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ABSTRACT The complex interactions from anthropogenic activities, climate change, sedimentation and the
input of wastewater has significantly affected the aquatic environment and entire ecosystem. Over the years,
the researchers have investigated water monitoring approaches in terms of traditional monitoring or even
integrated systems to handle such an environmental assessment and predictions based on warning systems.
However, research into the selection and optimization of water monitoring systems by the combination of
parallel approach in terms of sampling techniques, process analysis and results is limited. The research
objectives of the present study are to evaluate the existing water monitoring systems based on the latest
approach and then provide insights into factors affecting sensor implementation at sampling locations. Here
we summarize the advancement and trends of various water monitoring systems as well as the suitability
of sensor placement in the area by reviewing more than 300 papers published between 2011 and 2022.
The research highlights the urgency of an integrative approach with regard to water monitoring systems
including water quality model and water quantity model. A framework is proposed to incorporate all water
monitoring approaches, sampling techniques, and predictive models to provide comprehensive information
about environmental assessment. It was observed that the urgency of model-based approaches as verification
and fusion of data assemble has the ability to improve the performances of the systems. Furthermore,
integrated systems with the inclusion of a separate modeling approach through integrated, semi-mechanistic
models, data science and artificial intelligence are recommended in the future. Overall, this study provides
guidelines for achieving standardized water management by implementing integrated water monitoring
systems.

INDEX TERMS Infrastructure, integrated monitoring, water monitoring system, modelling, water quality.

I. INTRODUCTION
Water monitoring systems play such an important role in
aquatic environmental systems and catchment areas, which
have been applied to reduce water pollution in freshwater
environments that is one of the priorities set by the United
Nations [1].Watermonitoring systems have received farmore
attention because they offer a wide range of solutions in terms
of the prevention, environmental assessment, management
and mitigation of disasters [2]. For example, Harmful Algal
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Blooms (HAB) have highlighted the need for water quality
monitoring systems to prevent the eutrophication of water
bodies [3]. Water monitoring activities can reveal the answer
to the problem by estimating water scarcity [4]. Various water
quality monitoring programs around the world have analyzed
a lot of environmental conditions in terms of water demand
[5], monitoring microplastics [6], planning wastewater sys-
tems [7], monitoring pesticide [8], hydropower [9], surface
melt rate [10], the impact of water pollution on human health
[11] and biodiversity observations [12]. Furthermore, remote
sensing technologies have advanced to assess the distribution
of water hyacinth (Eichhornia crassipes) [13], dispersal of
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phycocyanin [14], spatial prediction of surface water quality
[15], measure of nutrient cycles [4], hydrological parameters
[16] and identify spatial coastal hazards [17].

Monitoring water dynamics in aquatic environments is
challenging because it is influenced by various environmen-
tal phenomena such as internal load, hydrodynamic mixing,
thermal stratification, vertical distribution, biogeochemical
cycles, residual loads, and nutrient recycling. The complex
driving force can be difficult to explain using limited amounts
of data representing the state of the environment. There are
some issue in water monitoring system such as optimization
algorithm, design of sampling frequency, variables and indi-
cators, stabilize the network under environmental uncertainty
change and the detection of an unpredictable event [18]. The
compilation of studies from different monitoring locations
in Tables S5 and S6 shows that with regard to water pol-
lution, more of an emphasis should be given to the anthro-
pogenic activities, including soil leaching and discharges
from wastewater treatment plants (WWTP) [11]. Initially,
the obstacles of system implementation have considered with
regard to the accuracy of data collection [19], data acquisition
from different locations of point sampling [14], the selection
of key parameters which influence changes inwater dynamics
[20]. The development of the real-time geographical distri-
bution of the surface water quality monitoring [21] and the
performances of various sensor algorithms [22]. The water
monitoring system, which is based on an optimal monitoring
network, as proposed as a powerful instrument for collecting
measurement data andmaximizing the detection of anomalies
concerning water dynamics [20].

Therefore, the amount of research on water monitoring
systems has dramatically increased (Fig.1.). Nowadays, water
monitoring program obtained environmental data to represent
the trend of phenomena of water pollution, water flow and
hazard assessment based on automation tools [23]. Monitor-
ing frequency and high-quality data are the key factors to
produce the acceptable result and precision which should be
reported [24]. Additionally, the effective of existing environ-
mental monitoring of water availability and quality required a
large amount of water monitoring points in relation to nutrient
concentration [25]. However, the water monitoring system is
at risk of vandalism, maintenance issue, sensor reading and
system failures [26]. Overall, the current water monitoring
system is in exploration stage which can be developed into
integration system in a real-time [18].

The advancement of water monitoring has been applied
in the system called NJU-EWS, which was used to explore
the deployment of various sensors for the purpose of col-
lecting data through automatic control from the monitor-
ing centre [27]. Manfreda et al. summarized spatio-temporal
Unmanned Aerial Systems (UAS) to improve environmen-
tal monitoring during limited time use [22]. The result of
study Sumargo et al. acknowledged the potential of inte-
grated measurements including hybrid networks, real-time
weather monitoring, high-resolution images, and sampling

measurements [28]. Moreover, the quantification of phyco-
cyanin from satellite imagery has been assessed through bib-
liometric analysis [14]. Nevertheless, it was observed that
different algorithms or methods did not compare including
the data collection processes from different sampling points
for oligotrophic to mesotrophic state [14].

Twelve parameters including Dissolved Oxygen (DO)
[29], Total Suspended Solids (TSS) [30], Turbidity -
Chlorophyll-a [31], Electrical Conductivity (EC) [32],
pH [33], Total Chlorine [33], Organic pollution [34], Bio-
chemical Oxygen Demand (BOD) [34] including Secchi
depth, Total Phosphorus (TP), Total Nitrogen (TN) [35] were
used to determine water quality that have frequently been
applied in aquatic environments status. Other parameters pro-
posed in this current research are hydromorphological, and
biological as well as related to climate change, anthropogenic
activities, and microplastics. The authors in another study
concerning this issue addressed the challenge in terms of
optimal monitoring networks to identify the most important
variables of water quality [36] and how to optimize the sur-
vey sampling by managing the Total Maximum Daily Load
(TMDL) [37]. Monitoring the spatial and temporal distri-
bution of water quality and quantity is required to identify
of sampling points from upstream data, while the optimal
sampling frequency correlates with the topology of sampling
points [38], pollutant concentrations [8], the availability of
data [39], time periods [40], catchment behaviour [3].

Considering all the research published in previous studies
between 2011 and 2022, the advancement of research on
water monitoring is swift, moreover, the availability of exist-
ing water monitoring systems should be reviewed to propose
an optimal approach for long-term water quality planning.
Manfreda et al. show that the integrated systemwas proposed
to overcome deficiencies in data collection [22]. Furthermore,
the integrated system increased the accuracy of both systems
significantly in terms of both spatial and temporal data [19]
as well as improved the reliability of the water monitoring
system [41].

However, the methods discussed in the literature mainly
focus on solutions at specific sampling locations. The
approaches have been used limited number of samples
through sampling analysis and data models which influence
decision-making. Rarely does the design and deployment
of water monitoring systems involve the ideal selection,
optimisation of various combination and parallel monitoring
systems from the identification of sampling points to the
availability of monitoring stations. In addition, the monitor-
ing systems with a model validation approach, best selection
of water parameters and the optimal sampling frequency as
well as determining sensor placement in one system will
increase the performance of systems. Under these circum-
stances, the need to expand a methodological analysis which
takes into consideration the selection of all water quality
sampling techniques is pressing. As a result, more alterna-
tives to suit different requirements of the system must be
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proposed to answer the more complex problem concerning
the implementation of water monitoring and provide high
quality results from information decision system results.

While the water monitoring system was considerably
reviewed, reviews of integrated different source in one mon-
itoring system for freshwater have not published yet. There
is a need for an overview display the stage of grow field.
At present, we first review the implementation of water mon-
itoring system of each integrated stage, then discuss how dif-
ferent information is connected to achieve much more result
validation, and finally highlight the decision-making process
for early warning system in water pollution and hydrological
problem.

II. METHODS
In this topical review for water monitoring system develop-
ment, aspects related to the integration of water quality and
quantity are explored. The incorporation of monitoring sys-
tems on the basis of which a framework will be recommended
in order to optimally implement the collection of informa-
tion for the long-term sustainable management of surface
water bodies. The last search was performed on 9 February
2022 using the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) approach. Figure 1
summarizes all the scientific papers reported in this study.
This survey searched for literature in google scholar and
Scopus considers four sets of keywords:

• Keywords 1: TITLE-ABS-KEY (water AND monitor-
ing AND (lake OR river) AND (review OR overview))
AND (LIMIT-TO (DOCTYPE, ‘‘re’’)) AND (LIMIT-
TO (PUBYEAR, 2022) OR LIMIT-TO (PUBYEAR,
2021) OR LIMIT-TO (PUBYEAR, 2020) OR LIMIT-
TO (PUBYEAR, 2019) OR LIMIT-TO (PUBYEAR,
2018) OR LIMIT-TO (PUBYEAR, 2017) OR LIMIT-
TO (PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR,
2015) OR LIMIT-TO (PUBYEAR, 2014) OR LIMIT-
TO (PUBYEAR, 2013)).

• Keywords 2: TITLE-ABS-KEY (water AND monitor-
ing AND systemAND (lake OR river) AND (reviewOR
overview)) AND (LIMIT-TO (DOCTYPE, ‘‘re’’)) AND
(LIMIT-TO (PUBYEAR, 2022) OR LIMIT-TO (PUB-
YEAR, 2021) OR LIMIT-TO (PUBYEAR, 2020) OR
LIMIT-TO (PUBYEAR, 2019) OR LIMIT-TO (PUB-
YEAR, 2018) OR LIMIT-TO (PUBYEAR, 2017) OR
LIMIT-TO (PUBYEAR, 2016) OR LIMIT-TO (PUB-
YEAR, 2015) OR LIMIT-TO (PUBYEAR, 2014) OR
LIMIT-TO (PUBYEAR, 2013)).

