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ABSTRACT The traditional grey wolf algorithm is widely used for feature selection. However, within
complex feature multi-dimensional problems, the grey wolf algorithm is prone to reach locally optimal solu-
tions and premature convergence. In this paper, a threshold binary grey wolf optimizer based on multi-elite
interaction for feature selection (MTBGWO) is proposed. Firstly, the multi-population topology is adopted
to enhance the population’s diversity for improving search space utilization. Secondly, an information
interaction learning strategy is adopted for the update of sub-population elite wolf position (optimal position)
via learning better position from other elite wolves; in order to improve the local exploitation ability of the
sub-population. At the same time, the command of β and δ wolves (second and third best positions) for
population position updates is removed. Finally, a threshold approach is employed to convert the continuous
position of grey wolf individuals into binary one to apply in the feature selection problem. Further, The
MTBGWO algorithm proposed in this paper is compared with the traditional binary grey wolf algorithm
(BGWO), binary whale algorithm (BWOA), as well as some recently developed novel algorithms to exhibit
its superiority and robustness. Totally 16 classification datasets, from the UCIMachine Learning Repository,
are chosen for comparison. The Wilcoxon’s rank-sum non-parametric statistical test is carried out at 5%
significance level to evaluate whether the results of the proposed algorithms significantly differs from those
of the other algorithms. In the experimental results for all datasets, the overall average accuracy of the
MTBGWO algorithm is 94.7%, while the highest of the other algorithms is 92.8% and the selected feature
subset is 25%of the total dataset. TheMTBGWOalgorithm selectsmuch smaller subset of features than other
algorithms. In terms of computational efficiency, the overall processing time of MTBGWO is 24.2 seconds,
whereas HSGW is 44.1 seconds. The results reveal that the MTBGWO has shown its superiority in solving
the feature selection problem.

INDEX TERMS Grey wolf optimizer, feature selection, binary optimizer, elite interaction strategy.

I. INTRODUCTION
With the development of information technology, the volume
of data increases remarkably in recent years [1]. However, the
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growing archives inevitably contains redundant and irrelevant
data. The massive useless information may retard valid data
acquisition and thus reduce machine learning performance
(classification or prediction). Therefore, feature selection is
an essential data processing step [2]. In general, a subset of
relevant features is selected from the original feature space
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based on some evaluation criteria to eliminate the effects of
redundant and cluttered data to improve the learning gener-
alization ability. The existing feature selection techniques are
mainly divided into filters andwrappers [3]. The filtermethod
is based on the general representation of features, such as
goal relevance, self-correlation, and divergence. The filtering
method has the advantage of efficiency, but the disadvantage
is that the filtered subset of features is not necessarily useful.
In contrast to the filtering method, the wrapper method [4]
filters features based on the effect of the training model,
so the first step is to divide the training and test sets, and then
search for an optimal subset of features that makes the model
perform best on the test set in terms of metrics.

The main strategies of the wrapper approach for searching
feature subsets are complete, random, and heuristic search.
In a complete search, all possible combinations of feature
subsets are traversed and the one with the best score is
selected. No wonder, the complexity of this method is expo-
nential (2N , N is the number of features), which is com-
putationally expensive and impractical in many cases. The
random search method can be used as an alternative strat-
egy, selecting multiple feature subsets and then selecting the
feature subsets with high evaluation scores. However, the
computational time required in random search for the opti-
mal subset in a high-dimensional dataset is almost the same
as the complexity of complete search. So heuristic search
attracts attention. In heuristic search, heuristic information
can guide the search and reduce the search space. Model
score or feature weight can be used as heuristic information.
In contrast to complete and random searches, the heuristic
search can balance the efficiency and accuracy of feature
selection.

Due to their strong adaptivity in exploration and exploita-
tion, various metaheuristic algorithms have been suggested
to solve feature selection problems [5], [6], [7]. These algo-
rithms include the Differentiation Evolution algorithm (DE)
[8], Artificial Bee Colony algorithm (ABC) [9], Genetic
Optimization algorithm (GA) [10], Particle Swarm Opti-
mization algorithm (PSO) [11], Harris Hawk Optimization
(HHO) [12], simulated annealing algorithm (SA) [13] and
Grey Wolf Optimization (GWO) [14], [15], [16] etc. Com-
paring with other heuristic algorithms, GWO algorithm has
the advantages of fewer adjustable parameters, deprivation-
free mechanism, and the ability to avoid the local optima.
Therefore, it has been used in many research areas in the
last years, such as network prediction [17], feature subset
selection [18], [19], solving the dynamic economic load dis-
patch problem of the power system [20]. For the problem of
feature selection, the solution can be represented as a vector
of features with size n, which is the number of features and
the vector items can be binary values with 1 (the feature is
included) and 0 (the feature is not included). Hence, GWO
starts with an initial random population of vectors holding
randomly selected features. Then, using the exploration and
exploitation capabilities, GWO can find the optimal subset of
features.

