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ABSTRACT As power systems (PS) move toward smart grids and microgrids in modern times, com-
plexity eventually rises as a result of integration with various distributed energy resources, demand-side
management, and cybersecurity issues. Additionally, frequent PS network blackouts will have an impact
on a country’s social, economic, and financial position. To ensure the reliability as well as security of the
network’s smart-driven power system, more advanced monitoring and measurement technology, which is
dominated by SCADA systems, is required. This is where synchrophasor-based phasor measurement units
(PMUs) come into play, which process and analyze massive amounts of data in real-time more precisely
to identify systemic anomalies. Due to their quick response times, high computing speeds, accuracy, and
scalability, machine learning (ML)-based techniques are becoming more popular for handling real-time big
data. The many ML algorithms used recently in synchrophasor technology, which enhances cybersecurity,
fault detection and classification, transient stability assessment, voltage stability assessment, and forced
oscillation localization are thoroughly reviewed in this paper. With the help of more than 190 pertinent
papers, this work effectively discusses the ML applications in the synchrophasor technology where PMUs
and µPMUs are deployed. The article also shows that several concerns have not yet been resolved and
are still up for consideration by researchers in the future. One of them is the detection and observation of
oscillation and line-tripping occurrences in the distribution area where µPMUs are installed. To address
these problems, sophisticated DL approaches are recommended. Future possibilities to decrease bandwidth
usage and improve processing delay using edge computing technology are also mentioned in this paper.
The research potential for ML and DL approaches also extends to power line communication, wide area
monitoring systems, and 5G and 6G network communications.

INDEX TERMS Blackouts, cybersecurity, PMUs, power system stability, synchrophasor, wide area moni-
toring system.

I. INTRODUCTION
Power systems (PS) are going through a period of major
change on a global scale. Decentralized and renewable energy
sources (RES) are becoming more and more popular these
days [1]. The monitoring and automation of the PS network
are redefined as a result of the shift in this generation’s
portfolio. Power grids are currently running in ‘‘load-driven
mode’’ given the current situation. In an advanced system
known as ‘‘generation-driven mode,’’ where the generation
leads and the rest of the system follows, several studies are
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now being conducted. It is difficult to manage the output
power when it comes to distributed energy systems (DES) and
smart grids (SG), so more advanced monitoring, as well as
automation technologies, are required [2]. A quick review of
the development of a few different automation process types
is appropriate before discussing PS’s advanced technologies.
Power generation had become centralized and far from load
centres by the middle of the 20th century. Fig. 1 depicts the
evolution of monitoring and control mechanisms utilized in
the PS network throughout time.

In the early 1880s, monitoring, and control were carried
out through operator observation and judgement, and control
commandswere verbally transmitted [3]. Due to the relatively
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FIGURE 1. Evolution chart of monitoring and control mechanisms in a PS
network.

low number of stations at the time, this verbal communication
was later transformed into telephone lines, via which data
interchange and communication occurred. By the middle
of the 20th century, however, the scale and complexity of
the PS had grown, and load centres were no longer placed
close to the generating stations. As a result, a supervisory
control and data acquisition system (SCADA) was developed
in the 1960s for data collection, control, and real-time analy-
sis [4]. Eventually, as the electricity demand increased and
the distributed networks became more complex, enormous
amounts of data were required to be measured at the load
centres and simultaneously processed to obtain a true pic-
ture of the PS, enabling the operator to take the appropriate
control actions. For this reason, Gould Modicon conceived
and developed programmable logic controllers (PLCs) [5] in
1971, which increased the utilization of SCADA. The use of
PLC in the PS grid was marketed by Allen Bradley in 1977.
Since 1990, SCADA has been extensively used for power
system control and monitoring. In 1998, PLC manufacturers
successfully integrated human-machine interface (HMI) into
SCADA systems by adding communication technologies and
open protocols with the aid of advanced SCADA research.
SCADA systems also incorporate power line connections for
communication between stations and control centres.

With the help of power line communication and an HMI
system, SCADA is capable of acquiring information such as
voltage, current frequency, power flow, the status of circuit
breakers as well as isolators etc. from the generating side and
transmission side in cycles of every few seconds and send
these data to the control centre for continuous monitoring
and control. Later on, in many countries, the regional power
grids synchronized together to form a national grid and this
increased the complexity of the power systems. Moreover,
the evolution and involvement of RES and the microgrid
concept eventually increase the challenges in measurement

as well as monitoring of data from the PS due to their
unpredictable nature. As the PS become large and complex,
a new technology named ‘Synchrophasor technology’ (ST)
using phasor measurement units (PMUs) was introduced in
the early 1980s [6]. PMU was first invented by Dr Arun G
Phadke and Dr James S Thorp in 1988 at Virginia Tech. The
research was started based on state estimators after the severe
blackout of the North-Eastern power grid in North America
happened in 1965. Blackouts could be due to several reasons
and a detailed list of severe blackouts that occurred globally
from 1965-2021 is listed in Table 1.

Along with the population of a country, these extensive
blackouts affect its social, economic, and financial aspects.
Whether these blackouts are purposeful or unintended, it is
essential to have effective monitoring and protection, which
includes cybersecurity measures. Due to its inability to per-
form real-time monitoring and control over such situations,
SCADA is unable to solve these issues. Blackouts can be
avoided by continuously checking the PS’s characteristics,
such as voltage and current amplitudes, phase angles, and
frequency, to make sure they are within acceptable ranges.
This puts the creation of ST using PMUs, a component of
the wide area monitoring system (WAMS), into a sharper
perspective.

