
computational complexities and achieves performance simi-
lar to ViT [7] on image recognition tasks. Our CTFB designed
using ECSA modules contains 3D depthwise separable con-
volution layers that allow capturing of salient local spatio-
temporal representation.

B. MULTI-MODAL FUSION
This section provides insights into different multi-modal
fusion techniques proposed previously. The bilinear learning
framework [12] proposes the Bilinear block that consists
of a modality pooling layer and a temporal pooling layer
and aims to learn the combined representation of them. The
GIF [15] network combines the intermediate RGB-D feature
maps at all levels using fusion gates and weight genera-
tion networks. C3D-Stitch [25] proposed cross-stitch fusion
units to exchange information between two C3D streams at
various levels of feature hierarchy for multi-modal gesture
recognition tasks. MMTM [30] adopts a Squeeze-Excitation
(SE) module to recalibrate and fuse the channel-wise features
from multiple modalities. The Channel Exchange Network
(CEN) [34] dynamically exchanges the feature maps of each
modality between the sub-networks. The Cross-Modality
Attention (CMA) [6] block combines the features from
RGB and flow networks using non-local attention opera-
tion. Recently transformer-based fusion architectures are in
demand for multi-modal learning. HAMLET [14] is a multi-
head attention-based fusion technique where features at dif-
ferent hierarchical levels are combined. MM-ViT [5] extracts
the features of RGB frames, flows, and audio waveforms and
computes self-attention across spatial, temporal, and different
modalities. Transfuser [24] combines the output RGB and
LiDAR features from each CNN block using a standard trans-
former module. Trear [17] proposes (a) an inter-frame trans-
former encoder to extract the attention-based features for each
modality (RGB and depth), (b) mutual-attentional feature

fusion combines these features and applies the cross-modality
attention to learn the mutual interaction between modalities.
Our fusion strategy captures the salient local representation of
individual modality by computing attention maps using con-
volutions and also the global representation of fused features
using a multi-layered perceptron (MLP) module.

III. MULTI-MODAL CONVOLUTIONAL TRANSFORMER
FUSION
This section provides the detailed architectural design of
the transformer-based fusion block for multi-modal learning.
Our fusion network is built on a baseline two-stream I3D
network [4] to train a pair of modalities. We choose different
combinations of two modalities among RGB videos, optical
flows, depth videos, and segmentation masks for our exper-
iments. The overall architectural details of our two-stream
fusion network are provided in the supplementary material.

A. PRELIMINARY: EFFICIENT ATTENTION
Dot-product attention in standard self-attention block [43] is
computationally resource intensive and grows quadratically
with the input size. The efficient attention mechanism pro-
posed in [26] exploits the associative property of the matrix
multiplication in dot-product attention and reorders themulti-
plication operations based on the observation that (QKT )V =

Q(KTV ). This technique reduces the computational com-
plexity from O(n2) to O(dk × dv) where ‘n’ is the size of
the input sequence and dk , dv are the feature dimensions of
the key (K) and values (V). Query (Q) also has the same
feature dimension as key, i.e., dk . In a CNN architecture,
the feature dimensions dk , dv generally are of small size
and already known. Therefore, the time complexity of the
operation of the order dk × dv is less expensive compared
to the order of n2. Dot-product attention is computed between
pairwise positions of all input elements (n2), whereas efficient
attention interprets a number of feature maps dk as global
attentionmaps that do not correspond to any position, instead,
they represent the semantic aspect of the entire input. Exper-
iments conducted with the efficient attention mechanism
in [26] show that it yields similar/better performance than
dot-product attention on action localization, object detection,
and instance segmentation tasks.