• Keywords 3: TITLE-ABS-KEY (water AND forecast
AND system AND forecasting AND method) AND
(LIMIT-TO (EXACTKEYWORD, ‘‘Water Manage-
ment’’) OR LIMIT-TO (EXACTKEYWORD, ‘‘Numer-
ical Model’’) OR LIMIT-TO (EXACTKEYWORD,
‘‘Water Supply’’) OR LIMIT-TO (EXACTKEY-
WORD, ‘‘Data Assimilation’’) OR LIMIT-TO (EXAC-
TKEYWORD, ‘‘Water Resources’’) OR LIMIT-TO
(EXACTKEYWORD, ‘‘Computer Simulation’’)) AND

(LIMIT-TO (PUBYEAR, 2022) OR LIMIT-TO (PUB-
YEAR, 2021) OR LIMIT-TO (PUBYEAR, 2020) OR
LIMIT-TO (PUBYEAR, 2019) OR LIMIT-TO (PUB-
YEAR, 2018) OR LIMIT-TO (PUBYEAR, 2017) OR
LIMIT-TO (PUBYEAR, 2016) OR LIMIT-TO (PUB-
YEAR, 2015) OR LIMIT-TO (PUBYEAR, 2014) OR
LIMIT-TO (PUBYEAR, 2013)).

• Keywords 4: TITLE-ABS-KEY (water AND quality
AND hydrology AND lake AND river AND freshwa-
ter) AND (LIMIT-TO (PUBYEAR, 2022) OR LIMIT-
TO (PUBYEAR, 2021) OR LIMIT-TO (PUBYEAR,
2020)).

The papers have been checked one by one manually, and
the papers related to the proposed water monitoring develop-
ment strategy applied the following rules to get the final paper
sample set: inclusion of studies focusing on rivers, lakes, sur-
face freshwater, monitoring system, and modelling. In Fig.1.,
a total of 1446 papers were covered by the retrieved search
result while 953 papers are not related to the studies. The
exclusion of the papers were covered on groundwater, socioe-
conomic environment, bio-indicator, and languages other
than English. More details, 165 results are duplicate papers
from different keywords. For the last screening, we catego-
rized the papers into nine specific areas: water quality, remote
sensing, monitoring, climate change, eutrophication, surface
water, deep learning, cyanobacteria, sensor, hydrology. Three
hundred-thirteen articles were selected, most of which were
published in the last 10 years and discuss about water quality
monitoring areas.

A. RESEARCH OBJECTIVES
The scope of water monitoring system development is related
to the monitoring of hydrological change, good ecological
status regarding to the water quality and quantity in the
surface water bodies, especially in lakes and flowing waters
(streams and rivers). The aims of this topical review are:
(i) to evaluate the specific existing water monitoring systems
regarding the water quality and water quantity of variables,
stressors and threats in the aquatic ecosystem, (ii) to provide
insights into factors affecting the implementation of sensors
in terms of sampling locations. In this paper, several rele-
vant issues have been investigated to answer the following
research questions:

• How to integrate different water monitoring solutions
into an integrated system?

• What are specific infrastructure and different sources
of information to support integrated water monitoring
system?

• How does data management influences the performance
of water monitoring systems?

• How can the specific water quantity and water quality
parameters be defined to support the water monitoring
systems?

• How can the planning of system requirements and smart
operation of monitoring solutions be supported with
system integration?

VOLUME 11, 2023 36423



Y. Sudriani et al.: Surface Water Monitoring Systems—The Importance of Integrating Information Sources

FIGURE 1. Exploring knowledge about water monitoring systems using PRISMA methodology.

• How can a higher level of decision support be achieved
with integrated water monitoring systems?

The structure of the research is started from Section I to
describe the research problem, status quo of water monitoring
and research gap. The methodology for gaining knowledge
incorporate research questions can be found in Section II.
Our developed Framework for Integrating Monitoring Solu-
tions (FIMS) is introduced in Section III. The FIMS process
is split into six strongly interconnected stages, beginning
with stage one, which correlated to Section IV. It consists of
parts of computer hardware, including sensor boards, remote
sensors, and laboratory measurements. The physical structure
of the measurement in Stage I. has integrated different criteria
sampling from laboratory and in-situmeasurements to remote
sensing. This process requires more frequent sampling and
data collection to be acquired, improving the level of moni-
toring that can be carried out. The stages considered applica-
bility of different information sources collection and recent
implementation of infrastructure of water monitoring sta-
tions. The design and deployment of data acquisition in Stage
II. whichwill be discussed in SectionV are based onmetadata

quality, data transfer system, and power management. This
section provided integrated data warehousewith support from
citizen science application. Additionally, Section V discussed
imagery mining, data outliers, data analysis and experiment,
data correction had been designed in this section, also, the
result was processed two stages before. In section VI, the
selection of measurement variables and the use of modelling
algorithms. In addition, model building used first principle
model, data-driven model and semi-mechanistic models to
analyze the data. In the case of analysis based on mod-
elling, Stage V. about monitoring and management through
water quality assessment, prediction, and threshold used these
approaches to activate the warning system and to improve
water quality measures which are discussed in Section VII.
The problems associated with the identification of sampling
points, each elements and related aspects including early
warning system is explored. The last stage is decision support
as the output of the water monitoring system, which will be
discussed in Section VIII (Decision Support System (DSS).
DSS is measured by operation support, R&D, academics,
policy-making, local government and water directorates.
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III. THE CONCEPT OF THE FRAMEWORK FOR
INTEGRATING MONITORING SOLUTIONS (FIMS)
The environmental impacts of anthropogenic activities are
increasing globally, which means monitoring systems is
urgent in the scope of biodiversity, the dynamics of ecologi-
cal connectivity, physiological processes and food networks.
Effective monitoring systems are essential to inform people
of management and public policy decisions. In addition, the
balance of the ecosystem is a significant challenge in terms
of understanding the roles that natural and water-quality
changes play such as algal growth, microbial processes,
as well asmicrobiological and genomics examinations. Keep-
ing contaminants at low levels is a complex task requiring
knowledge of the potentially toxic substances present in the
freshwater and the calculation of hazard levels.

Currently, the discussion about integrated spatio-temporal
water monitoring systems in terms of the water quantity and
water quality in a single system is limited.Multiple integrated
systems in a monitoring system leading to an integrated
data platform are commonplace [42], for example, integrated
technologies such as tiered frameworks and the Internet of
Things (IoT) based on web-based data services [18]. It is also
an integrated system related to data merging (data fusion)
because it combines the algorithm in terms of spatio-temporal
and spectral properties, as well as provides a uniform data
set to end-users [43]. In addition, an integrated system will
provide better information about dominant processes, reveal
the patterns of biochemistry and contribute to the estima-
tions of a quantitative model [44]. Nowadays, integrating
spatio-temporal monitoring is popular when it comes to the
monitoring of water temperature to collect long-term data
(sub-hourly range) regarding temperature change dynamics,
which supports large-scale monitoring networks [45]. Inte-
grated monitoring technologies to facilitate process analytics
and the absence of continuous monitoring have been real
wireless sensor networks as well as in-situ and spaceborne
satellites leading to the collection of real data from several
distributed data points at a sampling site [18]. Moreover,
the utilization of multisensor data fusion and virtual clus-
ters from cloud computing has been developed [23] and the
limitations of temporal sensors for Chlorophyll-a and Total
Suspended Solids (TSS) discussed [19]. AquaWatch is an
initiative within the Group on Earth Observations (GEO)
that also uses integrated data to temporally and spatially
forecast water quality over a short period of time follow-
ing the participation of citizen science, drones, aircraft and
in-situ sensors [46]. The hazard monitoring system has been
developed by real-time in coastal areas throughmap sequence
analysis to handle sedimentation, emergency situations, and
pollution control [17]. In order to achieve the purpose of this
study, we have developed the FIMS integrated conceptual
framework by integrating different methodological design
data flow while taking into consideration seven points related
to each stages:

• Interconnect available data resources in various measur-
ing instruments.

• Correlate water monitoring data acquisition covers
power input, data distribution, and data integration
including citizen science tools.

• The interlink from measurement tools (spatial-temporal
data) and data incorporation (metadata) have an inflow
into data warehouse.

• Data transmission stage consist of advance data analysis
including spatial data. The collection of data is related
to frequency of sampling.

• Identify the location of optimal sampling points and
modelling tasks as fundamental functions of surface
water management.

• Construct and use a multistage decision support frame-
work. Define indicator threshold at the alert level as
an input for early-warning and prediction systems to
mitigate water-related disasters in inland water bodies
through a water monitoring system.

• Deploy the method to enhance the prediction of robust-
ness and define the event of an unpredictable outbreak
of water dynamics through forecast system.

As can be seen from the Framework for Integrating Mon-
itoring Solutions (FIMS) shown in Fig. 2., the monitoring
activities of water management can be optimized by integrat-
ing different information sources so that more information
can be obtained at a lower cost, while the cross-validation of
data sources also supports the implementation of the FIMS.

Figure 2 shows the architectural design of the water mon-
itoring system framework integrating different information
sources (continuous in-situmonitoring, remote sensing, water
sampling), several computations and the optimization of sam-
pling points. The main stages of the proposed FIMS frame-
work are presented in the following Sections (IV-VIII).

Overall, the fundamental motivation for proposing a truly
integrated framework is to collect and process the data in a
parallel system based on a cloud platform. We propose that
each monitoring approach should be combined (e.g. sam-
pling, in-situ measurements, models) to optimize the water
management tasks and maximize the information content of
sampling variables efficiently and effectively. The advantages
and disadvantages of the proposed sources to be integrated in
the FIMS are discussed in Section IV.