The PS network’s protective and measurement devices,
such as PMUs and µPMUs, are crucial to achieving the
idea of ‘‘One Nation, One Grid, One Frequency, One Price,’’
which is a goal shared by all countries. Furthermore, even
a minor blackout will result in a significant decline in a
country’s productivity strategy and cyber-security strategy.
Therefore, machine learning-based solutions in synchropha-
sor technology are becoming more and more in demand to
address these issues in contemporary power system assess-
ments. This paper analyses the many blackouts that occurred
in various locations and the demand for ML techniques uti-
lized in ST to locate those anomalies in the PS network.

This work offers a critical analysis of several ST appli-
cations employing ML techniques in the areas including
transient stability analysis (TSA), voltage stability analysis
(VSA), fault identification and classification in PS networks,
and ultimately the challenges relating to cyber-security. Later,
both the limitations of the methodologies that are given and
the scope of applications for ML in PMU-based distribution
systems are discussed. Finally, the applications of ML algo-
rithms in µPMUs are also well addressed in this paper.
The rest of the paper is structured as follows: The history

and development of PMUs, the synchrophasor technology,
and the IEEE standards applied to PMU technology are all
covered in length in Section II. This section also includes a
comparison of ST and SCADA. The stability and security
of the power supply as well as the many synchrophasor
applications that could be used in PS networks are covered
in Section III. The machine learning concept and classifi-
cations are highlighted in session IV. The discussion and
opinions in the session also serve as a critical examination
of various ML applications in synchrophasor technology by
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TABLE 1. Major blackouts happen worldwide from 1965-2021.

using PMUs and µPMUs. Discussions along with the future
research trends in PMUs, µPMUs and communication tech-

TABLE 1. (Continued.) Major blackouts happen worldwide from
1965-2021.

nologies which employ ML and DL methods are presented in
Session V. Finally, conclusions are drawn in Section VI.

II. SYNCHROPHASOR TECHNOLOGY
A. HISTORY OF THE EVOLUTION OF PMU
The research on the symmetrical component distance relay
(SCDR), a device that can protect overhead transmission
lines by combining symmetrical components of voltages and
currents to simplify six fault equations into a single equa-
tion, was initiated by Arun G. Phadke and his team at the
beginning of the 1970s [14]. Since the positive sequence
voltage and current of a PS network form the basis of the
majority of power system analysis programmes, including
stability, optimum power flow, contingency analysis, state
estimation, short circuit studies, load flow studies, and many
others, it appears that this invention of measuring symmetri-
cal components of voltages and currents has a wide range of
applications. Later, in the 1980s, a global positioning system
(GPS) based on GSM-based satellites was established, and
time signals from the GPS satellites can be used as inputs
to sampling clocks [15]. This is given to the digital relay
measurement system, which acts as a measurement tool,
providing an instantaneous picture of the actual state of the
PS network. With this technology, the PMU uses GPS signals
to synchronize the sampling clock so that the phasors can be
calculated from a single point of reference. So, in 1988, the
Power System Research Laboratory at Virginia Tech made
the first PMU [16]. Later in 1992, Macrodyne made the first
PMU model that was sold to the public.

B. BASIC PRINCIPLE OF PHASORS
Charles Steinmetz introduced the concept of a phasor being
the complex equivalent of a sinusoidal wave quantity [17],
where the complex modulus corresponds to the cosine wave’s
amplitude and the complex angle to its phase angle. He asserts
that the representation of a sinusoidal waveform is as
follows:

X (t) = Xm cos (ω (t) +∅) (1)
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FIGURE 2. Graphical representation of a conventional synchrophasor.

Refer to ‘‘(1)’’ the phasor form can be rewritten as:

X =
Xm
√
2
ej∅ =

Xm
√
2

(cos∅ + j sin∅) =Xr + jXi (2)

where Xm√
2
is the waveform’s RMS magnitude and Xr and

Xi are the complex number’s corresponding real as well as
imaginary components. With time, the phase angle ∅ changes
especially when t=0.

The IEEE standard C37.188.1-2011 begins with this con-
cept, stating that the representation of the synchrophasor
signal is mainly represented by Xt which is given in (1). This
is synchronised with the help of coordinated universal time
(UTC).

The ‘‘synchrophasor’’ term is defined in [17] as ‘‘the mag-
nitude as well as the phase angle of the cosine signal of
both voltages and currents which is related to the ultimate
point of time’’. Fig, 2 depicts the traditional synchrophasor
representation.

C. PHASOR MEASUREMENT UNITS (PMU)
A phasor measurement unit (PMU) is an instrument used in
a power system network to measure the amplitude as well as
phase angle of an electrical phasor quantity (voltage and cur-
rent). It is also capable to measure the frequency as well as the
rate of change of frequency (ROCOF) of a PS network effec-
tively. PMUs can offer extremely precise timestamped data.
A measurement known as a synchrophasor is obtained by fast
sampling a waveform, reconstructing the phasor quantity, and
then taking the final reading. A common time reference is
required for phasor measurements across a connected grid,
and this must be provided by the synchronizing source. The
signal from the synchronizing source needs to be referenced
to UTC. The signal needs to be accurate enough for the phasor
measurement equipment to keep up with the local receiving
error and the synchronizing source within 1 µs of UTC.
The block diagram of a PMU is shown in Fig. 3. At the sub-

station, current transformers (CTs) and potential transformers
(PTs) are used to measure current and voltage. The analogue
inputs of the PMU are voltage and current measured from the

FIGURE 3. Functional block diagram of PMU.

secondary winding of the CTs and PTs. An anti-aliasing filter,
also known as an analogue low pass filter, is used to filter out
actual signal components whose frequencies are greater than
or equal to half of the Nyquist Rate to obtain the sampled
waveform. It is important to keep in mind that the Nyquist
Rate is equal to the highest frequency component of the input
analogue signal multiplied by two. If an anti-aliasing filer is
not employed, phasor estimations will be incorrect.