B. EFFICIENT CONVOLUTIONAL SELF-ATTENTION
Initial convolutional layers of the I3D [4] model output high-
resolution spatio-temporal features and hence produce very
long sequences. For an input video with 64 frames and 224×

224 pixels of spatial resolution, the B1 block in I3D produces
the sequence size ‘n’ of [32 × 56 × 56 (T × H × W ) =

100, 352] (see Figure S2 in the supplementary material). This
is a very long sequence and hence it is resource intensive to
compute the attention maps using dot-product attention for
low-level features of the I3D model. On the other hand, the
standard self-attention block contains fully connected layers
that compute features for queries, keys, and values. Vision
transformers (ViT) [7] contain a series of such self-attention
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FIGURE 2. Efficient Convolutional Self-Attention (ECSA). BQ, BK , BV , BR
(red boxes) are bottleneck blocks each composed of three layers of
pointwise (PW) and depthwise (DW) convolutions (as shown in zoomed
inset). These layers are parameterized to steer their operation. Here, ch is
the number of channels, R is the reduction ratio, n is the input sequence
length, and dk , dv are the dimensionalities of key (K) and value (V). All
the operations required in the computation of self-attention are
represented using green boxes. Each box is labeled with the name of a
matrix, and inside the box are listed the names of the variables and their
corresponding matrix sizes. In the end, we use layer normalization
operation.

⊗
denotes matrix multiplication and

⊕
is a residualship

connection.

blocks with the intent to capture the global representation of
images but disregard local features. Furthermore, ViTs lack
the inherent properties of convolutional architectures such as
local receptive fields, translational equivariance, and shared
weights.

We design the Efficient Convolutional Self-Attention
(ECSA) module by making two changes to the standard
self-attention block from [7] and [43]. First, to address
the limitation of dot-product attention, we use the
above-mentioned efficient attention [26] mechanism to com-
pute attention maps. Second, we replace fully connected
layers in the self-attention block with convolution-based
bottlenecks. The bottleneck blocks BQ,BK ,BV (similar to
ResNet [11] block) compute features for Q, K, and V. Each
bottleneck block consists of three convolution layers. First,
a pointwise convolution layer (kernel size = 1 × 1 × 1)
reduces the number of channels with reduction ratio R.
Normally, we use R=4. Next, we use a 3D depthwise (DW)
convolution layer that applies a single filter per input channel.
Finally, another pointwise (PW) convolution layer combines
the outputs from depthwise convolution and expands the
number of channels to their original size. The design choice
of using depthwise separable convolutions in a bottleneck
type of architecture helps to reduce the number of model
parameters. Additionally, the bottleneck blocks help ECSA
to capture salient local features. In this way, ECSA exploits
the benefits of both attention mechanisms and convolutional
nets. The ECSA module is depicted in Figure 2.

The ECSA module computes attention maps for
spatio-temporal features along the I3D [4] feature hierarchy.
First, we provide feature maps from I3D layers as a common
input to three different 3D bottleneck blocks BQ,BK ,BV . It is
then followed by an efficient attention mechanism [26] to
compute attention maps. Similar to ViT [7], we use multi-
head attention where each head weighs the importance of
different parts of input features. The output of multi-head
attention is reprojected using another 3D depthwise separable
convolution layer. This stage is followed by the residual
connection and layer normalization.

C. CONVOLUTIONAL TRANSFORMER FUSION BLOCK
We propose a Convolutional Transformer Fusion Block
(CTFB) which is designed using an ECSA module, a fusion
operation (fuse_op), and an MLP module. We discussed
ECSA in the above section. Fusion operations can be addi-
tion, multiplication, concatenation, etc. The MLP module
consists of two fully connected layers with ReLU activation
in between and a dropout layer. The basic idea behind the
multi-modal fusion using our proposed CTFB is to extract
the salient features from each modality along multiple levels
of the feature hierarchy in I3D and then fuse them to have
useful discriminative representation for recognition tasks.

D. MULTI-LEVEL FUSION SCHEMES
The feature interaction between two-stream networks using
multi-level fusion has been barely studied in the past. In this
section, we focus on the architectural designs of three dif-
ferent schemes for multi-level fusion. We refer to them as
1) Shared Pathway, 2) Bidirectional Pathway, and 3) Central
Pathway. These schemes provide insights into the information
flow between bimodal two-stream networks. Figure 3 illus-
trates the different fusion schemes using CTFB. For brevity,
we choose only two blocks B1 and B2 that contain segregated
layers of the I3D stream (see Figure S1 in the supplementary
material to know how the layers are segregated into blocks).
In the following we explain the details of each of the above-
mentioned schemes.

