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ABSTRACT This study proposes using connected automatic vehicles (CAVs) as traffic flow detectors to
collect and exchange traffic flow data for heterogeneous traffic management and control. The proposed
method includes the construction of a mathematical matrix to represent the status of the road section,
the use of unsupervised machine learning to evaluate traffic data, and an improved generative adversarial
imputation net (GAIN) to evaluate and impute missing traffic data. Next-generation simulation (NGSIM)
data are used to verify the accuracy and robustness of the proposed method. One of the primary innovations
of this study is the use of GAIN, a deep learning framework based on generative adversarial networks
(GANs), to impute missing traffic data. GAIN has been shown to be more robust and stable when handling
incomplete heterogeneous data than existing imputation methods. Additionally, this study contributes to the
field by proposing the use of CAVs as sensors to detect mixed traffic flow, which could lead to more efficient
and accurate traffic management and control. Experimental results demonstrate that the proposed method
outperforms existing imputation methods, with a normalized root mean squared error and symmetric mean
absolute percentage error of less than 0.2/0.3 and 0.08/0.13 in I-80 and Lankershim Boulevard, respectively.
The findings of this study have important implications for the development and implementation of connected
and automated vehicle technologies in the field of transportation.

INDEX TERMS CAV-based sensor, heterogeneous traffic flow, mixed traffic flow, improved generative
adversarial imputation net, NGSIM.

I. INTRODUCTION
Multisensors are an essential part of connected automatic
vehicles (CAVs) and can perceive and interacts with road con-
ditions, traffic, and the driving environment, allowing CAVs
to make trajectory planning and driving decisions. Therefore,
the traffic network’s safety, mobility, and efficiency can be
markedly enhanced when CAVs replace conventional human-
driven vehicles (HDVs) or have a relatively high market
penetration rate [1]. However, this process will be gradual as
CAVs displace HDVs. The phenomenon of traffic flowmixed
with CAVs and HDVs is expected to last for at least the next
50 years [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhe Xiao .

Whether in the pure HDV environment or fully CAV traffic
flow conditions, real-time traffic information is critical to
traffic management and control to improve traffic efficiency
and reduce traffic accidents. When the traffic flow is mixed
with CAVs and HDVs, their heterogeneous performance and
mutual interference will change the dynamics, safety, and
mobility of traffic flow. This situation requires more com-
prehensive traffic perception and traffic state identification
for traffic management and control to enhance traffic safety,
improve road utilization, and reduce traffic congestion.

CAVs have sensors that perceive surrounding vehicles’
location, speed, and direction for trajectory planning and
driving operations to avoid collisions and improve safety.
Therefore, CAVs as traffic flow detectors can collect and
exchange traffic information for heterogeneous traffic man-
agement and control [3]. Scholars have focused on using the
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data acquired by CAVs to estimate traffic status and travel
time, and can include complementary traffic data for traffic
management and control systems to improve control preci-
sion and efficiency [4], [5], [6], [7]. However, past studies
have primarily focused on pure CAV traffic environments [8].
To our knowledge, using CAV-based sensors to estimate the
mixed traffic flow status has rarely been addressed.

In this paper, we propose an improved generative adversar-
ial imputation net algorithm (I-GAIN) to evaluate the traffic
state for mixed traffic flow using CAV-based sensors [9].
First, a road is divided into grids, and a matrix is constructed
to present the status of the road section. The CAV location is
matched to the road section to identify the traffic data sensing
status. Second, an unsupervised machine learning algorithm
is used to evaluate the traffic data for road sections that are not
CAVs. An improved generative adversarial imputation net is
then proposed to enhance the precision of traffic data for road
sections without CAVs. Finally, the Next Generation Simula-
tion (NGSIM) dataset is used to validate the effectiveness and
accuracy of the proposed method [10].

The primary contributions of this study are as follows:
(1) A mathematics matrix is proposed to present the traffic

data collection status of the road section by mapping the
CAVs into the matrix.

(2) An improved I-GAIN algorithm is proposed to impute
the missing traffic data without CAVs on the road section or
out of the CAV perception range.

(3) The accuracy and robustness of the proposed method
are effective and perform better with NGSIM data for verifi-
cation and comparison.

The remainder of this paper is organized as follows. Sec-
tion II reviews related research on traffic sensing for mixed
traffic flow. Section III presents the problem description.
Section IV describes the proposed method. In Section V, the
computational efficiency of the method is reported. Exper-
iments and analyses are conducted to describe the perfor-
mance of the method. Section VI concludes this paper with a
summary of the contributions and limitations of the proposed
model, as well as perspectives on future work.

