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ABSTRACT Optical brain monitoring, such as near-infrared spectroscopy (NIRS), has facilitated numerous
brain studies, including those based on machine learning techniques. A large and diverse dataset is necessary
for training machine learning algorithms to avoid overfitting a limited amount of data. However, recruiting
sufficient subjects is challenging owing to time and budget constraints. Therefore, we propose an NIRS
data generation algorithm that scales NIRS signal components, such as hemodynamic response function,
physiological systemic noise, and instrumental spike noise, based on the source-detector distance to augment
the training data. Experimental self-paced left- and right-hand motor imagery data were augmented with
generated NIRS data to train a convolutional neural network and classify the motor imagery data. Augment-
ing the training dataset with 1000 generated data increased the classification accuracy to 86.3 ± 4.1%, a
26% increase compared with training on experimental data only. In addition, we applied Guided Gradient-
weighted Class Activation Mapping (Grad-CAM) to visualize the class discriminative features of the input
data. The peaks of Guided Grad-CAM heatmaps aligned with the oxy-hemoglobin peaks during self-
paced motor imagery. We concluded that the increased cerebral oxygenation, especially in the contralateral
hemisphere, was the class-discriminative feature for classifying left- and right-hand motor imagery.

INDEX TERMS Cerebral oxygenation, class activation mapping, convolutional neural network, functional
near-infrared spectroscopy, machine learning, optical monitoring.

I. INTRODUCTION
Optical brain monitoring with near-infrared spectroscopy
(NIRS) can detect increased cerebral oxygenation related to
self-paced motor imagery (MI) tasks and accurately clas-
sify MI-evoked brain activation [1], [2], [3], [4]. NIRS
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brain monitoring of MI has led to the development of
improved brain–computer interface (BCI) systems for reha-
bilitation [2], [3], communication and environmental con-
trol [2], and real-time neurofeedback [3] to enhance the
quality of life for people living with disabilities.

Self-paced MI tasks can be seen as more advantageous
than cued MI tasks since the subject can signal the inten-
tion of movement at their discretion. However, this freedom
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increases the challenges in brain activation analysis. Since
the exact occurrence of imagery is unknown, detecting MI
and discriminating between types of MI (i.e., left-hand motor
imagery (LMI) and right-hand motor imagery (RMI)) is a
more complex task. Machine learning algorithms, such as
convolutional neural networks (CNNs), offer an automated
method to analyze and classify MI tasks by learning class-
discriminate features from the dataset [2], [4], [5].

Despite the capabilities of CNNs, gathering sufficient sam-
ple data for robust training remains challenging due to the
time and budget constraints of recruiting subjects. Insufficient
datasets, uneven classes, or biased datasets stemming from
a limited number of subjects can lead to overfitting and
decrease the accuracy of machine learning algorithms [6].

Data augmentation is one method to increase the number
of training data and overcome the issue of limited data sets.
Augmentation can be performed via image modifications,
such as flipping, translation, scaling, and rotation, to create
new data sets [7], [8], [9]. This type of data augmentation
can improve classification accuracy [6], [10], but such image
manipulations may be irrelevant for channel-encoded two-
dimensional input images due to the loss of time-spatial
features [11].

To retain the time-spatial features, attention-based layers
in the CNN architecture have been shown to preserve phys-
ically relevant spatial information and achieve high classifi-
cation accuracy [12] but do not directly address the biased
training that may arise from limited data sets. Alternative
augmentation methods have been proposed to increase train-
ing data while preserving the time-spatial features. Elec-
troencephalogram (EEG) classification studies of self-paced
MI have used frequency shifts, multiplication, and noise
additions to increase the number of EEG time-series train-
ing data [13]. More comprehensive augmentation techniques
include trial averaging, time/frequency recombination, noise
addition, cropping, and variational autoencoders [14]. How-
ever, these augmentation methods may not apply to very
small data sets due to the risk of amplifying biases in the
original data set or not correctly representing a wide range
of experimental outcomes.

