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ABSTRACT The need for alternate transportation is driven by the increased fossil fuel cost and the adverse
effects of climatic change. Electric vehicles (EVs) are the best option as they have less carbon footprint
and reduced dependency on fossil fuels. Prodigious efforts to enhance the efficiency of EVs resulted in
the development of highly efficient three-phase induction motors. Difficulties in designing highly efficient
induction motors (IM) with high torque and power factors hindered the success of EV applications. Hence,
our aim is to diagnosis fault in the designed IM under variable load conditions. The proposed EV motor is
designed for 415V, 50Hz, and 5HP output power rating using ANSYS RMxprt simulation software. A fault
detection strategy is also implemented with various machine learning (ML) techniques like Support Vector
Machine (SVM), K-nearest neighbors (k-NN), ML perceptron (MLP), Random Forest (RF), Decision Tree
(DT), Gradient boosting (GB), Extreme Gradient Boosting (XGBoost), and Deep Learning (DL) for both
healthy and faulty conditions. Short Circuit (SC), High Resistance connection (HRC), and Open-Phase
circuit (OPC) are considered as faulty states for this study. Motor performance with variable load for all
the states healthy and faulty are evaluated through machine learning.

INDEX TERMS Induction motor, electric vehicle, motor design, material, ANSYS, machine learning
algorithms.

I. INTRODUCTION
Automobile sector is playing a vital part in the world’s eco-
nomic growth. Internal combustion vehicles used in most
vehicles consume directly the fossil fuel and create a large
amount of greenhouse gases affecting the entire world. This
paved the way to discover new energy vehicles as an alter-
native to conventional vehicles, which are Electric Vehicles
(EVs) [1], [2], [3]. The core part of an EV is the electric motor
which converts electric energy to mechanical energy. Hence
it is necessary to build an electric motor that enhances the
efficiency of EV and its performance [4]. Induction Motor
(IM), Brushless DC motor (BLDC), and Permanent Magnet
Synchronous motor (PMSM) are the most commonly used
motors for commercial purposes [5]. IM is more effective
and economical than other motors due to its reliability, sim-
ple mechanical design, and effective field-weakening char-
acteristics [6], [7]. However, the limitations such as core
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loss, friction loss, and copper loss, reduces the efficiency of
IM [8], [9]. To overcome these limitations and to enhance
the efficiency, researchers are focusing to optimize the length
of the stator as it can also reduce harmonic losses. Also,
IM characteristics are influenced by geometric dimensions
like core length and size of the stator and rotor slots [10].
The motor’s efficiency is also determined by the materials
used for manufacturing [11], [12]. Several materials have
been used for the motor design for many years, and the most
often used materials for core &winding are Iron (Fe), Carbon
steel 1008, and steel 1010 laminated cores, Aluminium (Al),
Copper (Cu), and Silver (Ag). Traditionally, Al is used as
winding material for IM but the Conductivity is lower than
Cu [13].

Though Cu has high conductivity and increased mechan-
ical efficiency than Al, it is costly. Ag, which has higher
conductivity than Cu is expensive with a low melting
point [14]. Hence, selecting winding materials and core lam-
ination is vital for achieving higher efficiency and effec-
tive motor operation. In addition to material selection, the
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fault detection (FD) system has also been used an effective
approach to increase the performance of motor operation
in EVs.

Researchers are developing FD strategies for IM based
on two approaches. They are Model-based approaches and
Data-driven approaches. Model-based approaches attempt to
predict the faulty behavior by mathematically modelling the
motor. The main disadvantage of this methodology is due
to the machine’s natural wear, because the degradation of
machine components causes a difference between the actual
machine and its mathematical model, when the fault mag-
nifies. Furthermore, it is critical that the model assumes
that the machine parameters are available, which does not
always happen. This makes the diagnosis more challenging
because it is necessary to estimate the machine parameters
for the appropriate modelling of the machine [15], [16].
Data-driven approaches do not require IM model as well
as the characteristics of the motor and load coupled to the
machine. Furthermore, these methods have been widely used
in fault diagnosis of nonlinear complex and time-varying
systems and demonstrated promising outcomes in identify-
ing faults. Machine learning (ML) is a most popular data
driven approach which includes the k-Nearest Neighbor
(k-NN)method, Naive Bayes (NB), Support VectorMachines
(SVM), and Artificial Neural Networks (ANN) [15], [17],
[18], [19], [20]. Deep Learning (DL) architectures have
attracted the attention of several researchers, mainly those
based onConvolutional Neural Networks (CNN). These algo-
rithms are able to extract the failure characteristics of sig-
nals, as well as eliminate the need for a priority knowledge,
allowing efficient independent fault diagnosis in electrical
machines [21], [22], [23], [24], [25].