II. LITERATURE REVIEW
To draw a clear distinction between this and previous studies,
the literature on traffic information detection with camera-
based sensors and light detection and range (LiDAR) sensors
and CAV traffic perception is reviewed. The methods and
algorithms for missing data imputation are also introduced
in this section.

A. VISION-BASED TRAFFIC INFORMATION DETECTION
Recently, camera-based vision sensors have been widely used
in traffic information detection due to their low cost and
ability to provide rich perception information. Wei [11] used
a histogram of oriented gradients (HOG) and Harr features
to segment the region of interest and extract targets, solving
the multivehicle detection problem in complex driving envi-
ronments. Wang [12] developed a real-time target detection

system using a field-programmable gate array board that
converted color images to grayscale maps and extracted HOG
features from maps of different sizes based on the HOG
method. Xu [13] proposed an adversarial Faster-RCNN algo-
rithm based on global averaging pooling to generate com-
plex samples for better object detection models. However,
the measurements of camera-based sensors can be adversely
affected by changes in lighting and adverse weather condi-
tions. Additionally, such sensors cannot directly obtain depth
and location information, which affects the accuracy and
robustness of traffic parameter precision [14].

B. LIDAR-BASED TRAFFIC INFORMATION DETECTION
LiDAR, a modern active visual sensor, has various advan-
tages, such as anti-interference to external light changes,
adaptability to complex environments, broad scanning cov-
erage, and rich perception information [15], [16], [17].
Zhao [18] developed a systematic approach to detect and
track pedestrians and vehicles using 16 laser LiDAR sen-
sors, with an average accuracy of 95% in traffic detec-
tion, classification, and tracking. Lin [17] proposed a lane
detection algorithm for low-density roadside LiDAR, which
can aid in high-precision vehicle positioning in vehicle-to-
infrastructure (V2I) cooperation applications within intelli-
gent transportation systems. Liu [15] proposed a novel static
background construction method that used the fast Fourier
transform (FFT) to classify distant target points and noise
points with sparse point clouds to expand the detection range
of low-channel roadside LiDAR. Zhang [19] introduced an
unsupervised clustering method for roadside LiDAR applica-
tions that relies on a region-growing algorithm coupled with
component labeling and a revised merging process to main-
tain high accuracy while improving computation speed and
oversegmentation. However, the processing of point cloud
data for LiDAR sensors demands a lot of computational
resources and is time-consuming, which can hinder its real-
time application in engineering.

C. CAV WITH TRAFFIC INFORMATION PERCEPTION
Researchers have been motivated to use CAV as a ‘‘mobile
sensor’’ to collect traffic information due to their powerful
sensory ability. Zheng [20] predicted traffic volumes at an
intersection by extracting GPS data from CAVs and consid-
ering a maximum likelihood problem. Li [21] developed a
cooperative perception framework using data collected by
CAVs to predict the traffic state of a platoon of CAVs.
Wei [22] proposed a three-step evolution strategy of the
CAV perception mode to enhance urban transportation effi-
ciency. Day [23] optimized signal coordination using CAV
data in a low penetration rate environment. Li [24] used
CAVs as an alternative data source for freeway traffic man-
agement, developing an interval type 2 fuzzy logic-based
variable speed limit (VSL) system formixed traffic tomanage
inherent uncertainty. With the development of vehicle-to-
everything (V2X) and self-driving technology, more studies
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use CAVs as detectors to collect high-resolution microlevel
traffic data for traffic management and control systems,
including vehicle-infrastructure cooperation systems. How-
ever, when the market penetration rate of CAVs is low,
their perception range may not cover the entire road, lead-
ing to missing data. Therefore, future research should thus
consider this limitation and focus on developing methods
to improve data coverage in low CAV penetration rate
scenarios.

D. IMPUTING MISSING DATA VALUES
Because missing data are ubiquitous in many domains and
missing data imputation can help improvemeasurement accu-
racy and model performance, many data imputation methods
have been proposed. Researchers have used single values to
fill in the missing values to create many imputation methods,
including mean imputation [25], hot deck imputation [26],
cold deck imputation [27], and regression imputation [28].
However, using a single value to impute missing values,
will produce an imputed dataset that has a certain degree
of uncertainty, and the distribution of the imputed data will
distort the distribution of the original sample, which will lead
to bias in the data analysis results. To compensate for the
shortcomings of the single imputation method, researchers
have used multiple imputation methods (MIs) to impute
missing data, and MIs include regression prediction, multi-
ple regression imputation, propensity score, logistic regres-
sion, discriminant analysis, and Markov Chain Monte Carlo
(MCMC) models [29], [30], [31]. In addition, with the devel-
opment of deep learning, several researchers have developed
deep learning frameworks based on autoencoder (AE) and
generative adversarial networks (GAN) to impute missing
data, which can obtain better robustness and relative stabil-
ity in handling incomplete heterogeneous missing data [9],
[32], [33], [34]. Zhang [35] proposed a self-attention genera-
tive adversarial imputation net that combines a self-attention
mechanism, an autoencoder, and a generative adversarial net-
work. The introduction of the self-attention mechanism can
help their model effectively capture correlations between spa-
tially distributed sensors at different time points. Wang [36]
proposed a novel Generative Adversarial Guider Imputation
Network (GAGIN) based on generative adversarial network
(GAN) for unsupervised imputation, which is composed of a
Global-Impute-Net (GIN), a Local-Impute-Net (LIN) and an
Impute Guider Model (IGM) to solve two problems: the local
homogenous regions and the reason for the imputed data.
Yuan [37] proposed a novel spatiotemporal GAN model for
traffic data imputation (STGAN) to efficiently impute traffic
data.