1) SHARED PATHWAY
In the shared pathway network setup (Figure 3 (a)), there are
two ECSAmodules each responsible for computing attention
maps for both modalities separately. The output attention
maps from each ECSA (specific to each modality) are then
fused using an element-wise addition operation. The resultant
features are passed to an MLP module that computes the
position-wise relationship among the fused features. There-
fore, the output features of the MLP module have a shared
representation of both modalities. The fused representations
from MLP are added back to each modal stream. The out-
put of the final CTFB is passed to a fully connected layer
for classification. In this scheme, the information is flowing
back and forth between the fusion block and each backbone
network.
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FIGURE 3. Design choices of proposed multi-level fusion pathways: (a) Shared Pathway (b) Bidirectional Pathway (c) Central Pathway. For brevity, here,
we use only two blocks B1 and B2 that contain segregated layers of I3D. A stream with blue boxes learns modality1 and another stream with yellow
boxes learns modality2. CTFB is our proposed fusion block. fuse_op denotes fusion operations such as addition, multiplication, and concatenation to
combine the different information streams.

⊕
denotes an elementwise addition operation. 1 × 1 × 1 is a strided convolution with stride=2.

2) BIDIRECTIONAL PATHWAY
Figure 3 (b) displays the bidirectional pathway scheme.
It contains two individual CTFBs along each direction. Each
block consists of an ECSA module followed by an MLP
module and there is no fusion operation (fuse_op) in between.
First, CTFBs compute the local salient features of each
modality separately using ECSA followed by an MLP mod-
ule to capture global dependencies among those modality-
specific features. The computed features are then added to
the stream of the opposite modality. For example, the salient
features of RGB modality using CTFB1 are merged with the
depth stream and vice-versa. In the end, we take the average
of the output features of both streams and feed it to a fully
connected layer for recognition tasks.

3) CENTRAL PATHWAY
This strategy is similar to the shared pathway network except
that the information is not added back to the backbone stream.
Instead, features coming from both modalities are projected
on to a common space. In the end, this joint representation
is used for classification. Figure 3 (c) presents the central
pathway strategy. In this, the output attention maps of CTFB1
are fed into 1 × 1 × 1 convolution layer with stride = 2 to
adjust their dimensions in order tomatch the feature (channel)
and spatio-temporal dimensions of the subsequent layers of
I3D. The output features of B2 are added with the output
features from the 1 × 1 × 1 convolution layer and passed as
input to CTFB2. This structure repeats multiple times along
I3D hierarchy and the outputs of last CTFB is fed into fully
connected layer for classification.

IV. EXPERIMENTAL RESULTS
A. GESTURE RECOGNITION DATASETS
In this section, we report about experiments conducted on
three benchmark gesture recognition datasets: (a) NVGes-
ture [21], (b) IsoGD [31], and (c) IPN hand gestures [3].
We compare our results with the state-of-the-art (SoTA)
methods. Figure 4 shows frames of a sample gesture video
frames of different modalities from each dataset. Gestures

recognition can be either continuous or isolated. In contin-
uous gesture recognition tasks, an input video clip contains
a series of various gestures. On the other hand, in isolated
gesture recognition tasks, an input video contains a single
gesture. This work mainly focuses on the latter part.

1) IsoGD DATASET
Isolated gestures (IsoGD) [31] is a large-scale multi-modal
gesture recognition dataset derived from the Chalearn gesture
dataset (CGD 2011). IsoGD contains gesture videos of two
different modalities viz. RGB and depth with the resolution
of 320 × 240 pixels and a frame rate of 10 fps. The dataset
is user independent, which means the participants in the
training set are not repeated in the test set. In total, the dataset
includes 47,933 RGB-D gesture videos with 249 gesture
labels. The gestures were performed by 21 different individu-
als. The dataset is split into a training set with 35,878 samples
from 17 participants, a validation set with 5,784 samples
from 2 participants, and a test set with 6,271 samples from
2 participants.