However, GWO has some drawbacks in feature selection
problems similar to other metaheuristic algorithms [21], [22].
The traditional GWO method is proposed to perform contin-
uous optimization, but feature selection is a multi-objective
combinatorial optimization problem, which means the grey
wolf algorithm must be binarized. The binarization requires
flipping of consecutive positions, leading to incomplete local
exploitation, and thusmay fall into local minima. Hence, poor
performance in high-dimensional feature spaces is the main
problem faced with feature selection. In this work, a threshold
binary grey wolf optimizer based on multi-elite interaction is
proposed to deal with these disadvantages in feature subset
selection.

The main contributions of this article are summarized as
follows:

1.The traditional S-shaped transfer function used by
Grey Wolf optimizer for binarization is analyzed, and the
threshold-based method is used to replace it.

2.A multi-subpopulation topology for global search is
adopted, in which the elite wolf (best position) learns other
excellent positions by swapping to promote information
exchange among subpopulations and bring diversity into their
subpopulations.

3.The guiding rights of β wolf (second-best position) and δ

wolf (third-best position) are removed so that the population
is allowed to explore the elite wolf position more deeply and
improves the local exploitation ability.

The rest of the work in this paper is organized as follows.
Section II reviews recent works on binary grey wolf optimizer
(BGWO) for feature selection. Section III shows the basic
background of the BGWO algorithm and the binarization
approach. The MTBGWO algorithm is described in detail in
Section IV. Section V discusses the MTBGWO algorithm’s
experimental results and the comparison of other algorithms.
Lastly, conclusions and future work are stated in Section VI.

II. RELATED WORK
GWO has been applied for different disciplines such
as face recognition, gene selection, electromyography
classification, diagnoses of diseases, interference detection
systems, and feature selection [23]. Table 1 shows the
current excellent binary optimization algorithms. Recently,
Purushothaman et al. [24] proposed a hybrid GWO with
Grasshopper Optimization Algorithm to select the best global
optimum from the local optimum. Furthermore, the selected
optima were clustered using the Fuzzy c-means (FCM)
clustering algorithm. This algorithm minimized the compu-
tational time in text feature selection and text clustering.
Emary et al. [25] suggested two different binary methods.
In the first approach, individual steps toward the first three
best solutions are binarized and then stochastic crossover is
performed among the three basic moves to find the updated
binary grey wolf position. In the second approach, sigmoidal
function is used to squash the continuous updated position,
then stochastically threshold these values to find the updated
binary grey wolf position.
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Binary WOA algorithm has been introduced in [26] to
select the subset of features for wrapper feature selection and
classification. Authors in [27] and [28] proposed a binary
hybrid GWO and they used the KNN classifier. They have
assessed the performance of their method by using eighteen
standard benchmark datasets from the repository of machine
learning.

In [29], a multi-strategy ensemble GWO is proposed to
boost the precision and efficiency of the original GWO. Dhal
and Azad [30] proposed a binary version of the hybrid two-
phase multi-objective FS approach, based on PSO and GWO.
In the first stage, the PSO performs a global search. Then a
modified PSO and GWO based on Newton’s second law of
motion starts the local search from the global search results in
the second stage. ln [31], [32], [33], and [34], the search capa-
bility and convergence speed are improved in this method.
Tu et al. [35] presented an improved algorithm called hierar-
chy strengthened GWO, in which the elites are strengthened
to study the strategy from the superiority wolf, preventing the
low-ranking wolf’s misleading. Then, a differential evolution
(DE) strategy is applied to the ω wolf to avoid falling into
local optimization. Emary et al. [36] proposed a binary variant
of the Antlion Optimizer (AID). Ant Lion Optimizer (ALO)
balances exploration and exploitation using a single operator
that adaptively searches the solution domain to find the best
solution.

Moreover, hybrid metaheuristic algorithms have received
a lot of attention. Al-Wajih et al. [37] suggested explo-
ration and exploitation of hybrid GWO-HHO balance will
improve the performance of the search algorithm. In another
study, Basak et al. [38] used PCA in combination with
GWO to reduce calculation and ensure faster convergence.
Hu et al. [21] introduction of covariance matrix adaptation
evolution strategy and orthogonal learning strategy intoGWO
is adopted to accelerate the algorithm’s convergence speed
and to make the equilibrium characteristics more stable.
Mafarja andMirjalili [39] proposed two hybridizationmodels
for designing different feature selection techniques based
on the Whale Optimization Algorithm (WOA). In the first
model, the Simulated Annealing (SA) algorithm is embedded
in the WOA algorithm, while in the second model, it is used
to improve the best solution found after each iteration of the
WOA algorithm.