Data generation algorithms offer a more flexible approach
for increasing the number of training data by simulating a
wide range of experimental scenarios. In the case of NIRS
brain monitoring, data generation algorithms are facilitated
by accurately modeled functions of NIRS signal compo-
nents [15], [16]. These studies have proposed techniques
for generating realistic NIRS data for discrete near and far
source-detector (SD) distances [15], [16]. However, modern
high-density NIRS systems often comprise a variety of SD
distances that cannot be easily categorized as near or far.
Since SD can determine a channel’s penetration depth, these
channels can significantly vary in their sensitivity to phys-
iological changes in noncerebral and cerebral tissue [17].
Therefore, a NIRS data generation algorithm is required to
generate individual NIRS signal components according to
the SD distance. General adversarial networks have been

implemented to generate semi-synthetic NIRS data for a wide
range of channels by utilizing subject resting-state data as a
basis for the generated data [8]. However, generating entirely
synthetic data may be more advantageous for cases where
subject data is difficult to obtain.

In addition to the various augmentation methods, the afore-
mentioned studies did not investigate the effect of data aug-
mentation on the CNN training process or identify the class
discriminative features in the data set. Since CNNs can local-
ize important features in their convolutional layers [18], [19],
class activation mapping (CAM) has been used to visualize
the class discriminative features of the input image. [20]
Guided Grad-CAM is a type of CAM that uses the back-
propagation of gradient weights to visually explain CNN
predictions. This method has been used to identify the class
discriminative time periods of MI for EEG. [21]. Applying
Guided Grad-CAM on time-series NIRS data could identify
time-spatial hemodynamic features that may be valuable for
understanding brain function during self-paced MI.

In summary, the significant contributions of this work are
as follows:

• We propose an algorithm to generate physiologically
realistic NIRS data to generate various data sets for a
multi-distance probe covering a wide area.

• The generated NIRS data is proposed as an augmenta-
tion technique for LMI/RMI experimental data sets to
increase the classification accuracy of testing data.

• Guided Grad-CAM is proposed as a method to identify
class discriminative features during CNN training and
assess the effect of data augmentation on CNN training.
To our knowledge, this work is the first application of the
Guided Grad-CAMmethod to observe the class discrim-
inative features in NIRS signals for brain monitoring.

The rest of the paper is organized as follows: Section II
reviews the experimental protocol, NIRS system, CNN archi-
tecture, and data generation algorithm. Section III covers the
results of this work, including examples of generated data,
testing accuracy, and visualization of class discriminative
features. Section IV discusses the effects of various CNN
training parameters on the results. Section V concludes our
work by summarizing the significant findings of this study
and future potential studies.

II. MATERIALS AND METHODS
A. EXPERIMENTAL PROTOCOL
The experimental protocol, data generation, and train-
ing protocol were carefully designed to evaluate and
improve the classification accuracy of self-paced LMI/RMI
tasks. In this study, 10 (7 males) right-handed subjects
(age 29.4 ± 2.1 years) performed the self-paced MI exper-
iment. The experiment was performed in accordance with
the guidelines and approved research plan of the Korea
University Institutional Review Board (approval number:
KUIRB-2022-0251-01). Informed consent was received from
all subjects. The experiment design is shown in Fig. 1(A).

37314 VOLUME 11, 2023



Zephaniah Phillips V et al.: NIRS Data Augmentation Technique to Detect Hemodynamic Peaks During Self-Paced Motor Imagery

FIGURE 1. (A) Experiment protocol for LMI and RMI. (B) Channel layout
for the 68 channels with SD distances of 30, 36, and 45 mm. The channels
are numbered according to their spatial location. The first and last five
channels are highlighted for reference.