2) NVGesture DATASET
NVGesture [21] is an in-car dynamic hand gesture recogni-
tion dataset captured frommultiple viewpoints usingmultiple
sensors. NVGesture contains gesture videos of three different
modalities viz. RGB, depth, and infrared (IR). The videos
are recorded at the rate of 30fps and with a resolution of
320×240 pixels. The dataset consists of 1,532 gesture videos
with 25 different classes of hand gestures. The dataset is split
into a training set with 1,050 samples and a test set with
482 samples. The gestures were captured from 20 different
individuals. IR videos do not have the same viewpoint as
RGB and depth videos. Therefore, we use only RGB and
depth modalities for our experiments.

3) IPN HAND DATASET
The IPN hand dataset [3] focuses on gestures that are relevant
to interaction with touchless screens. It contains RGB videos
with a resolution of 640× 480 pixels recorded at 30fps using
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FIGURE 4. A sequence of frames (video) depicting the gesture of a person from benchmark datasets: (a) IsoGD [31] (b) NVGesture [21] (c) IPN Hand [3].
Videos are represented in different modalities such as RGB, depth maps, optical flows, and segmentation masks.

PC or laptop cameras. The videos are captured from 28 dif-
ferent scenes with 50 participants. These scenes include clut-
tered backgrounds and varying illumination. In total, there are
4,218 gesture instances with 13 different gesture classes. The
dataset is slightly imbalanced with a majority of the samples
belonging to only 2 classes. It is intended for both isolated
and continuous gesture recognition tasks. We focus only on
isolated gesture recognition. The dataset is randomly split
into training (74%) and testing (26%) sets. For isolated ges-
tures, the training set contains 3,117 gesture instances from
37 subjects and the test set contains 1,101 gesture instances
from 13 subjects. This dataset provides RGB videos, optical
flows, and segmentedmasks for each gesture instance.We use
a combination of these modalities to train the two-stream I3D
with the fusion module.

B. IMPLEMENTATION DETAILS
We adopt I3D [4] as a backbone model for our video-
based multi-modal gesture recognition. The I3D model is the
inflated version of inception v1 [13], [28] architecture. The
main idea behind inception v1 architecture is that inception
modules can capture multi-scale information by using paral-
lel convolution layers with different kernel sizes. We group
the I3D inception modules into blocks at every max pool
layer to mark the fusion points at different levels of the
hierarchy (see Figure S1 in the supplementary material for
details). We use the publicly available pre-trained weights on
Imagenet [36] + Kinetics [4] to initialize the weights of I3D
in our experiments. We implement and train our models using
the PyTorch framework and a V100 GPU.

During the training phase, we resize the input video clips to
256× 256 pixels and then spatially crop them randomly with
a patch size 224 × 224. We randomly select 64 consecutive
frame snippets containing gestures from the input video. For
shorter videos, we loop the video to have uniform inputs.
In the end, the shape of all input video clips is batchsize ×

3 × 64 × 224 × 224 where batchsize is 4. During the test-
ing phase, we follow similar preprocessing steps as training
phase, except that a center-crop technique is applied instead
of random crop.

The training involves a two-stage process. In the first stage,
the individual models are trained for each modality (RGB,
depth, or flows) with the base learning rate η = 0.05. In the
second stage, the fusion module is inserted at different levels
of I3D with pre-trained weights of each modality and trained
in an end-to-end fashion with the base learning rate η =

0.005. We employ a learning schedule to change the learning
rate over time. We train the network for a total of 30 epochs
and downscale the learning rate by 10% (multiplied by 0.1)
after the 15th and 25th epoch. We use the stochastic gradi-
ent descent (SGD) optimizer with the Nesterov momentum
0.9 and weight decay of 10−4. We optimize the cross-entropy
loss for the multi-label classification of gestures and use
accuracy as an evaluation metric. In all of the following
experiments, we employed the same above-mentioned con-
figurations for the training and evaluation phases.