With the range of values in the binary condition,
Hu et al. [40] proposed a new update equation parameter to
balance the ability of global search and local search. In [41],
the authors established a time-varying transfer function after
analyzing BPSO using existing transfer functions and identi-
fying their drawbacks in the balance between exploration and
exploitation. Nguyen et al. [42] used a dynamic parameter
setting strategy to improve the searchability of BPSO and
investigated whether and how the new momentum and veloc-
ity can help particles better explore the large and complex
search space of feature selection and can produce smaller sub-
sets of features with higher classification performance. The

Khan et al. [43] proposed algorithm is based onmodifying the
salp swarm algorithm (SSA) using Levy Flight Distribution
and spiral movement of particles to enhance the searching
capabilities. Ebeed et al. [44] proposed Improved Lightning
Attachment Procedure Optimization (ILAPO) to boost the
search capability and avoid the stagnation of conventional
LAPO. The algorithm is based on two improvements: i) Levy
flight to enhance the exploration process, ii) Spiral movement
of the particles to improve the exploitation process of the
LAPO. Ma et al. [45] developed a multi-group optimization
strategy in which decision variables are ranked according
to their statistical significance determined during a limited
number of initial PSO runs. This ranking divides the orig-
inal set of high-dimensional decision variables into groups
containing a finite number of decision variables. Chantar
et al. constructed a binary grey wolf optimizer with elite-
based crossover, which have a higher chance of jumping out
of the local optimum. If their solution quality is low, they
can achieve a high-quality solution instead of a low-quality
average position as in the basic BGWO [46].

III. BASIC ALGORITHMS AND METHODS
A. GREY WOLF OPTIMIZER
Many intelligent optimization algorithms have been invented
and applied to various optimization problems in recent years.
GWO is a metaheuristic algorithm proposed by Faris et al.
in 2014 [47]. It has attracted much attention in different
optimization fields because the GWO requires few parame-
ters to be adjusted and can achieve a good balance between
global search and local exploration in a simple way to achieve
effective convergence. The principle of GWO is as follows.
A grey wolf pack has a strict hierarchy with four different
levels of leadership: α, β, δ, and the rest called ω. The α

wolf is the leading wolf, the β and δ wolf obey the α wolf
and assist it in making decisions; the lowest level is the
ω wolf, which generally needs to obey other grey wolves.
GWO generally simulates three pack hunting behaviors in the
algorithm: surrounding prey, chasing prey, and attacking prey.

1) SURROUNDING PREY
The grey wolf pack encircles the prey during the hunting pro-
cess. Eq. 1 is utilized to mathematically model the distances
between each search agent (wolf) and the prey. Grey wolf
location is updated in Eq. 2.

D⃗ = |C⃗
−→
Xp(t) − X⃗ (t)| (1)

X⃗ (t + 1) =
−→
Xp(t) − A⃗ · D⃗ (2)

where t represent the number of current iteration, X⃗p(t) and
X⃗ (t) represent the position vector of the prey and α wolf,
D represent the distance between the individual grey wolf
and the prey, C and A are coefficient variables calculated as
follows:

a = 2 −
2t
tmax

(3)
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TABLE 1. The current excellent binary optimization algorithms.

C⃗ = 2 · r2 (4)

A⃗ = 2a⃗r1 − a⃗ (5)

where decays linearly from 2 to 0 during iteration, max is the
maximum number of iterations of the algorithm, and r1 and
r2 are random numbers between 0 and 1.

2) CHASING PREY
The grey wolf algorithm is guided by the three best solutions,
α, β, and δ, for the population to pursue and besiege the prey.
The α wolf position represents the optimal solution, and β

and δ wolf are positioned closer to the prey than the rest
grey wolves. Each search agent in the population updates its
position around the prey randomly, as in Eq.6-12.

D⃗α = |C⃗1 · X⃗α − X⃗ | (6)

D⃗β = |C⃗2.X⃗β − X⃗ | (7)

D⃗δ = |C⃗3.X⃗δ − X⃗ | (8)
−→
X1 = X⃗α −

−→
A1.D⃗α (9)

−→
X2 = X⃗β −

−→
A2 · D⃗β (10)

−→
X3 = X⃗δ −

−→
A3 · D⃗δ (11)

X⃗ (t + 1) =

−→
X1 +

−→
X2 +

−→
X3

3
(12)

where X⃗1 X⃗2, X⃗3 represent the position updates of α, β, δ wolf
and X⃗ (t + 1) is the update of individual grey wolf position.

3) ATTACKING PREY
Wolves update their locations when attacking the prey
between their current position and the prey’s position so that
|A| < 1. The α, β, δ wolves move in pursuit of the prey and
unite when they strike the prey. |A| that takes values above 1
or below -1 randomly to deviate the wolves from the prey.
The diagram of grey wolf algorithm is shown in Fig.1.