Although GAN has many advantages in data imputing, its
disadvantage is also more important: the generated data may
have bias, which will lead to poor quality of the padded data.
Therefore, the goal of this paper is to improveGAIN to reduce
the error of padding data and thus increase the accuracy of the
CAV perception algorithm.

FIGURE 1. Traffic flows are mixed with HDVs and CAVs.

III. PROBLEM FORMULATION
Fig. 1 shows an example of mixed traffic flows with HDVs
and CAVs, where HDVs are completely driven by the driver
without perception capabilities, and CAVs are automatically
driven with advanced assist driver systems based on onboard
sensors and can exchange traffic data with the roadside unit.
Each CAV can obtain traffic information within its perception
range, while vehicles outside the perception range of the
CAVs are not sensed.

In amixed traffic flow, the perception capability of CAVs is
limited. When there are no roadside LiDAR or other sensing
devices in the road network but ‘‘mobile sensor’’ CAVs are
present, the information collect by all vehicles on the road
network may not be sensed by CAVs if the market penetration
rate of CAVs is low. For example, a vehicle that is out of
the range of any CAVs will not be sensed by the CAVs,
and all information about them will be lost. This issue will
affect mixed traffic flowmanagement and control with regard
to traffic safety and efficiency [38]. Therefore, this study
primarily investigates how to accurately obtain traffic infor-
mation in the road network without changing the CAVmarket
penetration rate. To restrict influence factors, we assume the
following:

(1) Each CAV is equipped with the same sensors, all of
which have the same perception capabilities and are unaf-
fected by environmental factors such as light change.

(2) CAVs are distributed randomly in the mixed traffic
flow.

The notations in this problem are as follows.

IV. METHODS
The process of data imputation for mixed traffic flow includes
two processes: modeling traffic state models with mathemat-
ics matrices, and traffic data imputation for HDVs not sensed
by CAVs.

When modeling traffic states with mathematics matrices,
we first input the data that are obtained directly by CAVs.
Through the modeling traffic states with the matrices process,
the data will be transformed into the data matrix (Da). Then,
we perform the first imputation for Da to obtain the estimated
matrix (E). Finally, E with the smallest error is selected from
the first imputation for the second imputation. The imputed
matrix (Im) and the error are then output. The error represents
the gap between the imputed data and the real data, and
is used as an assessment measure of imputation methods.
An overview of the model is shown in Fig. 2.
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TABLE 1. Symbols used in this paper and their interpretations.

FIGURE 2. Flowchart of the proposed model.

A. SENSOR ERROR PREPROCESSING
1) SENSOR ERROR SOURCES
In this article, a car camera is used, and its accuracy varies
with its price. This camera may have the following sources
of error:

(1) Lighting conditions: the camera may shoot differently
under different lighting conditions, which may affect the
accuracy of the data.

(2) Position offset: Due to the different installation loca-
tions, the camera may have a position offset, resulting in
errors in data collection.

(3) Low signal-to-noise ratio: When the signal-to-noise
ratio is low, the camera may not be able to correctly identify
and capture the target, leading to errors in data acquisition.

(4) Data loss: The camera may suffer from data loss, which
also leads to errors in data acquisition.

2) ERROR ANALYSIS AND CORRECTION
To evaluate the effect of perception error on the data filling
effect, we analyzed the relationship between sensor percep-
tion error and data filling error. We used the following math-
ematical model:

y = x + ϵ (1)

where x is the true traffic flow data, y is the sensed traffic flow
data, and ϵ is the sensing error. We used the mean squared
error (MSE) to measure the magnitude of the sensing error:

MSE =
1
n

n∑
i=1

(yi − xi − ϵi)2 (2)

where n is the sample size; xi is the true traffic flow data; yi is
the perceived traffic flow data; and ∈i is the perception error.