C. COMPARISON BETWEEN EARLY, MID, LATE,
OR MULTI-LEVEL FUSION
We conduct experiments to investigate which part of the CNN
model hierarchy is suitable to fuse the multi-modal features
using the NVGesture dataset [21]. Figure 1 illustrates differ-
ent levels of fusion. Table 1 presents the results of individual
modalities trained with the I3D network [4] separately and
also of multi-modal fusion. We observe that the accuracy of
early fusion with RGB+depth input is hardly better than sin-
gle stream I3D trained on depth videos. Late fusion achieves
a notable improvement over early fusion with amargin of 2%.
Mid fusion can be performed at any level of the feature
hierarchy. In our experiments, we use 1×1×1 convolution as
amid fusion layer after the third block (B3) in two-stream I3D
(see Figure S3 in the supplementary material). This setting
improves the late fusion instances by 1%. These results sug-
gest that capturing correlations among early features boosts
the performance of the model. Finally, we perform multi-
level fusion using only CTFB3 and CTFB4 in a two-stream
I3D network (see Figure S2 in the supplementary material).
Our results show that multi-level fusion surpasses the test
accuracy of all other above-discussed fusion strategies. These
outcomes indicate that feature interactions at multiple levels
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TABLE 1. Where to Fuse? Early, Late, Mid, or Multi-level fusion.
NVGesture dataset [21] is used for this experiment. First part contains
average test accuracy of individual models and second part contains
average test accuracy of different fusion techniques. R, D denote RGB,
depth modalites.

TABLE 2. Performance of different fusion pathways: Average test
accuracy on IsoGD [31] RGB (R) and depth (D) fusion. Number of model
parameters are in millions (M).

(from fine to coarse-grained) between streams can encode
additional contextual information and hence improve the final
performance of the model. Our findings are in accordance
with the MMTM [30] method which shows the advantages
of intermediate fusion over early and late fusion.

D. COMPARISON BETWEEN MULTI-LEVEL FUSION
SCHEMES
In this section, we conduct experiments on the different fusion
schemes and attempt to gain insights into the information
flow between the two streams. The setup for these exper-
iments follows three different architectural designs shown
in Figure 3. For all these schemes, we perform fusion at
four different levels of the two-stream I3D (see Figure S2 in
the supplementary material). In the end, we feed the fused
information to a fully connected layer to perform gesture
classification. We evaluate and compare the performances
of all three schemes: (a) shared pathway, (b) bidirectional
pathway, and (c) central pathway. Table 2 presents the results
of all these different fusion architectures. We observe that
the shared pathway variant outperforms the other two. Also,
it has fewer model parameters compared to the others. These
results indicate that the shared pathway is the preferred choice
among all three different architectures. We use this shared
pathway scheme for the remaining set of our experiments.

E. RESULTS FOR DIFFERENT BENCHMARK DATASETS
1) IsoGD RESULTS
Table 3 presents the results of our fusion method on the
IsoGD dataset and compares them with those of state-of-the-
art (SoTA) methods. For this experiment, we use two-stream
I3D with four fusion blocks (see Figure S2 in the supple-
mentary material). The top section of the table shows the

TABLE 3. Results for IsoGD Dataset: Comparison with state-of-the-art
methods. R, D denote RGB, Depth. The results show the average
validation and test accuracy in %.

performance of the backbone I3D model [4] trained on RGB
and depth modalities separately. We use their pre-trained
weights while training the fusion network. The middle sec-
tion presents the results of various SoTA methods, including
the baseline [8], for RGB+depth fusion. Our results at the
bottom show that the proposed fusion architecture outper-
forms previous multi-modal gesture recognition approaches.
For example, our method surpasses the earlier SoTA method
ASU [20] by a margin of 1.3%. To our knowledge, the
proposed fusion network sets new benchmark results on the
IsoGD dataset. Although the FOANet [22] achieves a test
accuracy of 82.07%, it is neither directly comparable to our
method nor to the methods listed in the table. It uses the
hand detection FOA network prior to gesture recognition,
computes RGB flow and depth flow, and performs the fusion
of four modalities. We, therefore, decided to not include the
FOANet results in Table 3. Unlike this approach, our fusion
method is using raw gesture videos of both RGB and depth
modalities only.