Each trial lasted 60 s (approximately 300 data points), with a
30 s rest before each trial. The subjects were asked to imagine
pressing the ‘‘F’’ and ‘‘E’’ keys on a keyboard for LMI and
the ‘‘J’’ and ‘‘I’’ keys for RMI on a standard US keyboard
layout. Data from 80 MI trials (eight each for 10 subjects)
were used as input for the CNN.

Prior to the experiment, a custom-built NIRS probe was
attached to the forehead of the subjects and retained through-
out the experiment. Previous NIRS studies have monitored
functional brain activation in the prefrontal area during MI,
making it a more convenient option than monitoring the
motor cortex directly [3]. The bottom row of the detectors was
aligned to the Fp1-Fpz-Fp2 line (Fig. 1(B)), and the subjects
were instructed to avoid large head movements throughout
the experiment.

B. NIRS SYSTEM
The NIRS system in this study is the same as that used in
previous clinical NIRS studies [22], [23], [24] (Fig. 1(B)).
The system includes 12 photodetectors and 15 LED light
sources (760 and 850 nm wavelengths) for 108 channels with
SD distances of 15, 32, 36, and 45 mm. Appropriate light
intensity levels are validated before starting each experiment.
A custom-built NIRS data acquisition and processing soft-
ware was built in MATLAB 2013b (The MathWorks, Inc.,
Natick, MA, US). After data acquisition, the light intensity
changes are converted into optical density changes and hemo-
dynamic changes using themodified Beer–Lambert law. [25].

This study considered only oxy-hemoglobin (HbO)
changes as they were more pronounced during MI tasks
than other hemodynamic measurements [26]. The HbO data
were processed with 0.2 Hz low-pass and wavelet detrend-
ing filters to remove high-frequency noise and motion arti-
facts. [27]. HbO data were realigned to zero by subtracting
all points from the first point of the trial and then normalized.
To remove global hemodynamic interference, the 15 mm

FIGURE 2. Convolution neural network architecture used to classify MI
trials. Experimental data augmented with generated NIRS data are used
as input.

TABLE 1. CNN architecture.

channel was used to regress superficial hemodynamics from
the 30-, 36-, and 45-mm channels. [28] In total, 68 channels
(SD distances of 30, 36, and 45 mm) were used as inputs for
the CNN network.

C. CNN NETWORK
HbO time-series changes from each of the 80 MI tri-
als (40 LMI, 40 RMI) were used as input for the CNN
(Fig. 2). The data from each trial are arranged in a two-
dimensional image: 68 channels (y-axis) by 300 data points
(x-axis). The channels were arranged according to the chan-
nel number based on probe position. The first and last five
(1–5; 64–68) channels on the left and right positions are
shown in Fig. 1 (B).
A description of the CNN architecture is listed in Table 1.

The optimizer was Adam (learning rate of 0.0001), the loss
function was sparse categorical cross-entropy, and the net-
work was trained with a batch size of 64. The effects of
various learning rates, batch sizes, and dropout rates are
detailed in Section IV Discussion.

D. DATA GENERATION ALGORITHM
To augment the training data for the CNN network, we pro-
pose a channel-wise NIRS generation algorithm that scales
the different NIRS signal components, namely physiological
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TABLE 2. Functions to generate components of NIRS signals.

TABLE 3. Physiological systemic components frequency range.

systemic noise, instrumental spike noise, and hemodynamic
response function (HRF), according to the SD distance.

A near detector can be modeled as scaled physiological
systemic noise (k1fSYS) plus a noise term (ϵ) (Eq (1)). A far
detector can be modeled as scaled physiological systemic
noise (k2fSYS) plus a scaled HRF (k3fHRF) and ϵ term [15]
(Eq (2)). However, this model neglects SD distances that can-
not be easily categorized as near or far. Therefore, we modi-
fied the equations so that each component is a function of the
SD distance (d), scaled using an amplitude scaling factor (α1,
α2, α3) (Eq (3)).