To investigate the effect of perception errors on data impu-
tation, we introduced several correction strategies for percep-
tion errors. For each flow data point, we assumed that its
perception error followed a Gaussian distribution:

N
(
µ, σ 2

)
=

1
√
2πσ 2

exp(−
(x − µ)2

2σ 2 ) (3)

Estimated these parameters by calculating the mean and
variance of all the data in the current time window. Then,
we used this distribution to correct the perception errors and
obtain more accurate flow data.

Specifically, we assume a missing traffic data point x̂i that
has a perceived value of ŷi; then, we can calculate its true
value as:

x̂i = ŷi − ϵ̂i (4)

where ϵ̂i is the perception error corrected by the Gaus-
sian distribution, with an expected value and variance of,
respectively:

µ̂i =
1
T

T∑
t=1

(yi − xi)t (5)

σ̂i
2

=
1

T − 1

T∑
t=1

((yi − xi)t − µ̂i)2 (6)

where T is the number of data points in the current time
window. Therefore, we can correct the perception error using
the following formula:

ϵ̂i = µ̂i + σ̂izi (7)

where zi is a random variable that follows a standard normal
distribution N (0,1).
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FIGURE 3. Schematic diagram of the road segment.

FIGURE 4. Overview of the road matrix.

FIGURE 5. Overview of the original matrix.

B. MODELING TRAFFIC OF THE PROPOSED MODEL
We assume that there is a highway with L lanes and the lane
number set is l ∈ {0, 1, 2, . . . ,L − 1}. Each lane is regarded
as a one-dimensional straight line, and the length of lane l is
Ml. Each lane has the same length in this paper. Ml is divided
into road segments, and the length of each road segment is
S. The length of the road segment primarily depends on the
length of the vehicle and the minimum spacing between vehi-
cles. The road segments are numbered {0, 1, 2, . . . ,S − 1}.
Therefore, the road segment can be presented as MlS, the
subscript l means that the road segment in lane l, and the
subscript S means that the road segment is the Sth segment.
The location of MlS is [s1m, (s + 1)1m], 1m = Ml/S,
as shown in Fig. 3.

According to Fig. 3, we can describe the entire road as
a matrix, which is called the road matrix (R). The columns
and rows of the matrix represent the l and S of the road,
respectively. As shown in Fig. 4, Ml1S1 is the region on lane
l1 and road section S1.
After constructing R, we accurately fill in the traffic infor-

mation obtained by CAVs directly according to the location
of vehicles into R, which is the original matrix (O).

FIGURE 6. Overview of the mask matrix.

FIGURE 7. Modeling traffic states with matrices.

As shown in Fig. 5, the black cell of the matrix means
that there is no vehicle on this road segment; the white cell
means that the vehicle on this road segment cannot be directly
sensed by CAVs; the blue cell means that the vehicle on this
road segment can be directly sensed by CAVs; and no data
exist in the black and white cells. Thus, there are three types
of road segments. If the segments that cannot be directly
sensed by CAVs and the segments without vehicles cannot
be accurately identified, the segments without vehicles will
also be imputed, which will lead to inaccurate experimental
results. To mitigate this issue, we obtain a mask matrix (Ma)
from O to solve this problem. Ma also plays an important role
in the subsequent imputation.

As shown in Fig. 6, each cell of Ma equals of [0, 1]d or
none. When Ma(l,S) is 1, MlS can be directly sensed by
CAVs. When Ma(l,S) is 0, MlS cannot be directly sensed by
CAVs. When Ma(l,S) is zero, there is no vehicle on MlS. The
relevant formula is:

Ma(l, S) =


1 ifMlS ∈ DI

A

0 ifMlS /∈ DI
A
and ∃ i on MlS

none else

(8)

where IA is the set of all CAVs and DIA is the total perception
range of all CAVs on the road.

We assumed that onboard sensors are placed at the front
and rear of each CAV, and that the perception range is
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FIGURE 8. Initial imputation.

20-60 m [39], as shown in Fig. 7. Therefore, CAVs can only
obtain information about the vehicles in front of and behind
them in their lane, not information about other vehicles.
Because the road has 6 lanes, the matrix has 6 columns. The
matrix is divided into 5 rows based on the road length, vehicle
length, and minimum spacing between vehicles.

A cell with missing data in O (a white cell) is imputed to be
equal to 0 to obtain Da. Improving the perception capability
of CAVs can be transformed into amatrix imputation problem
by modeling traffic states with matrices.

C. DATA IMPUTATION FOR HDVs
1) INITIAL IMPUTATION FOR DATA MATRIX
As shown in Fig. 8, E can be obtained from Da by the initial
imputation. The red cell means that the data in this cell are
imputed with the initial imputation.