Algorithm 1 presents continuous grey wolf optimization
algorithm. It is worth mentioning that the updating of param-
eter a can assist in switching from exploration to exploitation
trends.

B. BINARY GREY WOLF OPTIMIZATION ALGORITHM
The traditional GWO algorithm is used to solve continuous
space problems. As the feature selection is a binary problem,
a spatial mapping from real values to binary is required for

Algorithm 1 Continuous GreyWolf Optimization Algorithm

Input: GWO population
−→
Xi (i = 1, 2, . . ., n) with size n,

maximum iterations number Max iter, and fitness func-
tion Fn.

Output:
−→
Xa: Optimal grey wolf position; F(

−→
Xa): Bestfitness

value;
1: Find best, second best and third best individuals as

−→
Xα ,

−→
Xβ ,

−→
Xδ

2: while i<Max iter do
3: for each Wolf

−→
Xi in the population do

4: Update current wolf’s position according to
5: Eq.12.
6: end for
7: Update −→a ,

−→
A and

−→
C .

8: Calculate the fitness function Fn for each
−→
Xi

9: Update
−→
Xα ,

−→
Xβ ,

−→
Xδ .

10: end while

GWO [48]. The grey wolf position dimension component is
converted between 0 and 1, where 0means the feature will not
be selected and 1 means being selected. The sigmoid function
is adopted whose role is to scale the continuous values to be
0 or 1.

The grey wolf position is constrained to the interval [0, 1]
by the sigmoid function, and the transfer function converts
the grey wolf position by Eq.13:

x t+1
d =

 1, if sigmoid

(−→
X1 +

−→
X2 +

−→
X3

3

)
≥ rand

0, otherwise
(13)

x t+1
d represents the binary update position in the

d-dimension of t+1 iterations,
−→
X1 ,

−→
X2 and

−→
X3 represent the

position updates of α, β, δ wolves, and the rand is the
random number extracted between [0,1]. Eq.14 is the sigmoid
function S(x):

sigmoid(x) =
1

1 + e(−10∗(x−0.5)) (14)

IV. PROPOSED FEATURE SELECTION METHOD
This section will detail the threshold binary grey wolf opti-
mizer based on multi-elite interaction for feature selection,
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FIGURE 1. Position updating in the GWO algorithm.

referred to as MTBGWO. Also, the fitness function for
measuring the solution quality of the GWO algorithm will
be proposed.

A. THRESHOLD-BASED BINARIZATION
In the standard BGWO, the coordinate is determined with-
out considering the previous position. The new position is
determined by summing the components of the weighted dis-
tance vector to determine the probability of the corresponding
position taking the value 1. [49]. As shown in Eq.13, the
position of the grey wolf changes from 1 to 0 or from 0 to
1 through the sigmoid function. Multiple overturn lead to
ineffective continuous exploration and development of grey
wolf position in certain area. The algorithmmay fall into local
optimum.

Many scholars have contributed to balance global and
local searches. The first approach focuses on designing new
rules to update individual positions. For example, Banka
and Dara [50] proposed a hamming distance-based binary
particle swarm optimization (HDBPSO) for feature selection,
classification, and validation. The hamming distance is used
as an approximation for updating particle velocity in binary
PSO. In another improved BPSO [51], a new position update
rule is used to enhance the performance of the original BPSO
for gene selection from microarray data.

In contrast, the second approach focused on replacing the
sigmoid transfer function with new ones to update each parti-
cle’s position and encourage better search space exploration.
The V-shaped and linear normalized transfer function is one
typical scheme proposed in [49], [52], and [53]. These trans-
fer functions can promote more exploration than traditional
sigmoid transfer functions.

In order to keep the position change of the wolf in continu-
ous space, the threshold method is adopted for the binary grey
wolf algorithm. The principle is to continue the traditional

FIGURE 2. The individual position transformation of grey wolf.

GWO location update mechanism so that the individual
positions of grey wolves are allowed to continuously move
within the range of [0,1], and then the position values are sep-
arated into 0 or 1 based on the threshold. It preserves the struc-
ture and position motion mechanism of the GWO algorithm,
and makes the dimension of the individual positions of the
wolf represent the selection of features or not. This scheme
replaces the sigmoid function of position mapping, which is
helpful to improve the local utilization of the algorithm. The
individual position transformation of the grey wolf is shown
in Fig.3.

Fig.2 shows an example of a demonstration solution for
feature selection, where XN represents the grey wolf individ-
ual in N-dimension. The real value of individual grey wolf is
within [0,1], and its position is converted to 1 or 0 by Eq.15,
representing selected and unselected features.

x t+1
d =

{
1, x td ≥ 0.5
0, otherwise

(15)

x t+1
d represents the binary update position in the

d-dimension of t+1 iterations, and 0.5 is the threshold.