The pulse signals from the GPS satellites are phase-locked
with the sampling clock. For this, a phase-locked oscilla-
tor is used. A phase-locked oscillator and a GPS reference
source provide the necessary high-speed synchronized sam-
pling. An analogue-to-digital converter (ADC) is a compo-
nent of the PMU that converts analogue signals into digital
signals. To deliver synchronized time, the GPS relies on a
high-accuracy clock that is dependent on satellites. Without
GPS, it is difficult to simultaneously monitor the entire grid.
The phase estimator, which is effectively a microprocessor,
computes positive sequence estimates for each voltage and
current value using DFT methods. Local estimates and mon-
itoring of the frequency and ROCOF are both included in
the PMU output. The phasor data concentrator (PDC) is the
primary component of WAMS [18]. A PDC can be used as
a stand-alone unit to gather data and distribute it to other
programmes. PDC features can be incorporated into other
systems, including monitoring and control systems. The key
duties of PDCs are real-time data exchange as well as data
processing, data storage and data visualization.

The PDCs’ synchrophasor readings are received via
modems. Table 2 displays the various international IEEE
standards utilized for the PMU and the test for confor-
mity [19].

D. COMPARISON OF PMU WITH SCADA
Before the development of synchrophasors, the PS was
monitored using SCADA, but SCADA measurements have
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TABLE 2. IEEE international standards for PMU test and compliance.

TABLE 3. Comparison of SCADA and PMU.

historically been focused on steady-state power flow analysis
and were unable to examine the dynamic properties of the
PS. Table 3 displays the key variations between SCADA and
PMUs.

III. POWER SYSTEM STABILITY AND SECURITY
Due to the development of RES and electric vehicles, the
power system network and its operations have advanced
and become more complex. A difficult problem is manag-
ing the RES-based PS network’s complexity and security
concerns [20]. The PS network’s stability and security were
greatly improved when WAMS-based synchrophasor tech-
nology replaced SCADA. State estimation (SE), SCADA sys-
tems and PMUs are examples of modern PS applications that
rely too much upon the technology of communication such as
the internet which in results the network being open to many
dangers [21]. Governments and utility stakeholders typically
give the safe and stable operation of the country’s power
system the ultimate relevance because of the strong linkages
between the power system and the numerous social, political,
and economic activities. The failure of the PS network of a
county due to blackouts not only will lead the nation to finan-

cial losses but also will put national security at risk. Several
pieces of literature are carried out in [22], [23], and [24] to
address these issues of false data injections and suggestions
are also proposed to modify the security measures to prevent
such events.

The primary task for energy stakeholders nowadays is
to maintain the PS network stably and securely after being
subjected to a fault in the network. The event classification
as well as the location finding is also a real challenge in
modern PS networks, especially in transmission as well as
distribution sectors are taken into account. The globally scat-
tered electricity system is currently suffering from amultitude
of security and stability challenges, demanding considerable
protective and preventive measures, as recent events around
the world have shown in [25], and [26]. It has historically
been challenging to ensure the security and dependability
of the energy supply. It was challenging for the operators
to adequately monitor the network in the previous power
system. Users often anticipate reporting issues and excursions
to operators. The modern electricity system is today facing
increasing security and stability difficulties on a global scale,
despite the numerous improvements that have come to define
it in recent years, according to several shreds of evidence and
publications. Moreover, the protocols and standards adopted
for present PS protection are so vulnerable to hacking and
chances are high for the hackers to intrude on the networks
will lead to grid collapse. As a solution for this, numerous
internet of things (IoT) technologies and modern measuring,
as well as protective devices, are installed in the PS network
to enhance the stability as well as security of the system
[27]. A rise in unhealthy energy demand is also being fueled
by the continuous industrialization drive and the develop-
ment of smart cities. A few unpleasant nonlinear loads were
also added to the energy system as a result of industrial-
ization. The rise in energy demand causes generating and
transmission infrastructure to approach and pass operational
stability restrictions, which leads to the failure of equip-
ment, power quality disturbances (PQDs) [28], inaccurate
transient stability analysis (TSA) [29] and imprecise voltage
stability analysis (VSA) [30]. Due to the time-synchronized
phasor measurements that PMU devices provide, modern
power systems have significantly improved the efficiency of
measurement documentation. This has paved the way for
the implementation of more effective as well as accurate
dynamic security analysis (DSA). Moreover, it helps to speed
up decision-making as well as control actions more effec-
tively [31]. A comprehensive review is carried out in [32]
which covers the PS security as well as stability using ML
approaches. The classifier design, dataset creation, prepro-
cessing approaches, optimization strategies, as well as the test
systems implemented, were all thoroughly reviewed by the
authors in connection to PS security and PS stability issues.

The non-linear behaviour and the complex features of the
present, as well as future PS operations along with other
factors like dealing with a vast amount of data from the
PMU devices, the anomalies due to error in measurements,
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TABLE 4. Synchrophasor applications and constraints. TABLE 4. (Continued.) Synchrophasor applications and constraints.

potential cyber-attacks to PMU-based transmission systems
and so on, have revealed the shortcomings of traditional
ways of stability and security measures in a PS network.
Energy companies in the market, therefore, realized the
significance of proactive, timely, dependable as well as
cutting-edge stability and security solutions for modern PS
to address blackouts and other threats. Over the past three
decades, investigations of power systems have demonstrated
the incredible effectiveness of machine learning (ML) algo-
rithms. ML techniques have been widely suggested in studies
of the power system that involve tracking and categorizing
various hazards to the power system and thereby enhance the
overall stability of the network as discussed in [33], [34], and
[35].