Data-driven FD techniques using ML and DL algorithms
are being the recent focus by researches in diagnosing the
motor faults. Many research findings are reported to detect
the stator faults through monitoring the vibration and current
signals extracted from the stator [26], [27], [28]. However,
the detection of motor wiring or connection failures of IM
has received the least attention. It is important to note that
catastrophic failure modes, such as open-phase circuit (OPC),
High Resistance Connections (HRC) in IM connections, are
common. These failure modes are rare and their maintenance
cost is also high. Furthermore, in most cases, these faults are
caused due to human error during manufacturing. Various
methods have been used to identify HRC. Thermal imaging
is a valuable and effective approach for manual inspections.
However, the process is expensive and complex [19]. Online
detection techniques have been developed since past few
decades, primarily based on resistance estimation or current
sequence analysis. In a study [29], resistance is calculated
by injecting voltage pulses with the inverter fixed in the
drive. But, it requires the measurement of voltage between
the motor’s neutral and the DC-negative link terminal. The
main disadvantage of this method is the requirement for
an additional sensor and also the neutral point is accessed
frequently.

In [30] and [31], induction motor model is designed with
the consideration of HRC and short circuits (SC). These
models are used to predict the negative sequence current
and voltage resulting from unbalance to determine the type
of failure (HRC or SC). In a similar technique is presented
in [32], but the drive control strategy is employed to calculate
the negative sequence current and voltage to design fault-
tolerant control. Few studies discuss the detection of OPC
fault, when it occurs at the motor connection. Park’s Vector
Approach is one of the most popular approach for this OPC
fault. There are also model-based methods, such as the one
described in [19], where a model is suggested and validated
for open-circuit defects in the phases and wiring. As stated
in [33], data driven fault detection and diagnosis (FDD)
strategies based on ML or DL have become a feasible alter-
native fault detection technique for electric motors. Several
reports has been published demonstrating the use of ML or
DL to identify stator defects [34], [35], [36].

Hence, this paper presents data driven ML for FDD of IM
and its design using Finite Element Analysis (FEA) tech-
niques using ANSYS software. A data-driven approach is
employed for SC fault, HRC fault, and OPC fault diagnosis in
IM. A 4Pole, 415V, 5HP, 50Hz IM is designed using ANSYS.
The data required for FDD is extracted from the motor
designed, for the healthy and faulty conditions. The data
extracted from various conditions (SC, HRC, and OPC) are
given to theML algorithms to identify the performance of IM.
The different algorithms used to diagnosis the healthy and
faulty status of the IM are Support Vector Machine (SVM),
K-nearest neighbors (k-NN),ML perceptron (MLP), Random
Forest (RF), Decision Tree (DT), Gradient boosting (GB),
Extreme Gradient Boosting (XGBoost), and Deep Learning
(DL). In [17] and [18], the authors used instantaneous output
signals such as vibration and current signals of IM for FD,
whereas this article considers RMS values of current, torque,
slip, and efficiency. In addition, this manuscript considers
multiple faults namely SC, HRC, and OPC which are not
addressed in many of the articles. Also, FD of multiple faults
requires multiclass labeling and hence RMS data is con-
sidered. Moreover, RMS data can reduce the computational
complexity when compared to instantaneous data. This paper
is divided into five sections: Section II explain the design
of Induction motor. Section III gives Finite Element analysis
of Motor. Section IV examines the different ML techniques
using the data extracted from the motor. Section V presents
the conclusion of the article and the potential future work.