B. MULTI-ELITE INFORMATION INTERACTION GREY WOLF
OPTIMIZATION ALGORITHM
Obtaining a high-quality feature subset requires balancing
the global and local search capabilities of the grey wolf
algorithm. This paper introduces a multi-elite interactive grey
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wolf algorithm. Using Multi-Subpopulation topology, the
position of the elite wolf is shared for information analysis
and transmission, thus improving global search capabilities.

1) MULTI-ELITE INTERACTION TOPOLOGY
In the process of evolution, the whole population is divided
into several small sub-populations based on the total number
of individuals [54]. The best position of each sub-population
is called elite wolf. Elite wolves improve searchability by
facilitating information interaction. The positions of elite
wolves in each subpopulation is updated by sharing the best
positions of other subpopulations, and the vicinity of other
best positions is explored; the position updates in Eq. 16-17.

Alphai = mean

 m∑
j=1,j̸=i

Alphaj

 ∗ (1.0 + N (0, 1)) (16)

Xα−i =

{
Xα−i, f

(
Xα−i

)
< f

(
Alphai

)
Alphai, otherwise

(17)

Here m is the number of sub-populations and mean () is to
take the average value. N (0,1) is normally distributed random
number with mean 0 and variance 1. Alphai represents the
position of the elite wolf after position transformation. Xα−i
represents the best position in the ith population. Thus, elite
wolves learn the best position of other subgroups through
interactive strategies to find better positions. When position
in other subpopulations are better than their own, updating
their own position by learning other position information
effectively avoids falling into local optimum.

2) POSITION UPDATE
GWO is an optimization algorithm based on hierarchical
social relations, in which α, β and δ wolves have different
degrees of accuracy in the distance and direction from their
prey. But α, β and δ wolves have the same ability to guide the
motion of ω wolves. Unreasonable guidance will cause the
convergence speed of the algorithm to slow down, making
it easier to reach local optimization, and ultimately making
the optimal solution output by the algorithm not the optimal
solution required in the actual situation. Therefore, to avoid
the interference of β and δ wolves, only α wolves (the best
position) is used to guide the updating of wolf group posi-
tions. At the same time, the best position of the subgroup
is updated by using the interactive information of the elite
wolves in multiple subgroups, which greatly improves the
reliability and adaptability of the best position. The specific
formula is as follows:

X (t + 1)i = Xα−i − A⃗ · D⃗α−i (18)

X(t+1)i represents the position of the ith sub-population
of individual, Xα−i is the position of the ith sub-population α

wolf, and A⃗ and D⃗ are calculated by Eq.5-6.
So, updating the population position by α wolf after the

information interaction endues the algorithm with a better
optimum finding ability and faster convergence speed.

Algorithm 2 Threshold Binary Grey Wolf Algorithm

Input: GWO population
−→
Xi (i = 1, 2, . . ., n) with size n,

number of subgroups m, maximum iterations number
Max iter, and fitness function Fn.

Output:
−→
Xa: Optimal grey wolf position; F(

−→
Xa): Bestfitness

value;
1: Initialize an agent of n wolves positions ∈ [0,1].
2: Individual grey wolves are divided into m groups
3: Find best, second best and third best individuals as

−→
Xα ,

−→
Xβ ,

−→
Xδ

4: while i<Max iter do
5: for each Wolf

−→
Xi in the population do

6: Update current wolf’s position according to
7: Eq.15.
8: end for
9: for each Wolf

−→
Xi in the population do

10: Calculate the fitness function Fn for each
11: subgroups
12: Update the position of the best agent in the each
13: subgroup

−→
Xα by using Eq.16 − 17.

14: end for
15: Update −→a ,

−→
A and

−→
C .

16: update individual position based Eq.18.
17: end while

3) FITNESS FUNCTION
Feature selection can be considered a multi-objective opti-
mization problem, where the evaluation of the generated
feature subset depends on two criteria: maximizing the classi-
fication accuracy as the primary objective andminimizing the
number of selected features as the secondary objective. Eq.19
implements the conversion of multi-objective optimization
into a single-objective optimization problem. In the iterative
process, having the smallest fitness value is considered as the
best solution.

Fitness = ϕ ∗ error + µ ∗
| num−feat |

| max−feat |
(19)

ϕ and µ are the parameters corresponding to the classifi-
cation accuracy and the number of feature subsets, ϕ ranges
from [0,1], µ=1-ϕ, and error is the error rate of the classifier.
The fitness function maximizes the percentage of correct
classification rate at ϕ=0.99; |num_feat| / |max_feat| repre-
sents the ratio of the number of selected features to the total
number of features.