2) NVGesture RESULTS
In this section, we compare our fusion network results with
SoTA methods on the NVGesture dataset [21] and also ana-
lyze the misclassifications. Table 4 reports the results on
the NVgesture dataset. First, we train the individual I3D
models [4] on RGB and depth videos, respectively, and their
results are shown at the top section of the table. NVGesture is
a small dataset and hence large models with more parameters
might lead to memorization (overfitting). Therefore, we use
only two fusion blocks CTFB3 and CFTB4 in two-stream
I3D for this experiment (see Figure S2 in the supplementary
material). This adds a very small number of extra parameters
but captures the fusion information efficiently. We can see
the results of different fusion methods in subsequent sections
of the table. Our method outperforms existing SoTA and
improves SoTA on RGB+depth fusion by approximately 1
to 1.5% compared to recent MMTM [30] and MTUT [1]
methods. It also surpasses the results of RGB+depth+flow
fusion of MMTM [30] and MTUT [1] by approximately
0.8%. The classification performance of our fusion network
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TABLE 4. Results for NVGesture Dataset: Comparison with
state-of-the-art methods. The results show the average test accuracy in
%. Here, R-RGB, D-Depth, F-Optical flow.

(RGB+depth) is close to human level (color) recognition
rate [21]. We also compare the number of model parameters
that need to be updated. Table 4 shows that our fusion network
has 4 million fewer parameters than MMTM fusion [30] and
still achieves better results. PointLSTM [2] is not directly
comparable to our method as it only uses point clouds as input
and is not a true multi-modal model. CAPF [37] performs
better than our method. The performance of our baseline I3D
(RGB-78.42%, Depth-82.28%) is lower than the baselines
for CAPF (RGB-89.58%, Depth-90.62%). This indicates the
gain in performance of CAPF is largely due to the influence
of baseline models rather than the fusion strategy itself. The
same is reflected in IsoGD results (refer to Table 3) where it
is shown that our method outperforms CAPF.

The confusion matrix summarizes the performance of
our fusion architecture on the NVGesture dataset (see
Figure S4 in the supplementary material). The model
demonstrates a high level of accuracy in its predictions
of 25 different gesture classes. However, infrequently,
the model produces inaccurate predictions for gesture
classes such as move_hand_down with push_hand_down
and vice-versa. This is due to the appearance and motion
of both of these gestures resembling each other. The
gestures like show_two_fingers/push_two_fingers_away,
click_index_finger/show_index_finger , etc. encounter a
similar pattern. These similar gestures are occasionally mis-
classified with our model.

3) IPN HAND RESULTS
Table 5 presents the results of processing IPN hand data
with baseline models and their comparison with our fusion
network. Part 1 of Table 5 contains the results of the IPN
baseline models. IPN [3] uses models C3D [29], ResNet50,
and ResNext-101 [42] as baselines that are pre-trained on
the jesture dataset [19]. On the other hand, we use I3D [4]
as a baseline model initialized with the publicly available
pre-trained weights on ImageNet [36] + Kinetics [4]. We per-
form training in two stages. First, we finetune I3D on indi-
vidual modalities using pre-trained weights of respective

TABLE 5. Results for IPN Hand Dataset: Comparison with state-of-the-art
methods. The results show the average test accuracy (Acc) in %.
Parameters in millions (M). R-RGB, F-optical flows, S-segmentation
masks. We finetune I3D on the IPN dataset (indicated by *).

modalities. While finetuning the segmentation mask modal-
ity, we used pre-trained RGB weights. Part 2 of Table 5
shows the performance of I3D on individual modalities. For
RGB modality, I3D [4] improves over the best IPN baseline
model ResNeXt-101 by 6% with only (1/4)th the number of
parameters (12.3M) compared to the number of ResNext-101
parameters (47.56M). Second, we train the fusion network for
a different combinations of modalities using pre-trained I3D
fromfirst stage.While training our fusion network, we choose
the fusion points CTFB3 and CTFB4 in the feature hierarchy
(see Figure S2 in the supplementary material). Part 3 of
Table 5 presents the performance of IPN fusion networks
and the bottom part contains the results of our proposed
fusion network. The performance of our fusion network sur-
passes the individual I3D trained on each modality (RGB,
flow, depth) by 1 to 1.5%. Furthermore, our I3D fusion
network, which employs CTFBs to merge RGB and optical
flow data, surpasses the performance of the ResNeXt-101
fusion network [3] by 5%. To our knowledge, this is the
new SoTA result on the IPN hand dataset for isolated gesture
recognition.