II. DESIGN OF INDUCTION MOTOR
Designing the motor based on the application can provide
efficient operation. Also, selection of motor size is one of the
most challenging step in the design process. In this paper,
IM is designed for the specifications given in Table. (1).
RMxprt tool is used to design the rotor and stator geometry.
The rotor and stator diameters, number of slots, iron core
length, insulation material, and winding material are consid-
ered as the parameters to design the IM.
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FIGURE 1. Cross sectional view of IM.

TABLE 1. Specification of IM.

In general, the motor with a larger diameter produces more
torque with less speed, whereas the motor with a small diam-
eter produces less torque with high speed. This is due to the
increase in flux density resulting in the decreased motor size.
Increased flux density above the rated specification reduces
the motor diameter, magnetic core becomes saturated and this
saturation will cause overheating and may result in the fail-
ure of the motor operation. To overcome this limitation, the
length of the motor, operating temperature, size of the wires,
torque, and speed must be adequately balanced. Importantly,
the design of the motor relies on its length and diameter.
Moreover, the length and diameter are determined by the
application [37].

The materials used for manufacturing motor and the geo-
metrical factors like core and winding dimensions are the
most important factors in designing the motor. Moreover,
proper selection of material can improve motor efficiency.
The proposed IM design [38], is chosen for diagnosis the fault
condition in efficient IM [39], [40]. Various motor parameters
considered for the motor design is depicted in Fig. (1).

The geometrical specification and design of IM are
explained in the following subsections.

A. STATOR GEOMETRY
The stator geometry is designed based on the core depth,
slot depth, teeth width, slot width, and slot height. These
parameter equations are given as follows,

1) STATOR CORE DEPTH (dcs)
The maximum flux density (Bcsmax), occurs at the stator core
depth(dcsmin) and it is given by,

dcsmin = 103
φ

4Li
(1)

where Ns is the number of conductors per phase and (φ) is the
per phase magnetic flux given by,

φ = 103
Esph

4.44f φKd
(2)

where f , Kd , Esph are frequency, distribution factor, and
induced EMF of stator phase respectively.

Ns =
Esph

4.44f φKd
(3)

where,

Kd =

∫ 103
sin(4π/9m)

sin
(
4πp
9Ss

)
Ss

+ 0.5

 10−3 (4)

where, p, Ss, m are the poles, Stator slots, and number of
phases. Then, the motor’s core length Li is obtained as,

Core Length(Li) = Sf L (5)

where, L and Sf are active length and stacking factor.

2) STATOR SLOT DEPTH (dss)

dssmax = 103
(
D0 − D− 2dcsmin

2

)
(6)

where D, D0, dcs are denoted as inner diameter, outer diam-
eter, and stator core depth respectively. Here, substituting (2)
and (5) in (1),

dcsmin = 103

103 Esph
4.44feφKd

4Sf L

 (7)

Substituting (7) in (6).

dssmax = 103
D0 − D− 2 ∗ 103

(
103

Esph
4.44feφKd
4Sf L

)
2

(8)

3) STATOR TEETH WIDTH (Wts)
The maximum flux density (Btsmax), that occurs at the stator
teeth that influence both the Width of the stator teeth (Wts)
and width of the stator slot (Bss), is given as,

Wts
min

= 103
pφ

2.2SrLi
(9)

where Ss and Sr are stator slots and rotor slots. Here, substi-
tuting (2) and (5) in (8).

Wts =
π (D+ dss) − SsBmaxss

Ss
(10)

where,

Bssmax =
π (D+ dss) −Wts

min

SS
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4) STATOR SLOT WIDTH (Bss)
Stator slot width at teeth, at opening and at the end is denoted
as Bss1,Bss2,Bss3. They are expressed as,

Bss1 =
πD− 103 pφ

BtsLi

Ss
(11)

Bss2 =
π (D+ dss/5) − SsWts

Ss
(12)

Bss3 =
π (D+ 2dss) − SsWts

Ss
(13)

5) STATOR SLOT HEIGHT (hs)
Stator slot height at teeth, at opening and at the end is denoted
as hs0, hs1, hs2 and they are expressed as,

hs0 = dss/30; hs1 = dss/15; hs2 = dss − hs0 − hs1

B. ROTOR GEOMETRY
Rotor geometry parameters like rotor diameter, core depth,
teeth width and bar cross-sectional area are used for designing
the motor and the following equation is utilized.