V. EXPERIMENTAL RESULTS
In this section, a series of performance evaluations and com-
parisons are made between the proposed MTBGWO algo-
rithm and other algorithms. Firstly, the threshold-based bina-
rization method of this paper is compared with the traditional
binarization to verify its superiority. Then MTBGWO algo-
rithm is compared with the excellent traditional optimiza-
tion algorithms (BGWO [25], BWOA [26]) in recent years.
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TABLE 2. List of used datasets in the experiment.

Finally, the advanced methods (HSGW [27], BGWOPSO
[28]) are compared with the current algorithms in this paper.

A. EXPERIMENTAL SETUP
To verify the efficiency of the proposed algorithm
MTBGWO. This experiment selected 16 datasets from the
UCI database [55]. Table 2 describes the properties of the
datasets in terms of the number of feature attributes, the num-
ber of instances and the number of classes. Parameters of
the comparison algorithm are taken from the literature to
ensure fair comparison between algorithms. Parameters of
the proposed algorithmMTBGWO are set either according to
domain-specific knowledge as in the case of ϕ,µ parameters,
based on trial and error on small simulations, or common
in the literature such as the rest of the parameters. Also,
to be fair for comparison and to be able to obtain reliable
statistical analysis, each algorithm was set the same number
of iterations and number of population sizes and executed
30 times independently. Table 3 lists parameters setting for all
the algorithms used in this work. AKNN classifier (k=5) was
taken to evaluate the best solution in this study. The dataset
was divided into K segments by K-fold cross-validation, one
segment was used as a test set and the rest was used for the
training set. The results are analyzed and compared based on
the classification accuracy, average fitness, best fitness, worst
fitness, average selected features size and average calculating
time. Moreover, a statistical Wilcoxon’s test is assessed in

TABLE 3. Parameter settings of the algorithms used for comparison in
the current study.

order to verify the difference of the accuracy results between
MTBGWO, BGWO, BWOA, HSGW and BGWOPSO.

B. ASSESSMENT MEASURES
To evaluate the performance of the proposed method
(MTBGWO), some measures are defined as follows:

1) THE MEAN ACCURACY
The algorithm accuracy is evaluated by the average accuracy
of the subset of features selected as the most relevant in the
classifier when the algorithm runs M times. It is calculated
according to Eq.20.

Average Accuracy =
1
M

M∑
k=1

AccuracyK (20)

2) THE MEAN FITNESS FUNCTION
The mean fitness function is the average of the fitness func-
tion obtained when the algorithm is run M times, which is
calculated as follows:

Mean fitness =
1
M

M∑
k=1

gk∗ (21)

where gk∗ the value of the fitness function obtained at run k.

3) THE BEST FITNESS FUNCTION
The best fitness function is the minimum value of the fitness
function obtained by M runs, calculated as follows.

Best fitness = MinMK=1 g
k
∗ (22)

where gk∗ the best value obtained at run k.
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4) THE WORST FITNESS FUNCTION
The value of the worst fitness function refers to the maxi-
mum value of the fitness function obtained by running the
algorithm M times and calculated as follows.

Worst fitness = MaxMK=1 g
k
∗ (23)

where gk∗ the worst value obtained at run k.

5) AVERAGE SELECTED FEATURES SIZE
This metric refers to the average size of the selected features
to the total number of features. When the algorithm runs M
times, its average selection is calculated as in Eq.24:

Average selection =
1
M

M∑
k=1

Avg.sizek

Tf
(24)

where Avg.sizek is the selected features at run k, and Tf
shows the dataset’s total number of features.

6) AVERAGE CALCULATING TIME
This indicator refers to the average calculation time in sec-
onds. In the number of runs its average computation time is
calculated as in Eq.25:

Average time =

M∑
k=1

Avg.timek (25)

where the average Calculating time spent when Avg.timek is
run k times.

7) WILCOXON’s RANK SUM TEST
In order to better understand the importance of the technique
under consideration, it is important to explain its impact
from a statistical point of view. Therefore, the statistical
Wilcoxon’s ranksum test is usually used to verify the exper-
imental results of meta-statistical computational methods.
Wilcoxon’s ranksum test is one of the non-parametric sta-
tistical tests used to statistically distinguish the performance
of methods in competition [56]. The proposed MTBGWO
was validated against each competing algorithm using this
test. The Wilcoxon’s rank sum test returned p-values, which
helped to analyze the differences in the paired groups.