A. SYNCHROPHASOR APPLICATIONS IN POWER SYSTEM
NETWORK
Synchrophasor technology has awide range of applications in
the transmission area of the power system network. Themajor
applications are voltage stability and monitoring, oscillation
monitoring and detection, state estimation and fault location
identification and protective relaying. Table 4 contains a list-
ing of the primary applications of synchrophasors in power
systems, as well as the constraints and contributions imposed
by their use. According to the findings of this study, PMUs
are not only significant but also indispensable to the stability
and safety of power systems.

IV. MACHINE LEARNING CONCEPTS AND
CLASSIFICATIONS
Through the use of data analytics, machine learning (ML)
aims to teach computers to perform tasks that people and
animals do without any assistance. Instead of relying on
predetermined equations, ML algorithms use computer tech-
niques to ‘‘learn’’ information directly from data. They may
also become more adaptable as more data becomes available.
In practice, ML uses a variety of algorithms under a set of
rules to analyze data and produce conclusions and/or predic-
tions [53]. Several algorithms are designed and programmed
for ML to carry out a variety of tasks like classification,
clustering as well as regression. Data mining [54], communi-
cation area [55], medical imaging [56], real-time tracking of
objects [57], geoscience [58], multimedia applications [59],
remote sensing classifications [60], computer vision-based
fault location [61], and many more fields have all shown
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promise for ML as well as deep learning (DL) in particular,
over the past ten years. One of the most important steps in
the process of developing a smart grid is the integration of
modern information and communication technologies, most
notably the internet of things (IoT), into the infrastructure of
the electrical grid. A large quantity of data is made accessible
at the control centres because it is necessary for IoT devices
to be able to communicate with and transmit data to other
devices on a larger scale. It is necessary to make use of tools
and solutions that are based on ML in order to process and
analyze data in an efficient manner, as well as to provide
support for operational management and decision-making for
the system. This is because of the significantly increased
system condition awareness and data availability.

The evolution of smart grids as well as microgrids, which
are advanced cyber-physical systems, includes distributed
energy resources and complicated networks which under-
lie complex information and communication infrastructures.
The real-timemonitoring of the PS operation and efficient big
data analysis made possible by the ST andWAMS eventually
improve the system enhancement as well as management
in many areas such as identification of bad data injection
using PMUs [62], assurance of the safety of operations [63],
detection of anomalies in the system [64], diagnosis of faults
[65], effective management of power generation as well as
load demands [66], and many more.

Traditional computational, as well as monitoring tech-
niques, are not capable to handle the huge amount of data
from the modern PS network, especially from the microgrid,
smart grid and DES. As a solution for this ML technolo-
gies are adopted and have attracted a lot of attention in
recent years. Numerous studies are reported in the field of
ML-based technologies in PS monitoring, protection and sta-
bility assessments which are commonly observed in PS gen-
eration, transmission and distribution addressed in [67], [68],
and [69]. As illustrated in Fig. 4, the ML methodologies can
be loosely divided into four main groupings, each of which is
characterized as follows. Since ML approaches employ the
available data to perform a variety of tasks, they are data-
driven.

i. A subset of ML named supervised learning [70] mainly
aims to learn the mapping of input to output from a set
of labelled input or output pairs and a huge amount of
training data.

ii. Unsupervised learning is a type of ML classification
where the input without classifications or labels is used
for the training of an algorithm and to categorise the
data based on similarity or difference [71]. When com-
pared with supervised learning algorithms, unsuper-
vised learning algorithms are used to handle complex
processing tasks. One of the common unsupervised
learning is cluster analysis which is commonly used to
perform the exploratory analysis of data to identify the
hidden patterns or the grouping in data.

iii. The third classification is reinforcement learning (RL)
which involves an agent interacting process with its
surroundings and its behaviour is changed according
to the response of the external stimuli [72]. The main
difference between RL and supervised learning is that
it rewards or punishes the agent according to how it
behaves in the environment rather than the required
tagged input or output pairs. Thus, RL allows the agent
to independently choose the behaviours which is the
potential advantage of RL when compared with other
methods. Thus RL operates identically to humans and
animals as feasible [73].

iv. If a single ML algorithm outperforms, the fourth type
of classification named the ensemble approach comes
into the picture which employs numerous ML algo-
rithms. In the ensemble method, a group of hypotheses
is created by numerous base learners and then it is
merged to provide a solution to a single problem with
the aid of ensemble learning. This method provides
better generalizability when compared with individual
ML algorithms [74].

A. APPLICATIONS OF MACHINE LEARNING IN
SYNCHROPHASOR TECHNOLOGY
There is a wide range of applications of ML in synchrophasor
technology (ST) which is shown in Fig. 5.
This section discusses a few applications of the ML tech-

niques and trends used in ST based on the literature review
available in the modern PS network.

1. Transient stability analysis (TSA)
2. Voltage stability analysis (VSA)
3. Cybersecurity applications
4. PS fault identification and classification
5. Forced oscillation localization

1) MACHINE LEARNING IN SYNCHROPHASOR FOR
TRANSIENT STABILITY ANALYSIS
As indicated in Table 1, some blackouts that have occurred
globally over time can affect power systems. The PS’s stabil-
ity, which is mostly evaluated by the transient stability analy-
sis (TSA), will be impacted by these blackouts. From [75],
transient stability can be defined as the ability of the gen-
erators to maintain synchronization, when a significant dis-
ruption occurs in the PS network. The common disruptions
are failure as well as the unexpected loss of the generator
or load. In short, any faulty components in a PS network
will lead to transient instability. For example, the blackouts
happening in the PS will lead to temporary instability as
addressed in [76]. So the system operators must be capable
to evaluate the stability state of the PS and to take neces-
sary corrective actions by monitoring the transient stability
limits and thereby identifying the anomalies and avoiding
power blackouts. Traditional TSA technologies like extended
equal-area criterion (EEAC) [77], and transient energy func-
tion methodologies [78] are simply outdated. Time domain
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FIGURE 4. Classification of various machine learning techniques.