fNEAR = k1fSYS + ϵ (1)

fFAR = k2fSYS + k3fHRF + ϵ (2)

fNIRS (d) = α1fSYS + α2fHRF + α3fSPIKE + β (3)

fSYS is the physiological systemic noise due to cardiac, res-
piration, Mayer wave, and low-frequency oscillations; fHRF
is the modeled HRF due to stimulus, and fSPIKE is the instru-
mental spike noise. β is a Gaussian decay term used to control
the HRF width at any given time. The modeling of each
component is seen in Table 2.
The exact frequency of fSYS was randomly determined

between the range of values used in [15] and summarized in
Table 3. The HRF gamma functions were generated using the
equation described in [15] such that the HRF shaping variable
was set to [τ1, τ2] = [0.7, 1.1], the scaling variable was set
to [t01, t02] = [5, 0], and the undershoot variable was set to
β = 0.3. The amplitude variable of the HRF for the gamma
function, α, was randomly set between [1–1.2] for each trial.
To generate spike noise, we set the random peak amplitude A

TABLE 4. Scaling functions for components of generated NIRS signal.

FIGURE 3. Amplitude scaling functions for (A) physiological systemic
noise, (B) hemodynamic response function, (C) spike noise, and (D) HRF
decay used to generate NIRS data for augmentation. Equations to
generate the scaling functions are listed in Table 4.

between [0.25–1] and the random scale parameter b between
[0–0.15].

We modeled each of the amplitude scaling factors (α1, α2,
α3, Eq (3)) to adjust the sensitivity for each NIRS signal com-
ponent according to SD distances (Table 4). The functions
comprise seven empirically determined input values that can
be adjusted to obtain the desired response.

Scaling was modeled after the Monte Carlo studies of
the photon path lengths in the human head [30], [31]. The
sensitivity to physiological systemic noise is expected to be
highest for shorter SD distances (< 20mm) and decrease with
increasing SD distance (Fig. 3(A)), similar to the previous

37316 VOLUME 11, 2023



Zephaniah Phillips V et al.: NIRS Data Augmentation Technique to Detect Hemodynamic Peaks During Self-Paced Motor Imagery

FIGURE 4. Steps to generate NIRS data and data preprocessing for the
generated NIRS and experimental data before use in CNN training.

findings on the partial path length of non-brain tissue [30].
Conversely, greater sensitivity to HRF is expected for SD dis-
tances greater than 10 mm (Fig. 3(B)), based on the previous
findings on the partial path length of brain tissues [30], [31],
[32]. As the SD distance increases, an increased spike noise is
expected as fewer photons are detected (Fig. 3(C)) [33], [34].
Finally, a gaussian decay term (β in Eq (3)) was applied for
the HRF based on the distance between the midpoint of the
channel and the center of the HRF seed location (Fig. 3(D)).
The generated NIRS data underwent the same data pro-

cessing procedure as the experimental data to maintain the
same signal conditions between each input data type. This
included low-pass filtering, wavelet filtering, near-channel
regression, data normalization, and zero realigning at the start
of the trial.

An overview of NIRS generation and the data processing
workflow is presented in Fig. 4. The first step is to seed the
HRF location. Studies have reported that MI brain activation
reflects motor execution [35], [36], which is known to have
contralateral brain organization [37]. Therefore, the HRFwas
seeded on the contralateral side of the imagery task. Addition-
ally, the start time and number of HRFs within the trial were
randomized for each generated data set. After seeding, the
distance from theHRF seed point to the channelmidpoint was
calculated. The HRF amplitude of each channel was scaled
and decayed according to the distance between the midpoint
and seed point. Physiological systemic and instrumental spike

FIGURE 5. Overview of the stratified k-fold training to calculate the
network accuracy. The testing and training folds are highlighted in yellow
and grey, respectively. The training folds have the generated data shuffled
into them. The testing folds determine the accuracy of the CNN network.

noises were generated and scaled before being added to the
scaled HRF data. The generated data were then used to aug-
ment the experimental data for CNN training.