C. DISCUSSION
1) THE RESULT OF MTBGWO
Table 4 shows the average data of the proposed MTBGWO
algorithm run 30 times on 16 datasets. The results include
average accuracy, average fitness, the average number of
selected features and computational time. The second highest
accuracy rate in the Vote dataset is 99.1%. The average accu-
racy in the Breast_Cancer and KrVsKpEW datasets is also
high at 98%. The selection of feature subsets also showed
superiority in different datasets, of which 12 datasets have
less than 10 feature subsets. Among them, Breast_Cancer,
Heart, and Wine data have 3.3, 3.7, and 3.8 minimum fea-
ture subsets, respectively. In addition, the proposed feature

selection method has less computation time (in seconds) on
the following datasets: PenglungEW, Zoo, and LSVT with
2.0, 2.6 and 2.8 seconds, respectively. It can be concluded
that the proposed model selects the small number of features
within a reasonable time frame and has good results in terms
of classification accuracy. Thus, the proposed MTBGWO
algorithm can balance global search and local exploration
during optimization iterations.

2) COMPARISON BETWEEN THRESHOLD BINARIZATION
AND TRADITIONAL BINARIZATION
Table 5 compares the important performance metrics of the
threshold binarization-based grey wolf algorithm (TBGWO)
and the traditional binary grey wolf algorithm (BGWO).
As seen from the table, TBGWO is significantly better than
the BGWO algorithm for classification accuracy in 14 out
of 16 datasets, which suggests that the threshold binarization
approach positively affects algorithm optimization. In addi-
tion, TBGWO is significantly better than BGWO algorithm
in feature selection for most datasets. BGWO is superior
to TBGWO in only three small feature subsets. TBGWO is
better than BGWO regarding classification accuracy and the
number of selected features in medium and large datasets.
The result shows that the threshold binarization approach
benefits more for large and complex search spaces.

3) COMPARISON OF PROPOSED MTBGWO ALGORITHM
WITH RELATED ALGORITHM
Tables 6 to 11 provide statistical comparisons of the proposed
MTBGWO with other state-of-the-art algorithms in classifi-
cation accuracy, average fitness, best fitness, worst fitness,
selected feature size, and computation time. The best results
are highlighted in bold. Table 6 shows that the accuracy of
the proposed MTBGWO is higher than other methods in all
datasets except Sonar, BreastEW and Vote. The best per-
formance was achieved in Wine, Exactly, PenglungEW and
Zoo datasets with 100% accuracy. According to the results
in Table 10, the average number of feature subsets selected
by MTBGWO and other methods in the dataset is shown.
The proposed MTBGWO method selects fewer feature sub-
sets than other algorithms in most of the datasets, and the
number of feature subsets selected is equivalent to less than
25% of the total number of features. Examining the results
in both Table 6 and Table 10, we can see that MTBGWO
selects smaller subset of features while maintaining its good
performance in classification. This proves that MTBGWO
can search for optimized multi-objectives. Tables 7, 8, and 9
summarize the multiple statistical measures based on dif-
ferent algorithms running on different datasets. From these
tables, the MTBGWOmethod has better average fitness than
the BGWO, BWOA, HSGW and BGWOPSO algorithms
on 13 datasets. The MTBGWO method outperforms other
algorithms in terms of best fitness in 10 datasets and worse
than other fitness in only three datasets. The results demon-
strate the superiority of the proposed MTBGWO method
showing that it can effectively balance global search and
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TABLE 4. Results obtained by the proposed MTBGWO represented by Average (AVG) values and the corresponding standard deviation (SD).

TABLE 5. Comparison of the average accuracy, average fitness function and average number of features selected for proposed TBGWO and BGWO.

local exploitation capabilities during optimization iterations.
Another key aspect is the running time, and Table 11 shows
the average running time (in seconds) for all algorithms in

the dataset. The results show that the average running time
is the least for the WOA and GWO methods and the longest
for HSGW. This is because the hybrid methods embed more
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TABLE 6. Comparison between average accuracy and corresponding standard deviation (SD) of proposed MTBGWO and related work methods.

TABLE 7. Comparison between mean fitness function of the proposed MTBGWO and related work method.

operators to the extent that they add additional computa-
tional overhead. The proposed MTBGWO method is close
to the runtime of the BGWO method, but it is desirable

considering the trade-off between accuracy and runtime.
It achieves high classification accuracy, and the running time
is within a reasonable range.
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TABLE 8. Best fitness function comparison between the proposed MTBGWO and related work methods.

TABLE 9. Worst fitness function comparison between the proposed MTBGWO and related work methods.

Fig.3 show boxplots of the accuracies for all datasets
achieved by the optimizers. The proposed MTBGWO,
BGWO, BWOA, HSGW and BGWOPSO. From each

boxplot we can determine the first quartile (Q1), the third
quartile (Q3), the lower and the higher values. In addi-
tion, the red line in the box indicates the median value.
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TABLE 10. Comparison between average selected feature size of proposed MTBGWO and related work methods.