The unsupervised mechanical algorithm simple fill (SF),
k-nearest neighbor imputation (KNN) [42], iterative imputer
(II) [43], and matrix factorization (MF) [44] were used to
improve the accuracy of the initial imputation. All four initial
imputation algorithms were used to ensure that the data of the
nonmissing part of the matrix were unchanged, and only the
missing part of the matrix could be imputed.

First, SF takes the average of each column of the matrix to
impute. For the KNN algorithm, the mean squared difference
of the features of the observed data in both rows is used to
weigh the samples, and then, the weighted results are used
to fill the eigenvalues. The K with the best imputation effect
is selected using the principle of ‘‘the closer the better’’ to
impute the missing values of the target features with the
distribution of other features, which will bemore reliable than
imputing directly with the mean and median. The steps of the
KNN algorithm are as follows.

(1) Input O and find the K nearest samples closest to
the missing data using Euclidean Distance in the matrix.
Euclidean Distance dls is:

dls =
√
w× p (9)

w =
N
n

(10)

FIGURE 9. Flowchart of the I-GAIN algorithm.

where w is the weight of the sample, p is the squared distance
from the present coordinates, N is the total number of coor-
dinates and n is the number of present coordinates.

(2) Missing values are imputed using the mean of the
nonempty values of the corresponding positions of the K
nearest neighbors.

(3) Output the imputed value and its location.
Algorithm II imputes missing values by modeling each

feature with a missing value as a function of other features
in a cyclic manner. This strategy models each feature with
a missing value as a function of other features. The steps of
algorithm II are as follows.

(1) Input O and proceed in an iterative loop.
(2) At each step, one feature column is specified as the

output y, and the other feature columns are treated as the
input X.

(3) A regressor fits (X, y) to a given y. The regressor is then
used to predict the missing value of y.

(4) The max_iter imputation wheel is repeated and outputs
the result of the last round of imputation.

MF decomposes the incomplete matrix directly into low-
rank ‘‘U’’ and ‘‘V’’. Then, the gradient descent method is
used to solve the matrix factorization: it can reduce the com-
putation amount and can solve the sparse behavior matrix
problem caused by the number of users and too many items.
MF is:

J=min
∥∥∥O−O

∥∥∥=

∥∥∥O−UV T
∥∥∥2=

∑
l.s,ols ̸=nan

(ols−
k∑
j=1

vljusj)

2

(11)

where O is the approximate matrix of O, and vlj and usj are
the elements of U and V respectively, which is what we want
to determine.

These four algorithms perform the initial imputation
on Da in succession. The algorithm with the mini-
mum error value is selected to prepare for the final
imputation.
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2) FINAL IMPUTATION FOR ESTIMATED MATRIX
Because the accuracy of the initial imputation is low, the final
imputation can be performed to improve the accuracy. In this
study, GAIN is used as the final imputation algorithm and
is an unsupervised imputation method that can be applied to
any type of data. GAIN also does not require complete data
for training and can obtain higher accuracy. After the initial
imputation, the algorithm with the minimum error value is
selected from the initial imputation, and then, GAIN is used
for the final imputation, which is called I-GAIN in this paper.
The flowchart of the I-GAIN algorithm is shown in Fig. 9.
The random matrix (Z) is the matrix that simulates the

random noise, and the position of the missing data is recorded
byMa. E, Z, andMawill be used as the input of the generative
network, and Im as the output of the generator. Im and the hint
matrix (H) are used to represent the location and randomness
ofmissing data as the input of the discriminative network. The
output of the discriminative network is the estimated mask
matrix (M̂a). The value of each cell represents the authenticity
of the data at that location. The range of values is from 0 to 1,
with the truest value being 1 and the least false value being 0.
The loss functions are the reconstructed error calculated by E
and Im, as well as the cross entropy by M̂a and Ma.
The generative network and the discriminative network are

updated iteratively by the back propagation method until the
loss converges. In this case, the discriminative network and
the generative network are both strong, and the generative
network can impute the missing data to be closer to the
real data perfectly. This process is a game process. First, the
generative network and the discriminative network are weak.
To achieve the game victory, the generative network keeps
optimizing itself to make the generated data increasingly
realistic so that the discriminative network cannot identify the
fake data. The discriminative network keeps optimizing itself
to improve the discriminative ability, which can correctly dis-
tinguish real and imputed data. Eventually, this process will
reach a balanced state, in which the generative network can
generate more realistic data and the discriminative network
has stronger discriminative power.

Q is the original matrix of vehicle information sensed by
CAVs on a road. Vehicle information includes speed, accel-
eration, traffic flow, density, etc. q = (q1, q2, q3 . . . . . . qd)
is the Q vector corresponding to an observation record of
vehicle information, and ma = (ma1,ma2,ma3 . . . . . .mad)
is the mask vector corresponding to an observer. The formula
of q is:

q =

{
qi if mai = 1
0 if mai= 0

(12)

where q is the vector of the data matrix
...