E. MEASURING ACCURACY AND CLASS ACTIVATION
MAPPING
To determine the CNN accuracy, we performed stratified
k-fold cross-validation (k = 5) for the training data (Fig. 5).
The 80 experimental data points were divided into five folds
with an even class distribution. While one fold was used
for testing, the others were assigned for training and aug-
mented with an equal distribution of LMI and RMI generated
data. The training data were then re-shuffled and trained
over 500 epochs. The performance of the 5-fold testing was
averaged to determine the overall accuracy. The number of
augmented generated data was also increased to observe its
effect on classification accuracy. K-fold cross-validation and
augmentation with a different amount of generated data was
deemed an appropriate way to assess our data augmentation
technique’s ability to affect classification accuracy.

The Guided Grad-CAMmethod to visualize class discrim-
inative features was adopted from Keras [38] to construct
heatmaps of the input images. Guided Grad-CAM works
by back-propagating through the network and observing
the gradient flow to reach the target class. [20], [38] The
Guided Grad-CAM heatmaps can be used to identify class-
discriminative region in the channel-encoded input image
which can discern time-spatial hemodynamic features used
for classification.

III. RESULTS
The outcomes of this work consist of examples of generated
data, testing accuracy according to data augmentation type,
and Guided Grad-CAM heatmaps to identify class discrim-
inative features. An example of the generated NIRS data
is shown in Fig. 6. The HRF is seeded at the ‘‘X’’ point
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FIGURE 6. Generated NIRS signal based on SD distance. (A) NIRS probe
schematic; blue circles and red squares denote the detector and source,
respectively. Hemodynamic response originates from the ‘‘X’’ position,
and the dashed line represents the distance from the SD midpoint.
(B) Topographic HbO reconstruction based on SD distance.

FIGURE 7. Time-series generated NIRS signals based on SD distance. Four
hemodynamic response functions are seeded in the generated signals,
as denoted by the black arrow.

on the SD layout (Fig. 6(A)). The dotted line signifies the
distance between themidpoint and the seed point. Figure 6(B)
shows the topographic reconstruction of the HbO changes
per SD distance without the regression of the superficial data
(15 mm) from the farther channels (30, 36, and 45 mm).

The topographic HbO map for 15 mm shows slight acti-
vation due to 15 mm being greater than the recommended
distance for observing only systemic components [39]. How-
ever, for channels greater than 15 mm, a clear peak of HbO
activation at the seed point position is observed, followed by a
uniform Gaussian decay away from the seed. In Fig. 6(B), the
area of topographic mapping becomes smaller because fewer
channels were used to create the map.

The time-series HbO changes of generated data accord-
ing to SD distance are depicted in Fig. 7, along with the
contrast-to-noise ratio (CNR) calculated between the HRF
and rest periods [40]. Physiological systemic noise, such as

FIGURE 8. Inputs used to train the CNN network. (A) Experimental data of
a subject performing left motor imagery. (B) Generated NIRS data of LMI
with hemodynamic response and noise (i.e. physiological, spike).
(C) Generated NIRS data with physiological and spike noise.
(D) Generated NIRS data with only hemodynamic response function.

low frequency oscillations, are most visible at 15 mm. HbO
peaks are clearly visible at 30 mm and 36 mm. The peak
CNR appearing at SD distances of 30 and 36 mm agrees
with the previous findings reporting the highest sensitivity to
gray matter changes at a separation of at least 30 mm [30],
[31], [32]. At 45 mm, the HbO peaks are less prominent
as the spike noise dominates. The agreement of CNR with
similar studies at these defined SD distances, along with the
visual inspection of the generated data validate that our data
generation algorithm can accurately scale components based
on SD distances.