TABLE 11. The average computational time (seconds) comparison between the proposed model and related work methods.

Note that the boxplots are drawn after running each algo-
rithm 30 times, and they reflect the classification accuracy.
From Fig.3 we can conclude that the MTBGWO has higher

accuracy for all datasets except sonar, KrVsKpEW,
BreastEW and Vote in comparison to other algorithms. Also,
the median of the proposed algorithm has greater value
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TABLE 12. P-values of the Wilcoxon rank sum test (p⩾ 0.05 are shown in bold face).

FIGURE 3. Boxplot of MTBGWO and other algorithms over all datasets.

compared to the remaining algorithms. Overall, these box-
plots allow us to observe that MTBGWO is competitive and

often superior on the majority of datasets. To verify these
algorithms’ convergence curves of their fitness functions
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FIGURE 4. Convergence curves for all compared approaches.

are recorded in Fig.4. MTBGWO performs optimally on
most datasets, which especially evolves better subset of
features with large dimensional features while having smaller
convergence degree values. The convergence speed of the
MTBGWO method is lower than that of other algorithms in
a small number of datasets. Because the method uses mul-
tiple elite interactions for local development search, which
increases the computational cost by multiple information
swapping. However, at the same time, MTBGWO evolves
better solutions than other methods in large and complex
search spaces.

4) WILCOXON’s RANKSUM TEST
According to the results of Table 12, MTBGWO algo-
rithm is statistically significant fifteen datasets compared to
HSGW because the p-value is less than 5%. In addition, for
BGWOPSO, MTBGWO still statistically significative over

fourteen datasets. On the other hand, BWOA, BGWO, and
MTBGWO showed the same performance for over most
dataset. At the meanwhile, it can be easily observed that
in most comparisons, p-values obtained using the rank sum
test were less than 0.05, which proves the superiority of
MTBGWO algorithm to be statistically significant.

5) DISCUSSION
Summarizing the results of the seven experiments, the pro-
posed model MTBGWO achieves better results in terms of
accuracy, convergence adaptation value, and the number of
features selected. The MTBGWO method has an average
accuracy of 94.7% for all datasets, compared to the highest
average accuracy of 92.8% for the total dataset of the com-
parison algorithms. Finally, in terms of the total number of
features, the MTBGWO method selects subset of features
about 25% of this dataset, compared to the GWO and WOA
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algorithms, which select almost twice as many features as the
MTBGWO algorithm. According to the results, the number
of total feature subsets selected by the MTBGWO method is
smaller than other algorithms and the accuracy of the classifi-
cation task is guaranteed, confirming the method’s reliability
and generality. In terms of computational time, the average
time for MTBGWO on all datasets is 24.2 s, compared to
13.9 s for BWOA, 44.1 s for the other algorithms HSGW,
and 17.2 s for BGWOPSO. Therefore, MTBGWO is more
time-consuming than some conventional algorithms. Since
the method takes multiple elite interactions to increase the
local exploration capability, it leads to more computational
resources in the search area. However, better convergence is
obtained simultaneously, so the MTBGWO method provides
a good compromise between effectiveness and efficiency.

VI. CONCLUSION AND FUTURE DIRECTION
This paper proposes threshold binary grey wolf optimizer
based on multi-elite interaction for feature selection prob-
lems. To verify the effectiveness and efficiency of the
proposed method, 16 standard UCI datasets are adopted
for experiments and the algorithm performance is evalu-
ated using five criteria. The results show that the pro-
posed method effectively improves the performance of the
BGWO algorithm compared with the traditional algorithm
(BGWO, BWOA) and the advanced algorithm (BHSGWO,
BGWOPSO). The new method (MTBGWO) outperforms
the other algorithms in terms of accuracy and the number
of selected feature subsets in most datasets. The method
has advantages and disadvantages like other algorithms. The
MTBGWO method uses multi-elite information interaction
method, which improves the local exploitation capability
but sometimes decreases the convergence speed. There is
potential for further enhancement of the MTBGWO method.
Additionally, the results of Wilcoxon’s test also indicate that
the improvement of the proposed algorithm is statistically
significant compared to the other metaheuristics.

Furthermore, the proposed algorithm can be applied to
more practical problems in real-world scenarios. For exam-
ple, as a filter feature selection method, seeking to evaluate
the generality of the selected features would be a valuable
contribution. It can also solve weighted parameter optimiza-
tion problems for neural networks, constraint engineering
problems, etc. In the future work, we have a few ideas that
can be investigated in addition to the work presented here:

1. Use enhanced initialization method that starts the opti-
mization with solution closer to optimal.

2. Extend the proposed algorithm to work on parallel dis-
tributed mode to enhance convergence time.

3. Test the methodology on other big datasets besides those
from UCI datasets.
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