F. IMPACT OF BACKBONE NETWORKS
In this section, we conduct experiments to understand the
effect of different backbone networks on the performance
of fusion networks. Apart from the I3D-based fusion model,
we analyze the variations in the performance on differ-
ent backbone networks such as 3D ResNet50 [42], 3D
MobileNetV2 [41], 3D SqueezeNetV2 [40], and 3D Shuf-
fleNet [39]. Each of these networks was initialized with
pre-trained weights on Kinetics [4]. In Table 6, we report the
results of experiments conducted using the above-mentioned
networks on NVGesture dataset [21]. It reveals several inter-
esting observations. The I3D-based fusion network outper-
forms the other backbone-based fusion architectures. The
performance of the 3D ResNet50 alone achieves competi-
tive accuracy compared to I3D on an individual modality,
but the 3D ResNet50-based fusion architecture performs
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TABLE 6. Comparison of the performance of fusion networks using
different backbones. NVgesture dataset [21] is used for this experiment.
AccR, AccD, and AccF are average test accuracies of RGB, Depth, and
fusion network respectively. The number of model parameters is in
millions (M).

poorly compared to I3D-based fusion. This might be due
to memorization caused by the huge amount of model
parameters of 3D ResNet50. The fusion architectures based
on resource-efficient models like 3D MobileNetV2, 3D
SqueezeNetV2, and 3D ShuffleNet show low test accuracy
compared to I3D and 3D ResNet50-based fusion networks.
However, these models are extremely lightweight (given the
order of magnitude, and lower number of parameters to train)
and provide a good trade-off between accuracy and resource
efficiency.

V. CONCLUSION AND FUTURE WORK
In this work, we explore video-based multi-modal gesture
recognition. First, we introduce the Convolutional Trans-
former Fusion Blocks (CTFBs) to encode a discriminative
multi-modal representation. A CTFB consists of an Efficient
Convolutional Self-Attention (ECSA) mechanism, a fusion
operation, and an MLP module. We designed ECSAs using
3D depthwise separable convolution layers to capture local
key spatio-temporal features from each modality. We then
perform elementwise addition operation to fuse output fea-
ture maps from two ECSA modules each for one modality.
An MLP encodes the global features from the combined
representation of two different modalities. The extensive
evaluation shows that our proposed CTFB not only achieves
competitive or SoTA performance on benchmark datasets but
is also resource efficient. We believe that the gain in perfor-
mance is due to couple of factors: (1) The CTFB generates
salient local features that capture the fine-grained details and
global representations that capture the overall context, and
(2) The CTFBs in two-stream networks (baseline) placed at
different abstraction levels are able to exploit the complemen-
tary information from two modalities at various degrees of
granularity (from fine to coarse-grained).

Next, we also proposed three different multi-level fusion
schemes: (a) Shared Pathway, (b) Bidirectional Pathway, and
(c) Central Pathway to study the information flow between
two-stream CNNs. Our experiments show that the shared
pathway variant performs better than the other two schemes.
It is also noteworthy that multi-level fusion outperforms
early, mid, and late fusion strategies. Nevertheless, our model
performs poorly on gestures of different categories having
similar appearance and motion patterns.

There are opportunities for further improvements in sev-
eral directions. First, in this work, we only used two-stream
networks with bimodal fusion. Therefore, we would like to
investigate if the incorporation of additional modalities leads
to more discriminative representations that can be used to
effectively classify resembling gestures. Second, we only
focused on different modalities of videos that are having
same dimensions. In the future, we intend to examine how
well CTFBs perform when handling modalities of differing
dimensions, such as skeletons, text, and audio, across a range
of tasks.
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