To assess the effect of signal components inclusion for
the generation algorithm, the training data was augmented
with three types of generated data: (1) HRF, physiological
systemic noise, instrumental spike noise (HRF + Noise),
(2) HRF Only, and (3) physiological, spike noise (Noise
Only). The first dataset aims to closelymimic a realistic NIRS
signal by including all three major NIRS signal components.
The second dataset determines whether the CNN can classify
MIwith generated data that does not include nonevent-related
signals. The third dataset aims to determine the features
learned when only nonevent-related noise is present. An indi-
vidual example of the experimental data, along with the three
types of generated data, is shown in Fig. 8.

To validate the generated data’s ability to replicate the
experimental data, a 5-fold classification was performed on
the two data sets with equal distribution of LMI and RMI.
The aim is to show that the generated data is indistinguishable
from the experimental data. Therefore, the target classifica-
tion accuracy was set to 50% or a chance level for two classes.

The classification accuracy of the experimental data and
HRFOnly or Noise Only generated data was 100%. This indi-
cates that CNN could consistently distinguish experimental
data from generated data that did not have all three signal
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FIGURE 9. Average k-fold accuracy of the testing data according to the
number of generated NIRS data augmented to the experimental data in
the training set. The number of augmented data between (A) 10–100 and
(B) 200–2000. The average testing accuracy using only experimental
training data (i.e., with no augmentation) is denoted with a line.

components. When the generated data was HRF + Noise,
the testing accuracy was 87.8%, indicating a small increase
in similarity between the experimental and generated data.
Future works regarding improving this metric will be dis-
cussed in Section V Conclusion. Although the classification
accuracy did not reach the target, the visual confirmation of
the generated data (Fig. 7) provides evidence that the data
generation algorithm has the intended function.

Next, the effect of data augmentation was observed by
performing 5-fold testing for experimental data and exper-
imental data augmented with the three types of generated
data. When the CNN was trained with only experimental
data, the accuracy was 60 ± 3.79%. This accuracy served
as a comparison baseline for assessing the improvement of
various augmentation methods. The CNN was trained with
augmented data sets, and the testing accuracy was averaged
over five folds. The average testing accuracy is shown for the
number of augmented data between (A) 10 and 100 and (B)
200 and 2000.

In case A (Fig. 9(A)), a continuous increase in testing accu-
racy was observed when the training data were augmented
with HRF + Noise generated data. The testing accuracy
increased to 81.3 ± 3.4% when augmenting the experimental
data with 100 generated datasets. The other generated data

FIGURE 10. Guided Grad-CAM heatmaps (top row) and HbO changes of
the activated NIRS channel (bottom row); four individual trials of (A, C, D)
right MI and (B) left MI. Channels of interest are denoted by an arrow (top
row). The color of the arrow corresponds to the color of the HbO changes
(bottom row). (C) HbO changes from channels 16–25 were averaged to
correspond to the wide region in the Guided Grad-CAM results.

types (HRF Only and Noise Only) showed no significant
difference in accuracy from the baseline.

In case B, over a larger number of augmented data
(Fig. 9(B)), the testing accuracy peaked at approximately
86.3 ± 4.1% when 1000 HRF + Noise generated data were
augmented to the experimental data. Similarly, no increase in
testing accuracy was observed when the training data were
augmented with the HRF Only or Noise Only generated
data. For the number of augmented data greater than 1000,
fluctuations in the testing accuracy were observed. This may
indicate that a large number of generated data causes the CNN
to overfit the generated data.

The peak accuracy of 86.3 ± 4.1% is in line with the
previous studies on MI classification using NIRS, which
ranged between 77% and 93% [1], [3], [5], [42], [43], [44].
This result demonstrates the capability of our augmentation
technique in increasing the testing accuracy of a limited data
set to align with similar MI studies. For further experiments,
we used the CNN trained with experimental data augmented
with 1000 generated data.

The Guided Grad-CAM heatmap analysis can reveal HbO
features in the experimental data used to classify LMI and
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FIGURE 11. Average Guided Grad-CAM heatmaps for the accurately
classified trials of left motor imagery (LMI) (left) and right motor imagery
(RMI) (right) using a CNN trained with the augmentation of (A)
1000 generated data of HRF and noise (physiological, spike),
(B) experimental data only, (C) 1000 generated data of Noise Only, and
(D) 1000 generated data of HRF only.