FIGURE 5. Machine learning applications in synchrophasor technology.

simulation (TDS) methodology [79] as well as the Lyapunov
exponents’ method [80] used for the optimal placement of
PMUs also have potential disadvantages. The swing curves
for each generation at varying load levels, fault densities,
and clearing periods must be calculated with a lot of com-
putation, which is generally seen as the fundamental disad-
vantage of these systems. The requirements of the contem-

porary power system cannot be met by the traditional TSA
approaches. Additionally, SCADA systems are better adapted
to these conventional TSA methods. Due to the evolution of
PMU devices to modern PS, a significant amount of time-
synchronized phasor measurement data must be processed
and stored for the TSA research. Therefore, while managing
such massive data analysis, these old methodologies display
uncertainty, which causes measurement errors, computation
complexity, increased non-linearity, and cyber-security con-
cerns [81], [82]. In order to get beyond these limitations
and subsequently create well-calibrated, rapid, and stable
solutions that would ultimately boost the security of the
current PS network, machine learning-based techniques have
been widely endorsed. The sessions that follow describe the
various ML techniques used by TSA.

As was discussed in the session above, traditional TSA
techniques are unable to handle the massive volumes of data
present in a modern PS network, especially when PMUs,
WAMS, DERs, microgrids, and smart grids are taken into
account. The complexity and risk of the system are also
increased by the use of time-synchronized data by PMUs.
Therefore, research is focusing on cutting-edge machine
learning (ML), deep learning (DL) and artificial intelligence
(AI) techniques for TSA. The main advantages of these
techniques include the capacity to manage huge amounts of
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data, quick detection and classification of anomalies, and
quick response to unstable and fault conditions [83] and [84].
The creation of the input vector sets, as described in [83],
is the first stage in the TSA process. Time-synchronized
data are used by PMU-based WAMS systems during pre-
fault and post-fault conditions, and these data samples are
used as the data samples for TSA investigations as explained
in literary works from [84] and [85]. TDS is used in the
majority of ML techniques to generate and retrieve sample
data [84]. After the samples are extracted, the data must be
pre-processed and optimised to eliminate redundant infor-
mation and enhance the categorization and prediction of
transient instabilities [86]. The selection and optimization
strategies, the kind of dataset used, and the classification algo-
rithms are explained in literature papers from [84], [85], [86],
and [87]. From [88], it is clear that the features of the
dataset of post-fault of PMU are reduced to one-third for
TSA investigations by utilising a selection approach known
as the binary java feature. A better ant-miner technique called
extreme learning machines (ELM) is proposed in [89] to
extract the feature selection and for pre-processing for TSA
research. It is based on kernelized fuzzy rough sets (KFRS).
An improvedMLmethod is put out in [85] to predict transient
stability using particle swarm optimization (PSO), and it
may have the advantage of being more effective at searching
than existing optimization techniques for TSA investigations.
According to [90] and [91], offline training and online appli-
cations make up the majority of the classification and pre-
diction utilising ML approaches in TSA studies. In TSA, the
testing is performed online mode while the training model is
performed in offlinemode. Themodel classification is carried
out as weighted voting of different decision trees (DTs) with
the aid of an adaptive ensemble decision tree (EDT) training
proposed in [91].

A method based on artificial neural networks (ANNs) that
can identify faults as well as classify TSAs is discussed
well in [92]. For the TSA classification, an improved sup-
port vector machines (SVM) approach is suggested in [90].
Using the Bayesian approach [86], the DT [87], and the
k-nearest neighbours (KNN) [93], provide categorization and
prediction of TSA data, respectively. According to research,
the ensemble of SVMs with the New England 68 bus [90]
exhibits 100% accuracy, with minimum-maximum normali-
sation being used as an optimization strategy. The extreme
learningmachines (ELM) algorithm, which is based onANN,
is suggested in [89] and is tested in the New England 39-bus
system, with a 95.2% accuracy rate. A CNN built on a deep
neural network called transudative support vector machine
neural network (TSVMNN) was developed in [94] and tested
using an IEEE 24-bus system to achieve an accuracy level
of 86.27%. According to [86], the PMU data from the New
England 39 bus should be processed using the Bayesian
multiple kernel learning technique, with an accuracy level
of 98.19%. Finally, using the DT algorithm and the PMU
data set with post-fault conditions from [88], the New Eng-
land 39 bus system is classified with an accuracy of 95.1%.

TABLE 5. ML classifications and methodologies in PMUs for TSA studies.

These results clearly show that TSA studies in a PS network
are better suited for ML algorithms with SVM, Bayesian,
and DT.

More research is being done in the field of PS networks
with the aid of reinforcement learning (RL) [95] as well
as deep reinforcement learning (DRL) [96] from recent
literature. Reference [97] provides a detailed review of
the optimization and control of modern power and energy
systems using RL, DRL, and multi-agent DRL (MADRL)
based algorithms. It also discusses the various applica-
tions of PS networks in the energy market, such as opti-
mization of distribution-based networks and a microgrid,
demand response, energy management, and operational con-
trol. Finally, the potential applications of MADRL are dis-
cussed, including independent as well as centralised learning,
and decentralised execution. These works can be extended
in the research of TSA studies since RL is a branch of
machine learning that studies how intelligent entities should
act in a setting to maximize benefits over time, especially in
the WAMS technology where synchrophasors are deployed
(PMUs and µPMUs). Resistive brake controllers (RBC) [98]
and power system stabilisers (PSS) [99] are two examples of
PS stability and security-based devices that may be developed
and modelled with the help of RL algorithms. Learning and
execution are the two key components of RL studies in PS.
The implementation of RL will take place during the learning
stage, and the knowledge gathered during the learning stage
will be used to inform decision-making during the execution
stage. As mentioned in [100] and [101], RL algorithms are
also employed in the analysis of the power system for auto-
matic generation control (AGC) and the economic dispatch
problem (EDP). The work carried out in [102] mentions
how the RL algorithm can successfully control the real-time
as well as wide-area PS stability margin. Due to scaling
issues, RL algorithms frequently encounter difficulties in
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large-scale PS, especially when the smart grid and microgrid
are involved. To get around this, RL and DL are combined to
create DRL-based algorithms, which are capable of handling
large-scale input and control schemes [103]. The literature on
WAMSuses RL, DRL andDNN-based algorithms to improve
transient stability which is shown in the works [96] and [104].