1) ROTOR DIAMETER (Dr )
The rotor diameter can be obtained as follows,

Dr = D− 2lg (14)

2) ROTOR CORE DEPTH (dcr )
The maximum flux density (Bmaxcr ), that occurs at the rotor
core depth is given as,

dcr = 103
φ

2BcrmaxLi
(15)

Substituting (13) and (14) in (15) rotor slot depth is given by,

dsr =
Dr − Dshaft − 2dcr

2
(16)

3) ROTOR COPPER LOSS
The maximum shaft diameter can be specified in order to
limit the saturation level of the rotor core. Rotor resis-
tance (Rr ) is designed to reduce rotor copper losses (Pr cu)
as follows,

Pr cu = Rr Ibr 2 (17)

where,

Rr =
rbr

(Nseff /Nr eff )
+ Krrrr

(
Irr
Ibr

)2

(18)

In (18), (Nseff /Nr eff ) is the ratio of the effective stator and
rotor turns. Here, the rotor bar and rotor ring resistances are
expressed as rbr , rrr , then rotor bar and rotor ring currents
are denoted as Ibr and Irr , respectively given by the following
equations, (

Nseff

Nr eff

)
=

2
√
mKwNs
Sr

FIGURE 2. Slot Specification of Stator(left) and Rotor(right).

Here, Rotor bar resistance (rbr ),

rbr =
2.7 ∗ 10−5Sr 2L9δs

0.8ZsIsph

Rotor ring resistance (rrr ),

rrr =
2.7 ∗ 10−3π (Dr + 3Dshaft )

5(Dr − Dshaft )

Rotor bar current (Ibr ),

Ibr =
2mKwNsIsphcosϕ

Sr

and Rotor ring current (Irr ),

Irr = Ibr
Sr
πp

where Kw, Ns, δs, Isph, Zs, and 9 are denotes as winding fac-
tor, number of stator turns, Stator conductors current density,
phase current, number of conductors, and number of Parallel
circuits.

4) ROTOR TEETH WIDTH (Wtr )

Wtr =
π (Dr − dsr ) − SrWsr

Sr
(19)

where the rotor slot width is,

Wsr =

π

(√
4abr
π

+ 0.4
)2

4dsr

5) ROTOR BAR CROSS-SECTIONAL AREA (abr )

abr = 0.8
ZsIsph
9δsSr

(20)

Fig. (2) represents IM stator and rotor Slot and the Geometry
specifications designed using the above equations is given in
Table. (2).
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TABLE 2. Geometry specification of IM.

FIGURE 3. Geometrical models of induction motor.

III. DESIGN AND ANALYSIS OF IM USING FEA
Finite Element Analysis (FEA) is used to analyze the material
for designing the 5HP motor with better efficiency for EV
application. The selection of material relies on its mass and
cost of it. The structure of IM is designed using ANSYS with
optimized specifications like dimensions, core, and winding
material [41]. Carbon steel 1008 as core and Cu as winding
material provided better efficiency, torque, power factor, and
slip performance in our previous study [38].

Hence, these materials are used for the design of IM
in RMxprt and 2D Maxwell in ANSYS platform. The

FIGURE 4. Equivalent circuit of an IM.

cross-sectional view of the motor designed is shown in
Fig. (3), and the motor specifications are given in Table. (1).

The per phase equivalent circuit of IM is given in Fig. (4).
Here, R1, R2 are stator and rotor resistances respectively, X1,
X2 are stator and rotor leakage reactance respectively, Xm
is magnetizing reactance, and s is slip [42]. The electrical
parameters of the proposed IM obtained from ANSYS design
is R1 = 1.64 �, R2 = 1.97 �, X1 = 8.41 �, X2 = 7.17 �,
Xm = 114.19 �, and s = 0.05.
The per phase impedance from Fig. (4) is

Zph = R1 + jX1 +
Z2Zm

Z2 + Zm
(21)

where Z2,Zm, and R′

2 are given by,

Z2 = R′

2 + jX2, Zm = jXm, and R′

2 =
R2
s

Equation (21) can be expressed as,

Zph = Rph + jXph (22)

where,

Rph = R1 +
R′

2X
2
m

R′

2
2
+ (Xm + X2)2

Xph = X1 +
XmR′

2
2
+ XmX2(Xm + X2)

R′

2
2
+ (Xm + X2)2

These per phase values are calculated from the designed IM’s
stator and rotor parameters as Rph = 33.19 � and Xph =

25.40�. For the proposed design the core loss is 0.002W, and
the stator and rotor copper losses are 238.7 W and 236.3 W,
respectively.