RMI. Four representative heatmaps from individual sub-
jects are shown in Fig. 10, along with the time series HbO
changes from the channel corresponding to the peaks in
heatmaps (arrows in Fig. 10). Figs. 10 (A, B) show individual
trials of RMI and LMI, respectively, where channel fea-
tures in the contralateral hemisphere are class-discriminative.
The peaks in the heatmap correspond to HbO peaks for
this channel which closely resembles our generated HRF
(Fig. 7). In Fig. 10(C), the heatmap identifies a large
region of time-series data as class-discriminative. Therefore,
we averaged the HbO data from the channels in that region
(channels 16–25) to show that the peaks in the heatmap cor-
respond to the HbO peaks. Finally, in Fig. 10(D), heatmap
peaks are observed in two separate channels (red and black
arrows), which also correspond to the HbO peaks in each
channel. Figure 10 provides evidence that the CNN network
has been trained to detect HbO peaks as a class-discriminative
feature for accurate RMI and LMI classification.

We then investigated which cerebral hemisphere showed
more class discriminative regions on average for LMI and
RMI for all subjects. To do so, we created heatmaps for
80 individual MI trials and then averaged the heat maps for

FIGURE 12. Guided Grad-CAM heatmaps and testing accuracy according
to (A) learning rate and (B) batch size for one RMI trial. The batch size
was fixed to 64 when the learning rate was varied, and the learning rate
was fixed to 0.0001 when the batch size was varied.

the correctly classified trials (36/40 trials of LMI and 35/40
trials of RMI) (Fig. 11). For LMI and RMI (Fig. 11(A)),
the channels on the contralateral hemisphere showed higher
average heatmaps results, indicating it contains more class-
discriminative regions. These findings are in line with pre-
vious motor studies that show the contralateral hemisphere
as the discriminative brain region for left and right motor
tasks. [36], [43], [44].

For the same trials, we generated heatmaps for a CNN
trained with other generated input types (Fig. 11 (B–D))
to validate the ability of our generated data augmentation
process to localize class discriminative features. For the
three additional input types (Fig. 11 (B–D)), the average
heatmaps for LMI and RMI show no distinct patterns of
class-discriminative regions. We can conclude that the CNN
network trained with other input types cannot converge on
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FIGURE 13. Accuracy (left-axis) and loss (right-axis) curves during CNN
network training for dropout rates of (A) 20% and (B) 80%. Accuracy
(solid line) and loss (square line) are reported for the training (blue) and
validation (orange) data sets.

discriminative features in the same manner as HRF + Noise
generated data.

IV. DISCUSSION
The training parameters for our CNN were empirically deter-
mined; however, for a more comprehensive study, the effect
of various CNN training parameters must be discussed.
Heatmaps for a single RMI trial according to (A) learning
rate and (B) batch size are depicted in Fig. 12. For the highest
learning rate of 0.1, the heatmap does not localize a class-
discriminative region, and the testing accuracy is the lowest
(65%). Conversely, for a lower learning rate of 0.0001, the
heatmap localized a class-discriminative region, and the test-
ing accuracy increased to 82.5%. Therefore, the CNN model
was trained at a learning rate of 0.0001.

In contrast, various batch sizes show only a small effect on
the testing accuracy (Fig. 12(B)), with a maximum accuracy
of 81.3% (batch size= 16) and aminimum accuracy of 76.3%
(batch size = 32), respectively. However, from our analysis,
a larger batch size of 64 resulted in stable heatmaps that were

less affected by individual noisy trials. Accordingly, the batch
size was set to 64 to train the CNN.