The Vision Transformer (ViT) model, a CNN substi-
tute that may be applied to image recognition applications,
is introduced in [105]. When PMUs are installed in the gen-
erating and transmission sides of the PS network, continuous
TSA monitoring is carried out using this paradigm. With this
approach, relay failure situations in the PS network are identi-
fied and applications such as system instability alarms during
relay failures in RES are discussed. Under different SNR
levels (40 dB, 20 dB, and 10 dB), the suggested ViT technique
provides superior accuracy for TSA at 97.89%, 97.42%, and
96.78%, respectively. It also outperforms standard ML and
DL algorithms in TSA investigations with 98.92% accuracy.
Table 5 shows the types of ML classifications and method-
ologies adopted in PMUs for TSA studies.

2) MACHINE LEARNING IN SYNCHROPHASORS FOR
VOLTAGE STABILITY ANALYSIS
Voltage instability is caused by an inadequate reactive power
supply from transmission lines and generator lines, which has
led to several significant system failures around the globe.
The capacity of the PS to sustain the bus voltages at their
acceptable values following a disruption or fault from normal
operating conditions is referred to as the voltage stability
analysis (VSA). Modern power systems that use PMU mea-
surements are sensitive to these voltage instabilities and place
a strong emphasis on reactive power management and load
dynamics [106]. Voltage instability ismostly caused by power
blackouts [7], the hasty removal of generators, transform-
ers, transmission lines, and low supply voltage [12]. Short-
term voltage stability (STVS) and long-term voltage stability
(LTVS) are the two basic categories of voltage stability. The
components which are fast-acting for STVS are dynamic
in nature. Loads controlled electronically, induction motor
loads, as well as the converters for HVDC, are the com-
mon components which are dynamic. Normally the duration
of STVS is measured in seconds. Meanwhile, LTVS lasts
for many minutes (0.5–30 minutes) and is brought on by
transformer tap changes, thermostatically controlled loads,
and generator current limiters(s). Fig. 6 displays the time-
response characteristics of voltage stability.

Since voltage instability can cause a country’s grid to fail,
proper VSA is one of the most talked about topics in the
world ofmodern power system research. VSA ismostly about
keeping an eye on and controlling the power system and its
important safety devices, such as PMUs, isolators, CBs, and
generator and load dynamics. In VSA studies, the way reac-
tive power is used is also very important [107]. More [108]
and [109] talk about the typical VSA methods used in PS
networks and PMUs. In [108], the modal analysis method
and the continuation power flow method are used. In [109],

FIGURE 6. Time-response characteristics of VSA.

ANN is suggested as a way to monitor the voltage stability
margin online. Traditional VSA methods for calculating P-V
and Q-V curves at specific load buses with a large number of
load flows have been shown to have several flaws [110].

The complex mathematical modelling that went into mak-
ing the software tools for real-time VSA for modern PS
networks takes a lot of time. This can be fixed by using both
old ML techniques like fuzzy logic (FL) and ANNs and new
ML techniques like adaptive neuro-fuzzy logic interference
systems (ANFIS), DTs, and SVMs. This paper talks about
real-time PS VSA because PMUs are mostly used to process
online data in transmission and distribution networks. AI and
ML have been using FL for a long time. FL is an extension of
traditional Boolean logic that can handle partial truth or truth
values that are not ‘‘completely true’’ or ‘‘completely false.’’
FL was first shown to the public by Zadeh in 1985 () [111].
FL is often used for VSA studies. The authors of [112] came
up with a good fuzzy-based method for estimating online bus
voltages during a power outage and expected changes in load.
A fuzzy-based model is utilized in this work for each load
bus for the possible scenarios and the voltage at each load
bus was predicted separately. Lie et al. [113] have suggested
that PMUs be used to extract criteria for voltage security and
monitoring. In the suggestedmethod, a two-layer fuzzy-based
hyper-rectangular CNN is built using an IEEE 20-bus system
that works in different operational situations. The results
of the simulation clearly show how to estimate the voltage
security margin, which opens up new ways to protect and
manage the electric grid. In [114], a unique voltage stability
index (VSI) based on FL was made. This index can find
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important buses in both normal and emergencies based on the
FL power flow algorithmwhich is an alternative to traditional
FL and enhances the continuation technique. The way that
was suggested is a good way to find key buses in both normal
and emergencies.

In 1987 [115], a group of researchers use ANNs to make an
advanced model for VSA studies. In the literature, many dif-
ferent ANN architectures and neural network combinations
were talked about as ways to measure online voltage stability.
In [116] and [117] the multi-layered perceptron (MLP) based
neural network is first introduced as a way to figure out
the VSM using the energy method. Joya et al. [118] built a
single feed-forward back-propagationmodel using sequential
learning to predict the line VSI for different load scenarios.
Reference [119] shows how to use regression to choose which
features to use when training individual ANNs to measure
voltage stability while taking into account many different
factors. Chen et al. [120] came up with a new way to figure
out how dangerous low voltage is in a PS network by putting
together a group of neural networks. In this study, the neural
network ensemble (NNE) system is made by first making
a model that predicts system instability and a model that
shows how low voltage affects the system. After that, the right
risk index is made. In [121], the ELM method was proposed
for use in online voltage stability assessments for several
different situations. For reliable contingencies, a single ELM
model has been made so that the VSA under different loading
scenarios can be predicted quickly and accurately.