IV. INFRASTRUCTURE AND APPLICABILITY OF WATER
MONITORING SYSTEMS
Currently, no coherent and integrated infrastructure for
decision-making and analysis in the field of water man-
agement is available. Institutions involved in monitoring
natural and anthropogenic factors affecting surface water
bodies are in sufficiently coordinated. Coordinating mea-
surements and modeling could provide more information,
more cost-effectively than the current ‘‘business as usual’’
solutions. However, interoperability between the databases
of institutions is generally not supported, moreover, uniform
quality assurance and monitoring systems based on a com-
mon knowledge base are lacking. Therefore, service and
information functions must be developed and strengthened to

VOLUME 11, 2023 36425



Y. Sudriani et al.: Surface Water Monitoring Systems—The Importance of Integrating Information Sources

FIGURE 2. Framework for Integrating Monitoring Solutions (FIMS).

achieve the strategic goals of sustainable water management.
No resources are available for integrated development activ-
ities and long-term operational monitoring systems. Due to
anthropogenic activities and issues concerning water pollu-
tion, the need to assess the ecological status of water bodies
and mitigate disasters using more informative monitoring
activities is increasing.

A. APPLICABILITY OF WATER MONITORING SYSTEMS
Since the problem of inland water bodies becomes more
complex and measuring using traditional monitoring is lim-
ited, it cannot describe how aquatic ecosystems respond to
environmental changes. However, some parameters must be

analyzed in the laboratory because they can not be measured
by sensors, e.g. most biological parameters and some physic-
ochemical ones. The development ofmonitoring technologies
from traditional measurements to high-frequency technology
and sensor data loggers offers a wide range of measurements
of freshwater monitoring. However, the findings of this study
are in line with Gholizadeh et al., namely that traditional
monitoring is still needed to validate sensor parameters [47].
The most common solutions used to monitor water quality
are summarized in Fig. 3, which was supplemented with
modeling as one of the most promising sources of inte-
gration and further development of the existing monitoring
systems.
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FIGURE 3. Water monitoring solutions and extended information sources in sustainable watershed management.

Figure 3 shows six different water monitoring solutions,
which are suitable for data collection (water quality and water
quantity parameters) in freshwater ecosystems, namely float-
ing buoy stations, unmanned surface vehicles, fixed on-site
stations, remote sensing, shaft sampling and Unmanned
Aerial Systems (UAS). The demand of advance monitoring
systems due to the increasing water pollution and hydrology
disasters leads to the simultaneous measurement for better
solutions in DSS. Moreover, high-quality data monitoring
can be obtained with coherent and cross-validation in var-
ious monitoring data sources. The modelling approach can
complement and verify the value of data monitoring. The
discussion for the tools of water information source and
validation can be found in Section VI.
The functionalities of these examined solutions which are

suitable for ensuring water quality will also be summarized
in Fig. 4. Floating buoy stations have been used to measure
horizontal movement, moreover, the direction of flow can
easily be measured anywhere in an inland water body and
is easy to install [48]. Besides, the advantages of floating
buoys are their fixed design [49], ability to continuously
monitor data rapidly for in-situ measurements, the acquisition
of long-term monitoring data, reduced costs [50] and fast
measurements [51]. However, the unsteady nature of floating
stations as a result of waves reduces the accuracy of their data
[48]. Other reasons include the overestimation of the amount
of cyanobacterial biomass [49], reduction in the accuracy
of data measurements [50] and the minimization of data
transmission [51].

A permanent station located at the sampling site can
only monitor the coastal area, controls data measurements
[52], and system maintenance due to time-frequency [53].

However, the parameter to measure capacity at the waterfront
site, the ability to duplicate real-life environmental labora-
tories for experimental analysis [52] and the measurement
of real-time data are some of the benefits of fixed on-site
implementation [53].

In remote sensing methods, distribution analysis has pro-
vided detailed information about spatio-temporal water qual-
ity data [54], enabled the source for changes of water dynamic
in freshwater to be identified [55], can analyze data at remote
locations [56] and is capable of reinforcing spatial and tem-
poral data [55]. On the other hand, the deficiencies of this
spatial method are its accuracy [54], reduction in the quality
of satellite images as a result of bad weather [56], as well as
the limited range of water parameters and spectral bands [55].
Remote sensing provides data at a higher temporal frequency
whereby spatial patterns can describe properties of the lake
rather than in-situ measurements [57].

In addition, spatial analysis covers all areas of water mea-
surements [58] based on moving functions [58] supported by
GPS navigation [59], wave movement in the aquatic environ-
ments [60], the scope area [59] and the consistency of data
in post-processing [61] are some concerns with regard to this
sampling method.

The advantages of Remotely Piloted Aircraft Sys-
tems (RPAS) or, more known as, Unmanned Aircraft Sys-
tems, are their high spatial resolution as a support tool for
conventional - manned airborne imagery applications, ability
to reach difficult locations, capability to take high-quality
images, additional data for monitoring systems and more
comprehensive earth and environmental analyse based on
the integration of platforms (traditional instruments, mobile
camera surveys, satellite observations and geomorphological
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analyses) [22]. The drone can be implemented with other
supplementary instruments [62] and enable water sampling
of a specific volume [63]. UASs have weaknesses such as leg-
islation, the volume of water samples collected by drones is
restricted and their unreliability [63]. Other disadvantages of
UASs are data repository [22], data interpretation [22], costly
instruments [62] and the necessity of specialized training
[62]. High-Frequency Measurements (HFM) provide huge
amounts of data even by only using one set of sensors over
a period of days or months. According to Meinson et al. have
made use of HFMs in terms of lake ecologies, to obtain
data about lakes, for hydrological processes, to evaluate the
movement of water as well as gather vertical profiles of
the lake, depth time series and depth measurements through
transects [26]. HFM is recommended as an additional tool to
support DSS and Early Warning Systems (EWS) [24].

The last monitoring measurement in this topical review is
shafts sampling, commonly referred to as the traditional mon-
itoring measurement. Until recently, monitoring activities
have used traditional monitoring, e.q. in-situ water sampling
to obtain physical, chemical and biogeochemical informa-
tion, which is time-consuming as well as expensive [4]. Tradi-
tional monitoring yields extensive amounts of periodic data,
which is inadequate to predict potential threat such as algal
blooms or floods [24]. The traditional method used a Secchi -
Disk, a sensor without a data logger, and other instruments
to get momentary time sampling data. The advantage of this
approach is the ability to select water parameters later on
[64]. On the other hand, cons of traditional monitoring are the
necessity of operators being present [65], instruments being
calibrated and validated before taking measurements [66],
momentary data results, higher quality control, as well as the
parameters such as pH and dissolved oxygen to be analyzed
at the sampling locations rather than in the laboratory because
of differing results [64].

It is also important to examine which parameter group can
be measured with which solutions (Fig. 3) in order to map the
integratability of the different solutions, which is presented in
detail in Fig. 4.

Figure 4 shows which of the physicochemical, biological
and hydromorphological parameters can be measured by the
previously described monitoring solutions as well as physi-
cally describes the amount of event space available for system
integration. The online system architecture is essential to
support real-time water data monitoring [47]. Long-term data
collection is used to reveal information about event dynamics,
change patterns, trends, as well as shifts and to understand
the correlation between the processes that cause the disaster
events [3]. The development of long-term-data measurement
is used to reveal the trend and unpredicted events, for the
purposes of testing hypotheses, supporting data in simulation
software, and finding the main driver parameters in inland
water bodies [67]. In particular, the development of sensors
using fiber optics, laser technologies, biosensors, optical sen-
sors, microsensors to continuously record data in sampling

stations [19]. The three indicator parameters in traditional
water quality monitoring are: (i). physical parameters (e.g.
temperature, turbidity, conductivity), (ii). chemical param-
eters (e.g. pH , Dissolved Oxygen (DO), Chemical Oxygen
Demand (COD), Biochemical Oxygen Demand (BOD), total
organic carbon, heavy metal ions), and (iii). microbial fac-
tors (e.g. total bacteria, total coliforms) [4]. It has expanded
from traditional monitoring to online monitoring sup-
ported with measurement sensors, including chemical sensor
instruments.

The rapid development of water monitoring system con-
cerning the uses of sensors to gain information on Dis-
solved Oxygen (DO), pH , turbidity [68], Water Temperature
(WT ), Chlorophyll-a (Chl−a), Electrical Conductivity (EC),
ammoniacal nitrogen (NH3 − N ) [69], conductivity [26],
NO3 concentrations [44], salinity, temperature, depth, chloro-
phyll fluorescence (ARGO floats) [46], Dissolved Organic
Matter (DOM ) [3], nitrate concentration [24], water tem-
perature [45], Total Dissolve Solids (TDS) [70], and plas-
tic pollution [71] as well as with regard to water quantity
measurements such as soil moisture and streamflow [28].
Freshwater has also been assessed by biological monitoring
to gather data to support the rehabilitation of rivers [72].

Another category of sensors broadly used inwatermonitor-
ing systems are remote sensing technologies. Remote sensing
has been deployed to analyze some parameters such as in
blue-green algae phycocyanin (BGA − PC), Chl − a, fluo-
rescent dissolved organic matter (fDOM ), turbidity, and TSS
[23],TDS [73] and colored dissolved organic matter (CDOM )
[3]. Compared with another spatial sensor, Landsat/TM sen-
sors from Landsat 5 as well as Landsat 9 as well, which
was launched on 27th September 2021 are commonly used
to calculate the Chl − a concentration, CDOM , Secchi Disk
Depth (SDD), Total Phosphorus (TP), Biochemical Oxygen
Demand (BOD), and Chemical Oxygen Demand (COD) [47].

In recent years, the implementation of the Internet of
Things (IoT) presented a new approach to collecting, mon-
itoring and analysing data from a sampling site based on
an integrated network which connects various pieces of
equipment on one platform [74]. For example, a web-based
application based on IoT has been developed to increase
cost-effectiveness and monitor water quality using a wire-
less module [74]. Another one is the implementation of an
IoT system with a focus on consistency in terms of time
measurements, that is as energy-efficient and effective as
possible with minimal and installation costs [75]. Hernández-
Alpizar et al. has deployed an embedded system that includes
IoT instruments to take measurements over a range of time
periods automatically and control devices to minimize energy
consumption, maintenance costs, as well as ensure data qual-
ity control [76]. A smart water monitoring system has been
developed based on a WiFi module with three parameters,
namely pH, turbidity and temperature, as well as a Liquid
Crystal Display (LCD) due to the urgent nature of obtaining
automatic information based on a Wireless Sensor Network
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FIGURE 4. The applicability of different information sources in the monitoring of water bodies.