The pitch factor is one of the important design parameter
that enhances the performance of IM [43].

Pitch factor (Kp) = cos
α

2
(23)

where, α is the short pitch angle given by,

α =
180◦

coil span

where,

Coilspan =
Total Number of Stator slots

Number of poles
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FIGURE 5. Stator winding pattern.

For a pitch short angle α of 12◦, the pitch factor
(Kp) = 0.99, distribution factor (Kd ) = 0.95 and hence the
winding factor (KW ) is 0.94. Double layer stator winding
pattern is used in the proposed IM model and the winding
pattern designed using ANSYS is shown in Fig. (5).

Based on the design consideration, Healthy and faulty con-
ditions are created by integrating RMxprt with the Simplorer
model in ANSYS, and the developed model is used for FDD.
Load variation is given to the Healthy and Faulty motor
model. The motor faults are created in the stator winding as
a SC fault [44], HRC, and OPC fault as depicted in Fig. (6).
The performance of the designed IM is analyzed with various
loads. The RMS data of motor parameter such as stator
currents (I1, I2, I3), and torque is extracted from the simulated
motor designed, for healthy and faulty conditions at different
load settings from Simplorer. A sample of data obtained for
80kg (0.0245 kgm2) load is shown in Fig. (8). The healthy
motor produced an efficiency of about 85% at a speed of
1437.122 rpm with torque 9.8 Nm. The faulty motor data is
obtained for two different cases. In case I, fault is created
at t = 0 and the fault is applied throughout the simulation.
In case II, motor is run as a healthy motor from t = 0s to 0.5s
and further the fault is created at t = 0.5s. The Short circuit
fault is created between the phase A & B, B & C, and C &
A. Similarly, HRC and Open phase circuit are created at each
phases A, B, and C of the motor supply terminal. Machine
learning is used to predict the condition of the motor (healthy
or faulty) from the collected data.

IV. FAULT DIAGNOSIS OF IM USING ML
FD strategy is implemented through data drivenML approach
to predict the three phase supply connection failures in
IM. The Data is obtained from the Simplorer platform.
The healthy and various faulty conditions of IM are anal-
ysed in this study. Stator winding failure is one among
the most common failure modes in IM. HRC faults can
be caused due to human error during the motor assembly.
Additionally, SC connection and OPC fault are also found
as the reason for motor failure. Hence, industries are more
interested in diagnosing these failures to overcome human
errors [19], [45].

TABLE 3. List of labels.

A. CLASSIFICATION OF DATA FOR THE HEALTHY AND
FAULTY CONDITIONS OF IM AND LABEL GENERATION
Data sets obtained from the simulation platform are classified
as healthy and faulty using ML classification algorithms and
the list of labels used in this study is shown in Table. (3).
From the total 4000 data, 250 data are classified as healthy
and the remaining data are classified as faulty. Under faulty
condition, data is further classified into 19 different classes
and each class contains 250 sample data. As, HRC and OPC
showed similar wave pattern for the motor parameters cur-
rent, torque, slip, and efficiency in Case II (Healthy & Faulty)
condition in simulation and they are grouped as same cluster,
named as imbalanced fault. The total number of classes are
16 and their details are given in the Table. (3). The classified
data is fed to ML to differentiate healthy and faulty condition
of the motor.

B. DATA PROCESSING AND ML ALGORITHM
From the simulated model, 16 different healthy and faulty
conditions are considered for data collection as given in
Table. (3). The input features considered for data collection
are, the phase currents, torque, slip, and efficiency. Label
encoder is used to normalize the labeled data without any
reduction in dimension, since there are minimal feature set.
Finally, the normalized feature vectors are given as input to
various ML algorithms.