Q; Q̃ is the estimated

matrix obtained by the initial imputation. The following equa-
tions describe these parameters:

Q̃ = 9(
...

Q,Ma) (13)

where ψ is the algorithm for initial imputation, and:

q̃ =

{
qi if mai = 1
q̃i if mai = 0

(14)

where q̃i is the vehicle information imputed by the initial
imputation process.

For the final imputation, each cell in Z is a random number
from the distribution U (0, 1).
We assume that B is a random variable and b =

(b1, b2, b3 . . . . . . bd) ∈ [0, 1]d is the corresponding B vector:

bj =

{
1 if j ̸= k
0 if j = k

(15)

where bj is the jth value of vector b and k is the first sampling
and k ∈ {1, . . . , d}.
H is:

H = b · Ma + 0.5(1 − b) (16)

and the generative network G is:

Q = G(Q̃,Ma, (1 − Ma) · Z) (17)

The generative network G takes Ma, Z and Q̃ as inputs and
outputs the imputed matrix Q.
The discriminative network D is:

M̂a = D(Q,H) (18)

and takes Q andH as inputs and outputs of the estimatedmask
matrix M̂a.
The pseudocode of the I-GAIN algorithm is shown in

Table 2.

V. EXPERIMENTS AND EVALUATION
All experiments were performed in Python 3.6.12 on a com-
puter equipped with an Intel (R) Xeon(R) CPU E5-2450 0
@ 2.10 GHz and 16.0 GB of RAM. The NGSIM data were
used to conduct numerical experiments to verify the improved
GAIN.

A. DATA AND EXPERIMENT SETUPS
In this section, NGSIM data were used to verify the proposed
method. NGSIM data are high-resolution vehicle trajectory
data on different roads [10]. The experiment was performed
on the I-80 highway and Lankershim Boulevard, an urban
road. In this paper, only datasets related to vehicle speed on
I-80 and Lankershim Boulevard were used, but the proposed
method is not only limited to speed; it is possible to use
any information about vehicles, including acceleration, traffic
flow, and density. The overview of I-80 and Lankershim
Boulevard is shown in Fig. 10 and Fig. 11, respectively.

First, the I-80 highway is taken as R. Each cell of R has
no more than one car, and the car length is limited to 6-7 m,
with a minimum spacing of 7 m on the I-80. Thus, every cell
in R represents a 15 m road segment. Due to the total length
of 503 m, there are 34 segments per lane and 34 rows in R.
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TABLE 2. Pseudocode of I-GAIN.

FIGURE 10. The overview of I-80.

because there are 6 lanes, R has 6 columns, and I-80 can be
regarded as a 6-by-34 R.

The setup is the same on Lankershim Boulevard. Because
LankershimAvenue is an urban road and there are two signal-
ized intersections on the road, the vehicle speed on the road
will be lower, and the minimum spacing between vehicles
will be smaller. The minimum spacing between vehicles is
1 m. According to the length of Lankershim Boulevard, each
cell in R represents a 7 m road segment. In this experiment,
there are 77 segments per lane; thus, there are 77 rows in R.
Because there are 4 lanes, R has 4 columns, and Lankershim
Boulevard can be regarded as a 4-by-77 R.

FIGURE 11. Overview of Lankershim Boulevard.

In the experiments, CAVswere randomly distributed on the
road due to the limited perception range of CAVs. When the
CAV market penetration rate is low, the vehicle information
on the road cannot be completely obtained. The normalized
root mean square error (NRMSE) and symmetric mean abso-
lute percentage error (SMAPE1, SMAPE2) are the formulae
used to determine the error values and are, respectively:

NRMSE
(
v, v̂

)
=

√√√√∑
µϵM (vµ − v̂µ)

2∑
µϵM v2µ

(19)

SMAPE1
(
v, v̂

)
=

1
|M |

∑
µϵM

|vµ − v̂µ|

vµ + v̂µ
(20)

SMAPE2
(
v, v̂

)
=

∑
µϵM |vµ − v̂µ|∑
µϵM (vµ + v̂µ)

(21)

where v is the true speed vector; v̂ is the imputed speed vector;
µ is the index of the vector; and M is the set of indices in v
and v̂. The output of the proposed method in this paper is
a matrix, which must only be expanded into vectors before
comparison.

In the baseline setting, the CAV market penetration rate
is 20%; the CAV-sensed vehicle speed is not disturbed by
noise; |S| = 15 and |L| = 6 on I-80; |S| = 7 and |L| =

4 on Lankershim Boulevard; and the detection range of the
onboard sensor is 30 m.
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TABLE 3. Initial imputation accuracy with the basic setting on I-80.