(WSN) [77]. In the event of this, the monitoring system
can be integrated into the citizen science platform, which
is more useful to validate monitoring data and increase the
amount of data collected in the database than the tradi-
tional sampling-based monitoring activities [78]. In addi-
tion, participation from the public to participate in scientific
research is supported by the United Nations (UN) through
the 2030 Agenda [79] because it helps to deepen under-
standing of sustainability-related issues. However, citizen sci-
ence, as a new method in water monitoring systems, limited
measurements such as data quality because of inexperienced
system users in scientific research and cannot describe the
trends of citizen participation [78].

Table 1 presents key aspects of design integration in a
comparative maturity framework, e.g. system requirements,
supporting technologies and smart operations. By consider-
ing the aspects in Table 1 and the assessment of the existing
monitoring systems, the new type of truly integrated infor-
mation collection system on surface water bodies proposed
in this research can be implemented.

V. DESIGN, IMPLEMENTATION, AND MANAGEMENT OF
THE DATA ACQUISITION SYSTEM
Stages II and III are prepared for the purpose of cloud-based
spatio-temporal data acquisition, which is used to assess
the sensor data quality. These stages are interlinked with
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TABLE 1. comparison of the Maturity of the different monitoring solutions by considering aspects of system requirements, supporting technologies and
smart operations.

Section VII through the selection of water parameters for
monitoring systems. The devices can collect the water quality
parameters defined in Table 3. Data cleaning and data correc-
tion are particularly important to define the outliers, noise in
the satellite image andmissing data points, includingmerging
data, citizen science data, data transmission and extracting
the data from different monitoring systems. The database
of the water monitoring system will be complex, moreover,
the need to combine information using the distribution of
data processes and integrate the database (data warehouse,
information system) between institutions will increase the
amount of information efficiently based on essential data
measurements.

The purpose of data management as shown in Stage III is
to obtain information from an online monitoring system in a
specific location to help water managers better understand the
dynamic process of surface water bodies [18]. The integration
of data incorporated different types of monitoring systems to
support water quality policy with aggregation problem [80].
In Knowledge Discovery in Databases (KDD), information is
extracted over five stages, namely selection, pre-processing,
transformation, data mining, evaluation and knowledge [81].
The use of data quantity has been related to data quality to
achieve high-level information from data monitoring with
regard to site location [18]. The recent development of smart
technologies and IoT has contributed to increasing the level
of water quality parameters based on real-time applications
as valuable tools for the purpose of measuring water quality
in real time [18]. Marce et al. stated a trend related to the high
amount of data which must be anticipated while transmitting
data [24].

Data management included failure anticipation to retrieve
the data, warning of the operational system and assessment
of system performance [7]. Additionally, data management
in Stage III considers sensors, cloud networking, and data
security to collect and transmit data as monitor and control
devices [76]. The applicability of sensors covers the spatial
and temporal sensors, which have the capacity for real-time
survey monitoring and land-based survey monitoring based
on satellite-relay systems. The process of sensors starts
with temporal sensors placement in in-situ measurement and
spatial sensors obtained from imagery satellites. In the next

step, temporal data is acquired from sensors and transmit-
ted via cloud networking or satellite telemetry to a specific
location where the data measurements are reviewed [82].
Next, the sensor deployed automatic data recording in the
water column controlled by an internal computer. The next
process, cloud networking, is required to get highly accurate
data based on robust sensor connectivity devices. In addi-
tion, data are stored, and files can be used by policymakers.
In contrast with conventional methods, the online monitoring
system provides a large amount of data that can be accessed
in real-time with less cost and effort. The metadata analy-
sis mentioned in Stage 2 integrates different uniform data
formats. The activity involved accessing data sources, the
location of data collection, the parameters selection, and the
procedures to download data from specific locations [80].

The development of aggregation algorithms and data pro-
cessing has also been used to increase the results of the data
management process with regard to the cluster [19]. More
recently, the IoT data platform visualizes the data obtained
based on the data management layer for end users [77]. Data
management has operated, stored and processed big data
based on distributed file systems.

Therefore, the advancement of the water monitoring sys-
tem should be integrated into data quality assurance and
efficient maintenance [7]. Data handling standards is one of
the issues with a lake monitoring system, which should be
a top priority for freshwater research [24]. This factor will
lead to a high-quality standard of data handling and detect
unusual measurements to assist the maintenance of the water
monitoring system. The development of monitoring networks
with an adequate level of redundancy is needed to reduce
data losses and extend the water measuring period [7]. The
approach to reduce the uncertainty of measurements can be
explored in this stage to analyze data lost due to dynamic
conditions.

VI. WATER QUALITY AND QUANTITY MODELING
Model selection for water monitoring systems involved high-
accuracy performances. Hereof, the design and advance of
hydrological monitoring can be integrated into water quality
monitoring systems with close design of each other such as
data collection, increase essential information, and decrease
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the uncertainty of sampling points. Most of the model results
are useful for displaying the forward condition, current status,
and past trends in the aquatic environment. Moreover, using
themodel in water monitoring can be categorized into support
sensor implementation, design monitoring distribution point,
threshold control, and warning system to utilize Decision
Support System (DSS). For example, The use of fewer input
data successfully improved the standard of sub-daily datasets
and the efficiency of data-based mechanistic models [83].
The simulation of nutrients has been interpreted to control
multi-temporal patterns in short-trend and long-term events
[84]. Partial Least Squares PathModeling (PLS-PM) revealed
the contribution of changes in monitoring points for water
level and salinity [85]. Generalized additive models (GAMs)
and routine surrogate models examined the dynamics of
nutrients in seasonal and annual trends to describe the state
estimation [86]. In addition, the combination of satellite
images and a linear model has analyzed the influence of air
quality and vegetation to support algal bloom early warning
systems [87].

The water quality of lakes is influenced by the adequacy
of water level control. Multi-objective optimization, which is
expected to have an impact on climate-change and societal
needs, requires more accurate models for long-term plan-
ning of water resources management activities. This requires
further refinement of evapotranspiration in terms of the
water balance (as a key element of quantitative monitoring),
accounting for measures to mitigate the drying of the catch-
ment, and the development of additional measurement points
to refine the projections and model development.

The challenge with regard to the analysis of water vari-
ables is to simulate the real behaviour of water dynamic by
comparing observations and model results [88]. The water
prediction models have been developed which can be catego-
rized using any techniques ranging from statistical analysis to
mechanistic models (dual - modelling approach). Models and
simulations related to water management are commonly used
to address this problem in terms of its environmental impact
under various circumstances [89]. The combination of com-
putational models, point sampling and data sampling yielded
the main causes of the dynamic water system and revealed
the complexity of the aquatic ecosystem [90]. The aim of
water quality prediction models for the freshwater ecosystem
is to reduce the risk of natural disasters and provide an early
warning system for the purposes of public policy [91]. For this
reason, early warning systems can be developed to enhance
the prediction of cyanobacterial events based on temporal
prediction, ANN-Multi Layer Perceptron−, and Self Orga-
nizingMaps (SOM) [92]. The integration of ANNwith Adap-
tive Neuro-Fuzzy Inference System (ANFIS) approach has
been used to estimate the water quality of the surface water
[21]. In addition, Zhao et al. developed the streamflow fore-
cast to maintain the level of robustness using a hybrid model
predictive structure, namely sequential and monthly [93].

The acquired information fully decides the selection of
models, which are described in Section VI. Following the dif-
ferent information deployed, the applied modelling approach
can be divided into static and dynamic models. An advantage
to selecting statistical models is that it requires resource
implementation at selection time, while dynamic models pre-
dict based on performance at compile time. For example, the
performance of a water monitoring system in water quality
can be performed based on a statistical model to forecast
water quality conditions in the San Joaquin River Basin [89].
In addition, the hydrodynamic model and water quality are
used to decide whether land use, project operation and pol-
lution inflow can contribute to the decrease of the aquatic
environment in Hongze Lake [94].

In spatial analysis, the MODIS satellite data is capable
of predicting algal blooms nine days in advance, the advan-
tages of which are its controlling factors, provision of opti-
mum solutions and variations in lag times [96]. Over recent
years, the problem with long-term predictions was the time
period, uncertainty factors, and computational error which
have decreased the simulation accuracy [97].

Generally, the models can be divided into two categories,
that is, deterministic models and stochastic models. It has
been demonstrated that stochastic methods such as genetic
algorithms [98], swarm intelligence - parallel computing [99],
Deep Learning [100], integrated GRACE observations and
the GLDAS - Noah Land Surface Model [91] or Extreme
Gradient Boosting [101] can simulate the processes related
to streamflow and flood forecasting. In meteorological time
series, Autoregressive Integrated Moving Average (ARIMA)
can be utilized to predict changes in thewater resources [102].
Recently data assimilation has been implemented in shallow
water models [103], in-situ remote sensing data surface water
temperature [104], water temperature [105], spatio-temporal
& real-time measurements [98], discharge forecasting [106]
and the control of hydrometeorological variables [107]. The
use of artificial neural network (ANN) ensemble models
with their ability to combine data-driven models with one
prediction rather than using a single model is gaining in
popularity [108]. Hybrid models have some advantages over
single models, namely their ability to predict measurement
variables based on ANN ensemble models: (i). increase the
forecasting accuracy and are more capable of capturing the
monthly inflow prediction [109], (ii). decrease the uncer-
tainty of long-term streamflow predictions [108], (iii). mini-
mize computation time [110], and (iv). estimate total volume
of forecast [111]. The model identification section will be
explained based on the following classification [112]:

1) Dynamic models or deterministic models
2) Stochastic models or Learned pattern knowledge,

which is categorized into three subtypes:
• First principle models (white-box models)
• Data-driven models (black-box models)
• Semi-mechanistic models (gray-box models)
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TABLE 2. The different methods of mathematical models (source: [95]).