The objective of all the ML algorithms is to distinguish
between healthy and faulty classes, and the model is trained
using a set of data with healthy and faulty classes that have
been labeled already. This is done for all eight ML algo-
rithms namely Support vector Machine (SVM), K-nearest
neighbors (k-NN), Multi-layer perceptron (MLP), Random
Forest (RF), Decision Tree (DT), Gradient boosting (GB),
Extreme Gradient Boosting (XGBoost), and Deep Learning
(DL) are used for classification of IM conditions. The data is
split into 80:20 as training and test set. Grid search approach
was used to select the ideal hyper parameters. Table. (4)
provides the model settings and hyper parameters used for
machine learning methods that can provide good precision
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FIGURE 6. Schematic diagram of fault diagnosis in IM.

FIGURE 7. Schematic diagram of ML process.

TABLE 4. Machine learning parameters.

and accuracy for unknown data. Later, the trained model
is further validate by test set. The test data used for the

performance evaluation of each model. The performance of
algorithms are evaluated by the confusion matrix as shown in
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FIGURE 8. Simulation results for the healthy and faulty conditions of IM using ANSYS.

Fig. (9) which gives the comparison of predicted class label
and the true class label. Also, its visual representation is given

as Receiver operating characteristic (ROC) Curve as shown in
Fig. (10). These evaluation metrics provide the performance

VOLUME 11, 2023 34193



M. Aishwarya, R. M. Brisilla: Design and Fault Diagnosis of IM Using ML-Based Algorithms for EV Application

FIGURE 9. Confusion matrix algorithms for IM conditions.

of the model and it is used to compare with different ML
algorithm.

The accuracy of different algorithms has been descried in
the Table. (5). Due to the hyperparameter tuning, the SVM
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FIGURE 10. ROC for ML algorithms.

approach gives 65% accuracy. Fig. (9a), shows that, some of
the test data/labels are misclassified to class 3 of predicted
labels, and the true class labels of 5 and 10 are inappropriately

assigned to the predicted class label of 8 and 7, respectively.
The MLP algorithm provides 64% accuracy due to the mis-
classification of six classes of test data as dipicted in Fig. (9c).
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FIGURE 11. Misclassification of ML algorithms.

TABLE 5. Accuracy & ROC of various ML models in diagnosis IM faults.

In this, true labels of 6, 7, 8, 11, 12, and 13 are inappropriately
assigned to the predicted labels of 9, 10, 5, 2, 3 and 4 respec-
tively. The probability of misclassification is depicted in
Fig. (11a, 11b), which shows that the misclassification varies
from ‘0 to 1’; where ‘1’ denotes 100%misclassification. Due
to the minimal misclassification of test data, the k-NN is
provide an accuracy of 98% as given in Fig. (9b). Apart from
this, other algorithms such as RF, DT, GB, XGBoost, and
DL produced the best value of accuracy (100%) in healthy
and faulty conditions as given in Fig. (9d, 9e, 9f, 9g,9h).
Therefore, these ML models are selected at the end of the
training/testing process for the FDD of IM EV.

V. CONCLUSION
This article describes the ML-based FDD strategy for IMs
under Healthy and Faulty condition. Data is generated using
simulation-based models in ANSYS Simplorer for the pro-
posed strategy. The data generated is used for training,
validation, and testing various algorithms such as Support
vector Machine (SVM), K-nearest neighbors (k-NN), Multi-
layer perceptron (MLP), Random Forest (RF), Decision Tree
(DT), Gradient boosting (GB), Extreme Gradient Boosting
(XGBoost), and Deep Learning (DL). To enhance the effi-
ciency of the ML based FDD, feature extraction and selec-
tion methods are utilized for this model. By optimizing the
K-nearest neighbors (k-NN), Random Forest (RF), Decision
Tree (DT), Gradient Boosting (GB), ExtremeGradient Boost-
ing (XGBoost), and Deep Learning (DL) algorithms provides
superior results with an accuracy of 98% to 100%. Hence,

these technique can diagnose the healthy and faulty condi-
tions accurately. Also, the deployment of ML algorithms for
FDD in EV application has the ability to extract important
data features automatically which leads to flexibility and
versatility. Moreover, the real time data analysis enables early
fault identification, reduces downtime, lowers the mainte-
nance cost, and provides better motor performance. In addi-
tion, the FD information can be used to design Fault Tolerant
Control (FTC), that can provide better reliability and safety
for the EV application.
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