In addition to controlling the learning rate and batch size,
the dropout rate for hidden layers can prevent the overfitting
of the training data in the CNN network. The prevention
of overfitting is critical because it reduces the accuracy of
unseen datasets [45]. Fig. 13 shows the accuracy and loss
curves of training and validation data during training for
dropout rates of 20% (Fig. 13 (A)) and 80% (Fig. 13 (B)).
When the dropout rate was set to 80%, some initial instability
in the validation classification accuracy was observed, possi-
bly owing to the high dropout rate. However, the accuracy
eventually stabilizes to 100%. This early instability is also
reflected in the loss curve, with an initial high loss that later
converges to a minimum. However, for a 20% dropout rate,
the training and validation losses diverge after 100 epochs
owing to the increasing validation loss. Divergence is a strong
indicator of overfitting toward the training data, resulting in
a less accurate classification of the testing data [45]. Hence,
we chose a dropout rate of 80% for CNN training.

V. CONCLUSION
The findings of this study contribute toward increasing the
classification accuracy of NIRS data for limited sample sizes
and identifying class discriminative hemodynamic features
for assessing brain function during MI. In this study, the clas-
sification accuracy of a limitedMI samplewas increased from
60 ± 3.79%. to 86.3 ± 4.1%, similar to previous MI studies
using NIRS [1, 3, 5, 42–44]. The accuracy was increased by
augmenting the training data with generated NIRS data with
three major components: HRF, physiological systemic noise,
and instrumental spike noise. The classification accuracy
only increased when the training data were augmented with
generated data that included all three components.

In addition, this study showed the capability of Guided
Grad-CAM in visualizing the class discriminative features
in NIRS data and observing the effect of data augmentation
on CNN training. To our knowledge, this study is the first
application of Guided Grad-CAM to detect class discrimi-
native features in time-series NIRS data. The Guided Grad-
CAM heatmaps showed that the data augmentation method
helped train the CNN to detect the sustained increased cere-
bral oxygenation in the contralateral hemisphere to clas-
sify LMI/RMI. Since increased oxygenation is related to
increased brain function, the Guided Grad-CAM method can
facilitate the analysis of self-paced tasks to identify spon-
taneous cerebral activation. The sustained increase of HbO
in contralateral channels for LMI and RMI coincides with
previous prefrontal brain activation studies during MI tasks
[36], [43], [44]. Visual explanations of CNN training for
NIRS data can help reduce the black-box nature of machine
learning algorithms and identify relevant time-spatial features
in the NIRS data for distinguishing MI types.

As discussed in Section III Results, the scope of our future
work would be dedicated to improving the data genera-
tion algorithm to better replicate experimental data. Since
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classification accuracy only increases when the generated
data includes all threemajor NIRS signal components, we can
assume that our augmentation technique works best when the
generated data closely resembles the experimental data. How-
ever, we observed high classification accuracy between the
generated and experimental data, implying that the generated
data can be distinguished from experimental data. To improve
this metric, further investigations can be done on the benefits
of including real subject noise in our generation algorithm to
generate semi-synthetic data and closely mimic experimental
data. Additionally, rigorous signal decomposition of experi-
mental data can help identify time-frequency distribution and
a relevant range of amplitudes for signal components. This
can assist in generating realistic frequencies and improving
amplitude scaling factors for a more accurate data generation
algorithm.

A future study could also assess the effect of additional
hemodynamic parameters on CNN training. The coupling of
HbO andHb has been shown to providemore details of neural
activity during motor tasks and can bring about new class
discriminative features for improved accuracy [46]. Addition-
ally, to further validate the accuracy of our Guided Grad-
CAM technique to detect HbO peaks, cross-comparisons can
be performed with algorithms capable of automatic peak
detection [47].

The ability of the developed data generation algorithm
to augment limited data sets and enhance CNN training
increases the feasibility of developing highly accurate clas-
sifiers based on physiologically relevant features of brain
activation. The continual development of NIRS paired with
machine learning algorithms can significantly increase the
adoption of NIRS monitoring at the clinical level and facil-
itate the overall interpretation of NIRS signals [48].
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