A comparison of the model structures with their content
elements is provided in Table 2. Four categorised meth-
ods describe the dynamic of water quantity and quality
in freshwater: White-box model provided an understand-
able and interpretable model which used physical formula.
Light-gray-box model is a state space model with physi-
cal rules and model structure in its model. Dark-gray-box
model involved the Neuro-fuzzy model and physical law.
Finally, the black-box model can be classified into hyper-
planes, and probabilistic-combinatory logic [113]. However,
the black-box model does not contain the model structure and
parameters commonly used in ANN as tool analysis.

A. DYNAMIC MODELS
The advancement of statistical and deterministic models
(simple regressionmodels) was used to analyze the total max-
imum daily load (TMDL) as a guideline on the concentrations
of pollutants in the inflow of a river [89]. The dynamic
model has been used to analyze the changing characteristics
of water bodies [114], and interconnected distribution net-
works to describe the morphodynamics of rivers [115]. Fur-
thermore, the coupling model between the Moving Particle
Semi-implicit (MPS) and Discrete Element Method (DEM)
to describe the morphological dynamics will be a promis-
ing solution to water surface elevation [116]. The simula-
tion based on a dynamic model (model of stock and flow)
divided into the (i). continuous linear model and (ii). discrete
model (activity diagram). One of the advantages of dynamic
forecast modelling is that it reduces the error result from
multi-site systems using a copula function leading to hybrid
spatio-temporal forecast improvements [117]. To analyze the
nitrogen cycle on an hourly basis, Cui et al. has used a hybrid
of the Nitrogen Dynamic Polder (NDP) model to simulate
water and nitrogen dynamics [118].

B. APPLIED KNOWLEDGE MODELS
The further development of existing monitoring systems and
the methodology of model integration depends on the exist-
ing infrastructural aspects and the available data set. The

contribution options for the three main categories in water
monitoring are described in the following subsections.

1) FIRST PRINCIPLE MODELS (WHITE-BOX MODELS)
The deployment of hydrodynamic models in water qual-
ity and hydrological model has been applied in a
one-dimensional model (1D model), two-dimensional model
(2D model) and three-dimensional model (3D model). It was
eventually realized that the indication of the optimal flow
release under flood controls should be obtained by jointly
considering the composition of flows and water quality
response in rivers [119]. This can be achieved by using
integrated into various models to forecast the daily discharge
[120]. The integration within 3D model water quality data,
machine learning and related environmental models have
capability to analyze physical and biogeochemical processes
[121]. Data assimilation as an optimal state and parameters of
the system has been considered to describe the inconsistency
between sampling and modelling both vertical and side-
ward [122]. In addition, ensemble data assimilation (Kalman
Filter, Dud-EnKF, EnKF-GS) provide the improvement of
computation time in real-time forecasting [123]. One of
platform, namely MeteoLakes, a 3D model can reveal the
lake hydrodynamics based on unified approach [124]. Hybrid
method in physical model were selected to predict water
quality which chose COD as main pollution in Songhua
River Basin [125]. In addition, physical - empirical model has
been developed to support decision-making process to predict
inflows into the lake [126]. Moreover, the lake’s dynamic
behaviour in terms of water quality is slower than in rivers
because of the differentiation between the inflow and outflow
[94]. Therefore, the calculation of hydrodynamics in the lake
is different from its computational equivalent in the river.

The development of a two-dimensional (2D) hydrody-
namic model with integrated pollutant diffusion and ecody-
namic model has been utilized for the spatio-temporal of a
coupled eutrophication model in a shallow lake [127]. The
water quality was measured by considering transport, diffu-
sion and pollutant inflow into the lake [94]. The Ensemble
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Kalman Filter (EnKF) has been implemented into a two
dimensional hydrodynamic model as well as a water qual-
ity model based on the assimilation of state variables and
model parameters to improve the accuracy of results from
models [128].

The 3D model has been applied to scientifically represent
the impact of thermal changes in lakes. The 3D mod-
els used Reynolds-Averaged Navier-Stokes (RANS) Equa-
tions, mass balance, hydrodynamic processes andmomentum
which is divided into hydrostatic and time momentum [129].
For example, the model has been applied to determine the
dynamic water quality in rivers [130].

However, since the hydrodynamic model required physical
parameters and good quality data measurements (Table 2).
The availability of limited physical data is the main cause for
the reduction in the accuracy of the hydrodynamic model.

2) SEMI-MECHANISTIC MODELS (GRAY-BOX MODELS)
One of the challenges of implementing of white - and black
box models is the scaling problem. The black-box model
consists of a definite (exact) process that is incapable of
describing dynamic process of the white-box model. To over-
come this problem, a gray-box model, commonly known as
a semi-mechanistic model, has been used. The process of
semi-mechanistic modelling begins with a white-box mod-
elling structure where the unspecified parts are modelled
by a black-box model. The semi-mechanistic model based
on transit time was formulated to extract the process from
water flow and hydrology parameters [131]. Calculation of
the transit time supposes that the compositions of the input
and output flow are equal.

Besides the workflow of the transport time, a semi-
mechanistic seasonal temperature profile was successfully
tested in the stratified layer of the lake [132]. The semi-
mechanistic model outperforms the two models (mechanis-
tic and strictly empirical model) to define the phospho-
rus retention time in the lake [133]. The result showed
that semi-mechanistic model produce better output result
based on inflow of total phosphorus concentration, lake aver-
age depth and water retention time. However, according to
Narasimha et al. research into semi-mechanistic studies with
in the scope of the water dynamics in inland waters is lim-
ited [134]. Therefore, to evaluate the best performing semi-
mechanistic models, the study recommends the use of a
broader data set and various experiments covering different
combinations of parameter [135].

3) DATA-DRIVEN MODELS (BLACK-BOX MODELS)
The comparison with the deep learning method has been used
to predict the streamflow as far as two days in advance using
Feed - ForwardNeural Network (FFNN), Convolutional Neu-
ral Network (CNN), Stacked LSTM, LSTM - Gated Recur-
rent Unit (GRU) and Bidirectional LSTM (BiLSTM). How-
ever, the LSTM and GRU models are sufficient to produce
highly reliable forecasts while minimizing the computation

time because less memory is required. The water temperature
in the river has been modelled using the LSTM method,
Random Forest (RF) and BackPropagation Neural Network
(BPNN) [136]. However, the GRUModel (simplified version
of LSTM) utilized logistic regression neurons as the gate and
has 2 gates correlated with weights: the update gate and the
reset gate.

Implementing a hydrological model into a water monitor-
ing design system has contributed to monitoring, modelling,
and analyzing water usage and water consumption [5]. The
combination of Sentinel-1 radar data and Sentinel-2 mul-
tispectral data as a hydrological model to calculate water
quantity [137]. The monitoring of sustainable development
of water resources has been shifted to geophysical satellites
through global hydrological cycle components water [16].
The hydrological model has been an input into the monitoring
system by analyzing flow dynamics [22], flood monitoring
[28], water level and temperature periodic [53].

Comparison between The San Joaquin River (SJR) -Water-
shed Analysis Risk Management Framework (WARMF)
model and Regression Model which contributed regression-
based forecasting model performance better in daily [89].
Moreover, hydrological model using Adaptive Neuro-Fuzzy
Inference System (ANFIS) and Artificial Neural Net-
works (ANN) are the most used water quality monitoring
and assessment in ten years. In addition, ANFIS, Wavelet-
ANN (W-ANN) and Wavelet-ANFIS (W-ANFIS) were most
precise to predict surface freshwater quality [21]. The water
quality model is divided into three models: feed-forward,
hybrid, recurrent, emerging methods. In Dissolved Oxy-
gen (DO) prediction, Radial Basis Function neural networks
(RBNN) model contributed higher accuracy than Multi-
layer Perceptron (MLP) [69]. The model’s result in water
quality and water quantity can be overfitting or underfit-
ting which deteriorate model’s capacity to forecast data or
select trend of data based on details parameters [138]. How-
ever, with additional method from the Complete Ensemble
Empirical Mode Decomposition Algorithm with Adaptive
Noise (CEEMDAN) decomposition, the convolutional neural
network (CNN), long short-term memory neural network
(LSTM), and hybrid CNN-LSTM with different input data is
analyzed. The combination from various method can effec-
tively improve the forecasting for water quality prediction
[139]. XGBoost has better performance than Random For-
est (RF) and Support VectorMachine (SVM) to predict harm-
ful algal bloom between 5-9 days [96]. Genetic algorithm
and Pattern Search (PS) optimization methods have been
compared to forecast optimal flow hydrological model for
flood control [98]. In addition, Bootstrap, wavelet and neu-
ral network (BWNN) method and data resampling provided
daily streamflow time series forecasting [140].

VII. MONITORING OF WATER QUALITY
Long-term water quality management strategic planning
requires continuous monitoring, while current infrastructures
and methodologies need to be improved in order to handle the
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new challenges (e.g. micropollutants, microplastics, climate
change, etc.) generated by environmental changes. The pre-
vention of algal blooms is a complex task because it requires
operational and public policy decisions based on systematic
measurements and accurate model-based predictions. Build-
ing models and producing decisions require events to be iden-
tified and parameters affecting water quality to be monitored.
It requires systematic measurements of the sources as well
as an understanding of the impacts of internal and external
nutrient loads. The monitoring of internal nutrient loads is an
important issue, while management options need to be opti-
mized based on this information. The monitoring of external
sources needs to be improved, e.g. comprehensive and regular
water quality monitoring of inflows and rainfalls has yet to
be addressed. Systematic detection, sediment transport, and
flow conditions have a significant impact on water quality
and the spread of contaminants. There is an urgency to reduce
dimensions in order to develop forecasting models for data
availability, reliability, cost, and data acquisition [97]. It has
been analyzed among systematically reviewed that Principal
Component Analysis (PCA) and Canonical Correspondence
Analysis (CC) is one of the frequent approaches to reduce
50 % of dimension input including temporal dimension. For
example, 10 variables were analyzed from 18 groups data and
the use of single-parameter is helpful to predict harmful algal
bloom [97]. In this section, the selection and classification
of water quality parameters [141] will be discussed based
on the number of input variables, which will increase the
computational efficiency of our proposed FIMS framework.
The water quality can be characterized by a different set
of parameters, which could result in different assessment
standards [142].