Because of the potential benefits of ANNs’ ability to learn
from processes and the fuzzy interpretation provided by FL
systems, the ANFIS model is frequently employed in VSA
studies. ANFIS model is widely used as a powerful tool
for almost all PS applications like power system stability
[122], power quality [123], faults in transmission lines [124]
and frequency control [125]. The power system VSI can be
predicted with the aid of a novel architecture which relies on
neuro-fuzzy with the help of voltage, active power as well
as reactive power measurements with dimensional surfaces
is proposed well in [126]. The proposed strategy proved to
be quite successful, with the system making accurate voltage
collapse predictions in a variety of scenarios. To assess the
actual security margins of the power system, a fuzzy infer-
ence algorithm is created and optimised using two alternative
methods via NN and GA [127]. The outcomes of the work
give evidence that the proposed method is efficient for the
accurate calculation of the voltage stability margin (VSM)
with a high degree of dependability, precision as well as
robustness. Amroune et.al. [128] suggested using an ANFIS
model to predict the VSM from the data acquired from PMUs
on the transmission side.

DTwhich is a tree-like supervisedML-basedmodel is used
widely in PS for the VSA for classification as well as security
assessment. Recently, DT-based research has been applied
in online VSA incorporating with PMUs and WAMS were
explained in [129] and [130]. Beiraghi et Ranjbar [129], using

wide-area measurements and a DT algorithm, came up with a
new way to check the security of voltages in real-time. With
the help of WAMS technology, the proposed method used an
adaptive boosting technique which creates a combined model
that helps to forecast the voltage security of a PS network.
Based on a novel approach to grouping scenarios, Krishnan
et McCalley [131] suggested a process for determining DT
for PS security assessments of multiple contingencies. The
classification of the contingencies is based on a graphical
metric, which is a progressive entropy which determines the
intersection of the class border progression by comparing it
with a set of contingency training datasets. The suggested
approach was shown using the French power system in the
Brittany region to construct decision rules for five important
contingencies against voltage stability issues. The accuracy of
DT’s identification was improved by [130]using the voltage
amplitude and phase difference produced by PMUs. A novel
strategy which utilizes the fuzzy-based DTs was put for-
ward in [132] to evaluate the VSI of the PS network. The
main goal of the work is to analyse power system data and
identify potential areas where voltage collapse may occur.
For the forecasting of real-time voltage stability, DTs inte-
grated with other algorithms like FL as well as principal
component analysis (PCA). Such a combined approach for
online voltage security evaluation that is proposed in [133]
reduces the dimension of the credential data from PMUs
using PCA. Reference [134] combines the DT-based PCA
method with the invasive weed optimization algorithm and
the bio geography-based optimization algorithm to figure out
how stable the voltage is in PS. In the suggested method,
which starts by using PCA to reduce the size of the train-
ing data, and further two optimization techniques are imple-
mented to find the best dimensions for the PMU data and
thereby reduce the prediction erros of the security assessment.

SVM is a classification-based supervised learning tech-
nique used widely in modern PS for classification and regres-
sion. In recent times, SVM has become an effective com-
putational method in PS networks due to its wide range of
applications to handle big data analysis. Carmona et al. [135]
used an SVM-based Bayesian rule to figure out whether a
power system was safe, on alert, or in an emergency. This
method has been used in a way that is similar to how the
multi-class SVM proposed in [136] is used to evaluate secu-
rity. In the proposed method, four different system security
states are taken into account: normal, alert, emergency 1,
and emergency 2. Sajan et al. [137] came up with a hybrid
model for monitoring voltage stability that combines GA
with support vector regression (SVR). There is an opinion
that the recommended GA-SVR concept works better than
the MLP NN [138]. But GA doesn’t work perfectly because
it involves a series of steps, such as coding, classification,
selection, and mutation, which might slow down or change
the performance of the optimization algorithms. Also, the size
of population and cross over rate also increases the computa-
tion period. In [128] as well as [139] the best parameters of
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TABLE 6. ML classifications and methodologies in PMUs for VSA studies.

the SVR model were found with the help of two algorithms
namely ant-ion optimization (ALO) and dragonfly algorithm
(DA). These algorithms are developed from inspiration by
nature. The results of two models namely ALO-SVR and
DA-SVR are used for the forecasting of voltage reliability.
Later on, Yang et al. [140] put forward a novel method to
estimate the voltage stability from PMU measurements by
using least-square based SVMmodel with real-time data. The
proposed system is tested in new england 39 bus system to
ensure the efficacy of the method. Table 6 shows the ML
classifications and methodologies in PMUs for VSA studies.

3) MACHINE LEARNING IN SYNCHROPHASOR-BASED
CYBERSECURITY APPLICATIONS
WAMS-based PMUs are used to store and analyse vast
amounts of data in the power system network, which is a com-
plicated infrastructure. But fake data injection attacks (FDIA)
could lead to the corruption of these PMU measurements.
This can also be categorised as intentional fake data attacks
(IFDA), where the attack is the result of cyberattacks that may
eventually cause the power system to fail and cause blackouts.
Unintentional false data corruption (UFDC), the second clas-
sification, can also happen as a result of processing, storing,
or retrieval problems in data.