TABLE 4. Initial imputation accuracy with the basic setting on
Lankershim Boulevard.

TABLE 5. Final imputation accuracy with the basic setting.

TABLE 6. Traffic sensing accuracy of different algorithms In I-80.

B. ALGORITHM COMPARISON
In this paper, the baseline settings were selected to run the
imputation methods. The total time of the initial imputation
was 23 min, and the accuracy of each imputation method was
the average value of each imputation result. Results are shown
in TABLE 3 and TABLE 4.

TABLE 3 and TABLE 4 show that the accuracy of MF is
the highest of the tested methods for both I-80 and Lanker-
shim Boulevard. Then, based on MF, I-GAIN is used for the
final imputation, and results are shown in TABLE 5.
Table 5 shows the final imputation results, which show a

strong improvement in accuracy for both locations compared
to the initial imputation. On I-80, the NRMSE decreased by
19.41%, and SMAPE1 and SMAPE2 decreased by 7.85% and
7.68%, respectively. On Lankershim Boulevard, the NRMSE
decreased by 28.57%, and SMAPE1 and SMAPE2 decreased
by 12.32% and 12.15%, respectively.

While MF achieved the best initial imputation perfor-
mance, the final results achieved using I-GAIN markedly
improved the accuracy for both locations. These findings
suggest that I-GAIN can effectively refine imputation results
obtained using base methods, such as MF. However, more
experiments will be needed to determine the performance of
I-GAIN compared to other imputation methods, as well as its
suitability for different types of traffic data.

Therefore, MF, GAIN, SF-GAIN(SFG), KNN-GAIN
(KNNG), and II-GAIN (IIG) were used to verify the accuracy
and effectiveness of the proposed method with the same
settings. Results are shown in TABLE 6 and TABLE 7.

TABLE 7. Traffic sensing accuracy of different algorithms in Lankershim
Boulevard.

FIGURE 12. Traffic sensing accuracy under different CAV market
penetration rates. (a) Accuracy on I-80. (b) Accuracy on Lankershim
Boulevard.

The experiment evaluated the performance of six different
algorithms for traffic sensing on I-80 and Lankershim Boule-
vard. The evaluation was based on the normalized root-mean-
square error (NRMSE) and two symmetric mean absolute
percentage error (SMAPE) metrics.

Tables 6 and 7 show the accuracy of the six algorithms
on I-80 and Lankershim Boulevard, respectively. I-GAIN is
shown to outperform all other algorithms in terms of accu-
racy, with NRMSE of 19.41% and 28.57%, and SMAPE1 and
SMAPE2 of 7.85% and 7.68%, respectively, on I-80; and an
NRMSE of 0.2857 and SMAPE1 and SMAPE2 of 12.32%
and 12.15%, respectively, on Lankershim Boulevard.

Comparing Tables 5, 6, and 7 shows that I-GAIN improves
the accuracy of traffic sensing by 34.15% and 20.96% on
I-80 and Lankershim Boulevard, respectively, when com-
pared with the best-performing algorithm among the other
five methods.

Overall, experimental results demonstrate that the
proposed I-GAIN algorithm performs better than existing
methods for traffic sensing and t can effectively improve
the traffic perception accuracy of connected and autonomous
vehicles. The final imputation with I-GAIN further improves
the accuracy of each algorithm to varying degrees, as shown
in Tables 3, 4, 6, and 7.

C. IMPACT OF CAVS’ MARKET PENETRATION RATE
In this section, we analyzed the influence of the CAV market
penetration rate on perception accuracy. The market pene-
tration rate in the experiment varied between 0.1 and 0.8,
with 0.05 per change. The experimental results shown in
Fig. 12 indicate that the perception accuracy increased as
the CAV penetration rate increased. To ensure the reliability
of the experimental results, we fixed the CAV permeability
separately and ran the Experiment 10 times, taking the aver-
age to obtain the experimental results at that permeability.
The process was repeated for each market penetration rate to
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FIGURE 13. Traffic sensing accuracy under different CAV detection ranges.
(a) The accuracy on I-80. (b) The accuracy on Lankershim Boulevard.

FIGURE 14. Traffic sensing accuracy under different road congestion
indices. (a) Accuracy on I-80. (b) Accuracy on Lankershim Boulevard.

obtain a comprehensive analysis of the influence of the CAV
market penetration rate on perception accuracy.

Fig. 12 shows that the higher the market penetration rate
of CAVs, the higher the perception accuracy on both I-80 and
Lankershim Boulevard. This result occurs because as more
CAVs are introduced into the traffic system, there is increased
communication and cooperation among the vehicles, which
leads to a more accurate perception of the traffic situation.
The critical market penetration rate for I-80 is approximately
0.7, while that of Lankershim Boulevard is approximately
0.75; thus, once the market penetration rate reaches these val-
ues, there is a marked improvement in perception accuracy.