The applicability of water monitoring systems has been
used to interpret the actual condition of the aquatic environ-
ment. In a concurrent surface water monitoring development,
three phases have been presented to support Multi-Criteria
Decision Making (MCDM) [142]. The process of decision
starts with dimension reduction from water quality indi-
cators and then developed Probabilistic Linguistic Term
Set (PLTS) technique and weight interrelationship. Fur-
ther form using fuzzy has been offered to generate the
result. The performance of the monitoring system provided
a 95 % of confidence level. The optimal design of water
quality monitoring networks is employed using Bayesian
Maximum Entropy (BME) framework through Value of
Information (VOI) and Transformation Entropy (TE). These
approaches are used to gain the optimal information using the
lowest sampling station [143]. With five sampling stations
in this study, the approaches provided 76 % of information
represented the availability of 45 sampling stations. In addi-
tion, ensemble data assimilation through twin experiments
improved the performance of water monitoring systems by
more than 50 % [123]. For spatial imagery, empirical band
ratios through MODIS provided an accuracy 40 % to cal-
culate the water column for Suspended Particulate Matter

(SPM) [57]. To reveal the Chl-a dynamics, linear empiri-
cal models based on Landsat imagery have been developed
with 7.58 % accuracy. Water quality monitoring system is
applied prediction based on artificial intelligence [2]. Some
of the procedures obtained clustering techniques through
ANN- PCA- Hierarchical Agglomerative cluster (HAC) and
Improved Genetic Algorithm (IGA) - Backpropagation Neu-
ral Network (BPNN) for turbidity with Root Mean Square
Error (RMSE) error is 0.159 and 0.0024, respectively.

Currently, the water monitoring system starts with design-
ing representative sampling points and the contribution of
pollutants from each sampling area. With the CA-Markov
approach, the land-use data has been generated, and the
potential pollution for non-point sources has been identified
using the scoring method. The results demonstrate that dif-
ferent scores to select water quality monitoring are iden-
tified with high certainty result [144]. One of the major
considerations of spectral indices is whether the spatial sen-
sors can provide adequate spectral bands to calculate the
quantity of algal mass in the freshwater [145]. The majority
of Wireless Sensor Network (WSN) based Water Quality
Monitoring (WQM) has temperature and pH sensors [19].
The other sensors applied in WSN are turbidity, water level,
and humidity [74]. In addition, the WSN system has an
automated warning SMS alert to the decision maker [77].
Moreover, the design structure of WQM to select the num-
ber and location of monitoring stations can be categorized
into five methods: topology methods, multivariate analysis,
information entropy, optimization framework, and geostatis-
tic [20]. Aquatic environmental monitoring was designed to
design a robust system accomplish of functioning remotely
for expanded time intervals [75]. Streamflow influences pol-
lutant loading as it is a flow release and absorption. Therefore,
it is recommended to install discharge sensors into water
quality monitoring systems [146].

Therefore, we will describe the most important water
quality-related parameters based on the referenced papers in
order to highlight the relevant variables for future water mon-
itoring systems. Water quality parameters are grouped and
explained according to the EU Water Framework Directive
(WFD), as a systems approach is a prerequisite for this [95].

A. PHYSICOCHEMICAL ELEMENTS
Eutrophication is divided into two sources: (i). cultural
eutrophication which originates from agriculture (farmland,
forests, grassland), fish aquaculture (livestock farming, fish
farming) and domestic-industrial wastewater; (ii). natural
eutrophication such as climate factors, the nitrogen and
phosphorus cycles, discharge levels (upstream water) as
well as aquatic plants and fish [157]. The combination of
chlorophyll-a, nitrogen, and phosphorus is helpful to monitor
as well as evaluate the trophic and categorize the freshwater
ecosystem, including measuring the accumulation of algal
biomass [187]. Eutrophication has had an impact on the
food chain of the aquatic ecosystem, algal bloom events, and
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TABLE 3. The most commonly examined water quality-related
parameters.

the population of species which disrupt the function of the
ecosystem [188]. Study from Othman et al. have shown that

the DO is the most important variable, while the pH has the
least influence on predicting the water quality index [34]. The
average degree of transparency decreases as well as the level
of eutrophication increases, rendering water transparency a
significant indicator of aquatic assessment [148]. Sodium
(Na) and chlorine (Cl) were identified as the most influential
factors on total dissolved solids (TDS) [33]. Furthermore,
total phosphorus and water clarity are most likely to lead
to a dynamic phytoplankton community [35]. Nutrient and
phosphorus inputs are related to the increase in effluent from
WWTP that is not treated properly, leading to an increase
in the growth of algal biomass and vascular plants [11].
In addition to samples of surface water data, data monitor-
ing is measured from the influent or effluent of WWTPs
[189]. From all the variables of environmental monitoring,
the water temperature and total dissolved nitrogen are the
critical variables to predict algal bloom events three weeks in
advance [92].

Table 3 shows the list of parameters (physicochemical
parameters, hydromorphological factors and biological ele-
ments according to the WFD) for the purpose of detecting
anomalous events identified by using different mixtures of
solutions from water monitoring systems with regard to the
FIMS framework.

B. HYDROMORPHOLOGICAL ELEMENTS
Since Wetzel divided lakes into three types [190], namely
(i). temperate lakes, (ii). tropical lakes, and (iii). polar lakes,
the water temperature and dissolved oxygen of every lake
is different depending on the its type. The Water Frame-
work Directive investigated the ecology and environment as
a hydromorphological assessment [191]. The morphology of
a lake or river is generally described by a bathymetric map
to obtain depth contour details and increase the detail of the
analysis [190]. Water pollution has been an issue with regard
to the restoration of water storage [192]. Fukushima et al.
assumed that the phosphorus concentration increases during
high flow dynamics in shallow eutrophic lakes [193]. Further-
more, rainfall influences sedimentation and pollution trans-
port into freshwater [194]. Inflow discharges and waves are
influenced by rainfall as well as wind speed and its direction.
Specifically, changes in wind direction are a significant factor
influencing lake hydrodynamics [195]. The distribution of
algal blooms with lower nutrient concentrations is influenced
by water depth, water temperature and turbidity [196]. The
result observation from Mei et al. revealed that the temper-
ature difference with 1.7 % average higher increased the
nutrient concentrations [197]. Moreover, The development of
empirical modeling approaches found that the range differ-
ence of temperature 3.3◦ has affected the growth of nutrients
[198]. Variables of land use for agricultural, fertilizers are
significant factors with regard to predicting the concentration
of nitrate [199]. Additionally, the most prevalent elements
in dissolved nutrients are the structure of water bodies and
landscape characteristics [200].
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The study related to most influence factors on water tem-
perature has been collected between 1992-2019 to reveal
the heat fluctuation in surface water [201]. Their findings
indicate that solar radiation is the most significant factor con-
tributing to the surface-water temperature during the spring
[201]. The discharge level also influences the dynamics of
nutrient loading [202]. A floating station was developed to
obtain data over six years of ten solutes every two weeks
as well as seven years of climatic-hydrological data mon-
itoring and temperature data recorded on a daily basis to
get information about evapotranspiration [203]. Based on
Bayesian modelling results, the key driving variables for
water quality dynamics are catchment runoff, rainfall and soil
moisture [204]. During flood events, water quality dynamics
depends on fluctuations in water levels, population growth,
and the atmospheric temperature [205]. The indication of
polynomial events between river network flow velocity and
water diversions occurred when the water quality dynam-
ics is higher in the wet season than the dry season [206].
As mentioned by Wetzel et al. the characteristics and struc-
ture of water bodies resulted in the different dynamics of
water exchange and mixing processes in freshwater. There-
fore, a combined assessment to cover anything from spe-
cific types of water bodies to specific responses would
provide a comprehensive solution for evaluating the status
of ecological quality and the environment [207], this topi-
cal review answers exactly this type of further development
opportunities.

C. BIOLOGICAL ELEMENTS
The correlation between species and environmental stressors
has increased to assess and monitor ecological environment
[208]. For example, bacteria are one of the biological indi-
cators by which the quality of an aquatic environment is
assessed. By following the traditional approach, the anal-
ysis of indicator bacteria can achieve results after 18-24
hours, however using modern analysis tools, results can be
achieved in 3-4 hours. To achieve faster results using differ-
ent approaches, a predictive model is used with parameters
such as temperature and turbidity [177]. The combination
of geomatics, in-situ and satellite-derived variables is used
to analyze fungi bacteria [182]. Another kind of bacteria in
freshwater is cyanobacteria. The patterns of cyanobacteria
events have been evaluated to assess the annual frequency of
surface cyanobacteria blooms by spatial and temporal moni-
toring [178]. The use of cyanobacterial strains for biological
monitoring has led to the construction of an environmental
assessment through the response to water pollution dynamics
[209]. Another bioindicator is the E. coli concentration as a
pollutant in terms of environmental sanitation for the preven-
tion and mitigation of pollution sources [210]. Furthermore,
Ma et al. revealed that algal blooms favored higher tempera-
tures and light rain while wind is the most influential factor
in the growth of algal blooms [211].

In addition, algal blooms contain chlorophyll-a which
was identified using satellite imagery to explore the spatial
distribution of the pollutants [176]. The latest sensor to
be applied in the analysis of water quality dynamics is a
blue-green algae indicator [179]. The other biological indi-
cator is phytoplankton [151]. Regarding biological oxygen,
the most common parameter to measure the respiration of
fish and bacteria is the oxygen uptake rate [212]. However,
changes in habitat areas have influenced the habitats of biota
with regard to the restoration project [160]. To prevent the
impact of the degradation of the aquatic environment because
of restoration, the water quality index should be evaluated and
changes in habitat areas investigated [160]. The biological
assessment in freshwater included macrophytes which used
to respond to the bioavailable nitrogen [180]. In the other
study, the assessment of ecological quality in freshwater was
selected using Indices of Biological Integrity (IBIs). There-
fore, a fish species were categorized based on functional
groups and analyzed using a threshold to evaluate the environ-
mental stressor [185]. Furthermore, a fish-based index (FBI)
and IBIs were used to develop an ecological index and iden-
tify environmental conditions [213]. The distribution of fish
was analyzed to assess the suitability of the water quality
with regard to the heart and respiratory rates as a bioindicator
[214]. Altenritter et al. proposed invasive species manage-
ment to combat their rapid spread and potential to harm the
endemic species in freshwater [181].

To analyze the heavy metals in surface sediments, the
parameters of benthic toxicity is a common method to deter-
mine the biological effects of water pollution [186]. Based
on the analysis of the results using benthos as a biological
indicator, the study revealed that the heavy metals in the
research originate from industrial and agricultural activities
[215]. The study indicated that benthic macroinvertebrates
contributed towards eutrophication in response to environ-
mental changes and anthropogenic pressures [216]. In addi-
tion, macroinvertebrates play a key role as biomonitoring
tools [217]. A zooplanktonmodel has been developed by con-
sidering zooplankton biomass. The scenario of the model was
created using two parameters, namely atmospheric tempera-
ture and nutrient input [183]. A multimetric index (HeLLBI)
is used to analyze the effects of eutrophication and mor-
phology on macroinvertebrates [184]. The use of biological
indicators is advantageous in terms of its cost-effectiveness
and combined approach to evaluate the pollution in the
ecosystem [208].

D. OTHER WATER QUALITY RELATED ASPECTS
The impact of climate change on water quality are expected
with regard to the linked process to simulate future
climate-water quality scenarios. Moreover, the analysis of
the impact of climate change has been developed from
the GCM (Global Climate Model) and RCM (Regional
Climate Model) on water quantity [218]. One of the
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impacts of climate change on water quality is the increase
in cyanobacteria [219]. Minaudo et al. suggested that the
increase in temperature and decrease in streamflow rate have
the potential to increase the quantity of cyanobacteria and
phytoplankton [220]. By projecting future water quality-
climate simulation results, a study revealed that during wetter
conditions, TP loading is increased [221]. A study stated
that the parameters to be included in the related aspect with
regard to water quality-climate change are flow rate, TP
concentration, and DO [222]. Specifically, the parameters
are influenced by residence time factors included in the
mixing process [223]. Climate change is affecting lakes and
rivers as water resources [224], wetland systems [225] and
watershed systems [226]. An additional factor related to the
deterioration in water quality are anthropogenic activities as
a result of influents from agricultural, domestic and industrial
wastewater [227]. The long-term impact of climatic con-
ditions on catchment areas has influenced the increase in
temperature predicted by the climate scenario and ecological
model [228]. The highlight some impacts of climate change:
(i). eutrophication, salinization, nutrients release; (ii). reduc-
tion in endemic species; (iii). increasing nutrient loads; and
(iv). decreasing biodiversity [229]. Generally, the change in
status of the lake from a mesotrophic to an eutrophic state is
influenced by climate change [230]. Anthropogenic activities
are divided into agricultural, domestic and industrial. Pesti-
cides are one of the parameters to assess the water quality
of surface water through long-term monitoring [8]. The use
of pesticides in the agricultural area influences contamina-
tion in freshwater through surface runoff, soil leaching and
coincidental runoff [11]. The excessive use of fertilizers in
agriculture contributes to the increase in phosphor concen-
tration [175]. Water pollution resulting from fertilizers is
considered from point sources and diffuse sources [231].
Specifically, influents in the form of nutrients from industry
are one of the primary sources of pollution resulting from
eutrophication. However, nutrient loss has implications on
cyanobacteria dominance, fish kill and water hyacinth as well
as leads to a reduction in the health of the aquatic system
[188]. With the selection of correlating aspects concerning
parameters of water quality, the investigation determines
which factor contributing towards trends in water quality is
the most influential.

One of the most affected factors on water quality are
microplastics concerning samples that are smaller than 5mm
which are increasingly pervasive due to the growth in anthro-
pogenic production [232]. Some microplastics are trans-
ported by runoff, wastewater treatment plant effluent and
atmospheric deposition before being released into freshwa-
ter bodies, which can put the health of living organisms at
risk [232]. Therefore, the distribution of microplastics is one
important parameter to identify the specific point, estimate
the total number of microplastics in surface-bottomwater and
soil as well as determine the controlling factor which affects
the ecological process.

E. SENSOR PLACEMENT AND SAMPLING POINT
IDENTIFICATION
The monitoring frequency and sampling points have obtained
more data that represents the condition of a freshwater
ecosystem and recognizes the long-term dynamics of a fresh-
water ecosystem [24]. Continuous monitoring from observa-
tional sampling improved the reliability of the system and
provided a long-term collection of data points [18]. In this
research, several studies about optimal sampling points and
the monitoring frequency to improve the performance of
water monitoring systems have been reviewed (Tables 5
and 6). Furthermore, examining the related factors such as
biological indicators in basin areas is recommended [38]. The
optimal key sensor of themonitoring networkwas determined
to reduce the number of locations where sensors are imple-
mented to four. The process steps to identify an appropriate
sensor for the monitoring locations are defined below [36]:

1) Define the normal distribution and missing values in
the water quality parameters of the data set.

2) Sampling points of pollutants and non-pollutants have
been analyzed to detect patterns in the data through
spatio-temporal including weather parameters.

3) From the previous process, the measurements of sig-
nificant water quality parameters in the lake or water-
flow have been taken and classified. CA and DA tech-
niques used standardized values from different units of
measurement.

4) Spearman’s rank correlation coefficient is used to mea-
sure the correlation between the most significant vari-
ables in water quality measurements.

5) The significant parameters have been interpolated
using Inverse Distance Weighting (IDW) to search for
the optimal sampling point and predict the values of the
non-point source locations.

6) The fuzzy overlay can be used to identify the sam-
pling point with the highest concentrations using multi-
criteria analysis.

The placement of sensors in aquatic environments is
affected by the discharge level. For streamflow and coastal
areas, the optimisation of sensor placement has contributed
towards minimizing costs and identifying the main drivers of
water pollution at critical outlets [39]. Furthermore, the opti-
mal placement of sensors will optimize simulations, improv-
ing performance in the light of low computational costs [233].
In streamflows, the efficiency of distributed computing has
been used to enhance the monitoring system by optimizing
adaptive design [234]. However, some obstacles of water
bodies change over time and their remote location has deter-
mined themonitoring efficiency of the network from different
sensor locations [235]. Optimal sensor placement at different
points has increased the response action resulting from a
monitoring system to observe the flow and velocity of water
in a river [236]. In addition, the optimal placement of sensors
has provided a solution to higher model errors and boundary
condition errors [91]. Sensor placement in lakes can reduce
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FIGURE 5. Sampling Point Identification Process According to the FIMS Framework.

costs as a result of optimisation and make the process less
time-consuming [237]. For coastal areas, since sensor place-
ment is easy to monitor, real-time data has provided feedback
allowed to a sensor’s performance [238]. However, Xu et al.
have determined that the implementation of a large number
of sensors is not operationally feasible. Therefore, the appli-
cation of remote sensing is recommended to monitor large
coastal areas on spatial and temporal scales [239], with fur-
ther development of existingmonitoring systems according to
the proposed FIMS methodology. The potential placement of
sensors in coastal areas contributes to minimizing the uncer-
tainty of data, especially in terms of salinity data [240]. The
other reason for the selection of optimal monitoring points is
to examine flood hazards in coastal urban areas [241]. In the
river monitoring network, since the water flow contributed
towards pollution dynamics, it is crucial to minimize the river
network and maximize the performance of the monitoring
system by taking into consideration various factors such as
hydrodynamics, contaminant fate, and transport simulation
[37]. Furthermore, the optimal monitoring sampling point
was determined by information from spatial analysis on the
status of the entire reservoir and the reduction in the cost of
monitoring network development [242].

The sampling point identification criteria and sampling
strategies including the impact of insufficient of sampling
activity were shown in Fig. 5. A study identified three cri-
teria to choose the sampling points: (i). the location (source
of pollution and the water resource), (ii). accessibility and
(iii). number of influents (water inflow) [38]. Computa-
tion has been integrated based on the River Mixing Length
Method (RML), land-use change modeling, multi-criteria

evaluation, anthropogenic activities, sampling data including
New point-source potential pollution score (NPPS) to iden-
tify the relevant river sampling point [144]. Based on the
analysis results, the statistical approach is commonly used to
design the sampling monitoring network in the water bodies.
Other methods, e.g. quantitative techniques, can be used to
select sampling points such as Cluster Analysis (CA), and
Discriminant Analysis (DA) [36]. Furthermore, VoI has been
applied together with Bayesian Maximum Entropy (BME) to
determine the optimal sampling points and highest value of
information related to healthy rivers and ecosystems [143].
The optimal sampling point is defined as increasing or reduc-
ing the existing sampling point depending on the calculation
from available data and conditions. Using calculations from
Gamma Test Theory (GTT), the results showed that the opti-
mization of theWater QualityMonitoring Network (WQMN)
sampling point is reduced to 23 percent in comparison with
the original empirical network [243]. The other calculation
concept to identify the optimal sampling point networks of
reservoirs and lakes is Value of Information (VoI), which
is used to mitigate the weakness of the existing approach
in one dimension. Besides using VoI, the study is also sup-
posed to use an evidential reasoning method to calculate
the optimal sampling point and sampling frequency [40].
The combination of Wavelet-ANN and a high-frequency
online monitoring sensor-based surrogate model is proposed
to detect anomalies in aquatic environments [244]. The out-
put result of contaminant loads along with the rank of the
Linear Time Invariant (LTI) model are used to determine
the optimal sensor placement in a water monitoring applica-
tion. This approach has enabled the system to identify the
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contaminant which is a non-point source of river network
[245]. Alilou et al. drew up a design for monitoring points
by following a multi-criteria analysis approach, including the
Analytic Network Process (ANP) and fuzzy logic integrated
with the RML process [246]. A combination of Sewer Over-
flows (CSOs) - Determinant factors were used as amethod for
sensor placement based on three scenario (simulation data,
expert data, and spatial data) [39].