However, the error of Lankershim Boulevard is larger than
that of I-80 under the same market penetration rate. This
result likely occurs because Lankershim Boulevard is an
urban road with a denser vehicle distribution and shorter
distance between vehicles. As a result, the corresponding R
matrix has more rows, which increases the chance of errors
in the data.

Results thus suggest that increasing the market penetration
rate of CAVs can markedly improve perception accuracy, but
the effect may vary depending on road characteristics such as
vehicle density and road length.

D. IMPACT OF CAVS DETECTION RANGE
In this section, the influence of CAV detection range on
perception accuracy is analyzed. In the experiment, the per-
ception range of the sensor is 20-60 m, which is defined
in [39]. Experimental results are shown in Fig. 13.
As shown in Fig. 13, there is a clear trend that the percep-

tion accuracy of CAVs increases as the detection range of the
CAVs’ onboard sensors increases on both I-80 and Lanker-
shim Boulevard. This result is expected because increasing

the detection range allows CAVs to sense more vehicles and
thus obtain more accurate traffic information.

However, the perception accuracy does not continue to
increase when the detection range reaches 30 m. The reason
for this result is that most adjacent vehicles on I-80 and
Lankershim Boulevard are usually within 30 m of each other;
thus, increasing the detection range beyond this range does
not markedly improve the perception accuracy.

Thus, experiments show that increasing the detection range
of CAV onboard sensors can improve the perception accu-
racy of CAVs. However, there is a threshold for maximum
improvement, and once the detection range reaches a certain
level, additional increases in the detection range do not nec-
essarily lead to improvements in perception accuracy.

E. IMPACT OF ROAD CONGESTION INDEX
In this section, the performance analysis of the CAV sensing
algorithm for different road congestion indices on the same
road section is reported. where the congestion index is calcu-
lated by dividing the current average real vehicle speed of the
road section by the road design speed. Experimental results
are shown in Fig. 14.

The experimental results shown in Fig. 14 indicate that
the accuracy of the CAV traffic sensing algorithm varies at
different levels of road congestion. Specifically, as the road
congestion index increases, the LOSS gradually increases,
and the accuracy of the algorithm decreases. These results
likely occur because higher congestion levels result in more
complex traffic patterns and larger areas of occlusion, which
can make it more difficult for the perception algorithm to
accurately detect and track individual vehicles.

Overall, the performance of CAV perception algorithms
depends heavily on the specific road conditions and traffic
patterns encountered, and different algorithms may be better
suited for different types of roads or driving environments.
Additional research is required to better understand the fac-
tors that affect the accuracy and effectiveness of CAV per-
ception algorithms and to develop more robust and reliable
methods for detecting and tracking vehicles in real-world
driving scenarios.

VI. CONCLUSION
With the rapid development of CAV technology, many traffic
problems can be solved using CAVs. CAVs as mobile sensors
have a lot of potential to reduce or even eliminate the need
for fixed-location sensors in existing transportation systems,
thereby reducing costs for public agencies. However, when
the market penetration rate of CAVs is low, CAVs may not be
able to perceive information about all vehicles on the road.

In this study, we developed a traffic-sensing model that
improves CAV perception. The model estimates the vehicle
information in the perceptual blind spots using the proposed
I-GAIN. To facilitate data imputation, we first model traffic
states with matrices. In this process, we transform roads into
roadmatrices based on information such as the length of vehi-
cles, the minimum spacing between vehicles, and the number
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of lanes. Then, imputation is performed, which is divided
into initial and final imputations, and optimizes the GAIN
algorithm into the I-GAIN algorithm to improve accuracy.
Compared with other algorithms, the accuracy of the pro-
posed I-GAIN is higher. NGSIM data were used to verify the
accuracy and robustness of the proposed algorithm. Although
experiments were conducted only on I-80 and Lankershim
Boulevard, the proposed algorithm can be extended to any
road. In addition, the effects of market penetration rate of
CAVs and the detection range of sensors are also investigated.

This study and its methods have certain limitations.
We only used numerical experiments to verify algorithm
accuracy. Although NGSIM data are collected from pure
HDV traffic flow, the characteristics of traffic flow mixed
with HDVs and CAVs may have some differences. We also
only used speed to verify the accuracy of the proposed
method. Distance headway, time headway, and density of
the mixed traffic flow also play important roles in traffic
management and control for mixed traffic flow. The proposed
method also did not consider weather conditions; in adverse
weather conditions, the proposed method should be verified
and evaluated in more detail.
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