Figure 5 shows three types of sampling techniques:
(i). seasonal sampling (wet and dry season), (ii). temporal
sampling (one sampling point in selected years) and (iii). spa-
tial sampling (different locations) [247]. Differences in time
sampling over short periods of time can potentially yield
biased results that cannot be used for model validation [97].
Inadequate sampling frequencies lead to the underestimation
of long-term nutrients [3] and loss or distortion of infor-
mation or data [24]. Therefore, the sampling frequency to
capture such dynamic behaviour is important to investigate
the short-term dynamics of the Chl − a concentration [18].
The different approaches should be integrated to standardize
adequate measurements for the purpose of sample collection
[247]. In addition, the main components methodology from
Alilou et al. were a numerical model, which was used due to
limited water quality data. First, the cross-sectional area and
different size of the river are measured from satellite imagery
before their accuracy is checked using field measurements.
The rivers and branches are divided into small segments
expected to be water monitoring points. The total number of
segments for one river or one branch is defined before the
results of potential sampling points along the full length of
the river are identified. The process to choose the number of
sampling stations is analyzed using the hierarchy of sampling
points. The result of RML identified the potential of sampling
points before a new non-point source Potential Pollution
Score (NPPS) method was chosen to analyze the most critical
sampling points under the conditions at the present and future
locations [144].

The accuracy of the monitoring system is one of the key
points to protect the ecosystem [8]. Therefore, sensors must
be calibrated over a time range to avoid data losses (drift)
during data transmitting while the sensor is undergoing main-
tenance [7]. The following problems are related to data
gathered by hydrological and water quality sensors [248]:
(i). there is no data or data gap in the database, (ii). the sensor
reading has been decreasing because of the time frequency,
(iii). the sensor failed to collect the data because it was
defective (iv). data measurements fall outside the sensitivity
range of the sensor, (v). the database contains an error because
of a constant value, (vi). the data logger contains repeated
data from the last record, (vii). power failure, and (viii). nat-
ural causes, such as the sensor being covered by snow. The
combination of multiple sensors to reduce the error of data
measurements has been recommended to develop an early
warning threshold [27]. The utilization of sensors with differ-
ent temporal, spatial and spectral resolutions may reduce the

problems resulting from single systems [57]. Multiple signals
from high-frequency sensors at sampling sites are used to
develop a quantitative approach and understand the process
[27]. The other reason is to minimize the multiplication of
errors from in-situ data compared to measurements from
satellite imagery [22]. In order to achieve optimal data accu-
racy, a Data-Driven Adaptive Sampling Algorithm (DDASA)
based on a hybrid approach has been proposed, especially to
deal with data fluctuations [42]. Monte Carlo permutations
can be used to check measurements and test the availability
of configuration data [41]. The latest study developed a cali-
bration method to analyze low-cost water level sensors using
seven parameters, namely stability, accuracy, repeatability,
resolution, reproducibility, response time and environmental
sensitivity [249].

F. EARLY WARNING SYSTEMS
Since Early Warning Systems (EWS) are needed to prevent
irreversible damage to wildlife, one has been integrated into
our FIMS framework as one of the measures to bring about
water quality improvement planning (Figure 2 Stage V.). This
process can be formulated based on the details explained in
Section VII. The optimal placement of sensors (monitoring
points) and fine-tuning will be implemented in addition to the
traditional point sampling techniques, including information
sources concerning models and remote sensing. In the pro-
posed EWS, a warning message is processed to describe the
status of the aquatic ecosystem both over time and spatially.
The threshold process is critical in water monitoring systems
as an input to the EWS. In Fig. 2., the threshold process for
differentiating between normal and emergency modes differs
depending on aspects of the water quality of the water bodies.
This implies that the water monitoring system cannot be
applicable at all freshwater locations, it must be specified
based on the implementation of the FIMS framework. There-
fore, to increase the reliability of the early warning systems,
general threshold, an upscaling threshold that applies to all
freshwater locations (lakes, rivers) or a minimum threshold
applicable in one category of freshwater (lakes, rivers) must
be set. The correction error for the formulation, data handling,
categorization details, optimizationmodelling, utilization and
processing of data from satellite imagery is needed to increase
the accuracy of the threshold computation system, which is a
good indication of how interconnected the FIMS stages are
(Fig. 2). Correction is used to identify the time intervals of a
disaster event as well as to reduce the number of false alarms
produced by the warning system using this robust approach.

VIII. DECISION SUPPORT SYSTEM (DSS)
The last stage of the FIMS framework (Fig. 2.) is the Deci-
sion Support System (DSS), which yields the output of the
threshold computation by considering by how far and for
how long the parameters are predicted and forecast to exceed
the threshold line [250]. A DSS is used to process, assess,
evaluate, propose decision options and rank the alternatives to
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FIGURE 6. The use of the different information sources to support the water management activities.

determine the threshold in the event of outbreaks (risk level)
in the form of spatial maps and temporal result [251]. The
performance of the water monitoring system will be assessed
under different conditions of the dynamic ecosystem andwith
regard to how the threshold can detect the event anomalies
in freshwater to support decisions concerning water manage-
ment. In addition to our proposed FIMS framework, the sys-
tem describes the sources of pollution at an exact location and
seasonal frequency to select the location of the continuous
water monitoring system. Therefore, much more and better
quality information is available to support decision-making
by the implementation of the proposed FIMS methodology
(Fig. 2.), as is the case in ‘‘business as usual’’ practice-driven
water monitoring. Figure 6. shows the advantages of the
integrated use of different information sources for decision-
making support.

Further development of the existing water monitoring sys-
tems is necessary for the sake of long-term sustainable water
resource management, so the reliability of decision support
and cost optimization can be planned together based on the
presented FIMS framework using different data sources since
the ideal solution for monitoring water quantity, and quality
parameters can be selected. Furthermore, with the cross-
effects (Fig. 6), the validation procedures can be supported
so that more well-founded development strategies can be
established.

IX. CONCLUSION
The development of water monitoring system research has
been increasing over many years. The results of specific scale
overview from the existing citations emphasizes the impor-
tance of integrating efficient and effective water monitoring

systems for making measurements from monitoring stations,
optimizing sampling points, selecting relevant water quality-
related variables, yielding precise model results, data han-
dling and ensuring accuracy. Hence, a new Framework for
Integrating Monitoring Solutions (FIMS) has proven to be
a powerful tool that supports various fields of water qual-
ity management. The review was compiled from more than
300 papers that reveal changes in freshwater dynamics using
the recent application, monitoring framework, and technol-
ogy.

In this paper, the proposed integrated spatio-temporal
water monitoring systems are interfaced with several sup-
port systems, as shown in Fig. 2. Several relevant questions
regarding the implementation of the system were investi-
gated. The key conclusion was included in this study based
on the answer to research questions. It was analyzed that
an efficient water modeling approach combined with a data
acquisition system, cross-validation information measure-
ment, and data management are discussed. It was shown
that different cross-validation of modeling systems provided
better performance in predicting the early warning system
for changing environmental conditions (e.g. algal blooms
events or water disasters). Additionally, the combination of
in-situ measurement can be enhanced the implementation
of different information sources. The metadata and informa-
tion transfer through a monitoring network that can support
high-quality data collection to make the system acceptable.
Moreover, data processing, including data treatment, analy-
sis, experiment, and correction, should be developed to ensure
data accuracy from the sampling point. Finally, as high-
lighted in this article, the specific threshold detection that
leads to higher accuracy in early warning systems should be
implemented.
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TABLE 4. Recent implementation of hybrid models in freshwaterbodies.

Multidisciplinary research reviews on water monitoring
systems have been analyzed, this research has been restricted
to the latest findings and specific classifications of water mea-
surement technology, water quality monitoring, bioindicator
technology, water quantity monitoring and water models. The
contributions of the present review article are summarised
as follows: (i) this study summarises more than 300 refer-
ence papers based on the trends, modules, applications and
advancement of technology implemented inwatermonitoring
systems over the past 11 years (2011-2022) - most reference
papers were analyzed in terms of sampling points, area, per-
formance and results; (ii) this study reveals the advantages
and weaknesses of the various requirements of monitoring
stations in maturity models, integrated technologies, smart
operations, and data-driven services; (iii) this review has

highlighted the most influential variables which increase the
efficiency of the water monitoring system; (iv) the study
emphasizes the neglect of single measurements that integrate
the availability of different measurements andmonitoring sta-
tions to collect four elements of data measurements; (v) this
study provides a practical recommendation for policymakers
and water resource managers to improve water monitoring
systems. Furthermore, this research presents a compilation of
the development of water monitoring systems over the years.

The limitation of this study is that it does not include
the socioeconomic aspects of environmental assessment.
In future research, water monitoring systems will be rapidly
used to assess the condition of aquatic environments over
the years. Therefore, it is recommended that the perfor-
mance of integrated water monitoring systems should be
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TABLE 5. Patterns of recent water quality monitoring activities in lakes.

TABLE 6. Patterns of recent water quality monitoring activities in rivers.

assessed through the implementation of real-world freshwater
conditions. Further, the integration of different information

sources, high quality data, spatio-temporal sensors, and dif-
ferent non-parametric water modeling approaches should be
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thoroughly considered in future water monitoring systems
and decision making processes.

APPENDIX A RECENT IMPLEMENTATION OF HYBRID
MODELS IN FRESHWATERBODIES
See Table 4.

APPENDIX B PATTERNS OF RECENT WATER QUALITY
MONITORING ACTIVITIES IN LAKES AND RIVER
See Tables 5 and 6.
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