Many prospective researchers have looked into these IFDA
and UFDC and have suggested ML-based solutions to deal
with these problems. When there is a high likelihood that the
data is corrupted, a Bayesian-based approximation filter is
proposed in [141] supervised ML to detect the FDA. To iden-
tify PMU measurement abnormalities, the authors of [145]
presented wavelet packet decomposition-based approaches.
Reference [62] discusses the smart grid, PMU data assault
detection, and the advantages of ML algorithms over state
vector estimate methods. The FDIA in which SVM [146]
is suggested features a discussion on classification-based

TABLE 7. Cyber threat classification and ML classification.

supervised learning. Additionally, approaches leveragingML
techniques such as CNN [64], ANN [142], ELM [143], and
margin setting algorithm [144] were proposed for FDIA iden-
tification and mitigation procedures in the PS network. Stud-
ies based on anomaly detection have been proposed in [147]
employing RNNs based on DL in which LSTM techniques
are employed to identify customer behaviour in a PS net-
work. The literature has addressed a variety of cyber security
assaults on power systems, including synchrophasor-based
spoofing attacks [148], PMUdatamanipulation attacks [149],
and denial of service (DoS) attacks [150]. The entire break-
down of ML-based cyberattacks and the classifications sug-
gested in this paper is provided in Table 7.

4) MACHINE LEARNING-BASED FAULT DETECTION AND
CLASSIFICATION USING SYNCHROPHASOR
The identification and classification of faults in a PS network
are one of the potential uses of ML in synchrophasor and
WAMS technologies. PMUs guarantee the PDCs’ real-time,
time-stamped data. Network voltages, currents, phase angles,
and ROCOF must be observed and compared with this very
accurate and synchronised time-stamped large data from the
PMUs to depict the real system state at themeasurement time.
However, the operators face a difficult task because of this
enormous amount of data. This problem can be solved using
ML approaches, which can handle huge data processing and
data mining.

A lot of research is happening worldwide to find the
possibility of ML applications for PMU in fault finding as
well as classification. The various ML methods utilised in
PS fault detection and classification are discussed in this
study. An ML-based categorization approach using decision
trees is proposed at the outset of the review [151]. The
discernible impact that happens in the signals of numerous
PMUs put in the area around the fault point is one potential
benefit of this technology. This finally improved the location,
timing, and fault type of the defect as well as its precision
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TABLE 8. ML techniques and methodology for PS fault detection and
classification.

and accuracy. The investigation performed by the authors
using real-time PMU data demonstrates the viability of the
suggested approach. The state estimator is also established
in [152], which uses classification based on regression trees
to replicate the voltage phasors of a PS transmission network.
Fault detection in transmission lines can be accurately recog-
nised using the ANNmethods suggested in [153]. The failure
of one or more PMUs, which results in inaccurate or outdated
information, is the fundamental flaw of the above-mentioned
system. Therefore, to resolve this problem, appropriate com-
munication techniques must be used.

The use of PMUs and AI-based ML algorithms to detect
changes in voltage and current phasors during faults is pro-
posed in [154]. Reference [153] proposes anANN-based fault
detection and categorization of PS networks. The rule-based
approach using a fuzzy decision system is proposed in [155]
for fault detection, categorization, and identification of the
fault location. The PS operators will be able to address the
issue more skilfully as a result. In [156], a precise method
utilising SVM is suggested for locating the bus connected
to the problematic PS network branch. This improves the
process of pinpointing the fault’s location. Additionally, this
SVM-based approach contributes to the system’s increased
stability. In [157], the k-Nearest Neighbours (KNN)-based
technique is suggested to locate all fault types in a parallel
line using single-end measurements. This method’s primary
benefit is that it only uses single-end voltage and current
measurements. Table 8 shows the ML techniques and the
corresponding methodologies adopted in a power system
network for the detection and classification of fault events.

5) MACHINE LEARNING APPLICATIONS IN FORCED
OSCILLATION LOCALIZATION
In modern power systems, especially in interconnected power
systems, forced oscillations (FOs) have become a major
problem that threatens stability and safety [158]. FOs can
be caused by unusual grid conditions like cyclical loads,
broken equipment, periodic system disturbances, controller
problems, and power systems that do not have enough damp-
ing. FOs will lead to PS failure and will lead to PS issues
like a drop in the amount of power that can be transferred,
possible damage to equipment, issues related to power qual-

ity, system failure, or even widespread blackouts [159]. With
the evolution of PMUs and synchrophasor technology, the
monitoring of FOs becomes easier due to the high sampling
rates of PMUs when compared with traditional SCADA sys-
tems. The common methods adopted to monitor the PMU
data having FOs and to localise and mitigate the causes are
well explained in [159] and [160]. As a result, themethods are
classified into the analysis of travelling waves, estimation of
mode shape, damping torque analysis, energy-based analysis,
machine learning as well as deep learning analysis. Even
these dissipating energy flow (DEF) methods among them
exhibit consistent performance but are unable to distinguish
between the real source bus and the one with a large negative
damping contribution [161]. Furthermore, these techniques
still require speed enhancement as they were unable to han-
dle several scenarios in the IEEE-NASPI Oscillation Source
Location Contest that was held in 2021 [162]. The competi-
tion suggests a lengthy window of opportunity to deal with
such situations.

In localising FOs where PMUs and µPMUs are deployed,
ML and DL algorithms function admirably. Reference [163]
proposes ensemble learning, a data mining-based ML
approach that improves the localization of fault identifi-
cation. One of the method’s possible downsides is that it
requires complete system observability. In [164], a time
series-based classification ML approach is given that locates
the FO sources quickly by removing disturbances using PMU
data. The Mahalanobis matrix is trained using multivariate
time series (MTS), dynamic time warping (DTW), and an
enhanced k-NN method. The Mahalanobis matrix is used to
calculate and compare the separation between the MTS. This
method has a classification accuracy of 95%+ and is robust in
handling data out of synchronous issues for up to 5 seconds,
despite being able to cut calculation time to a few seconds.
Yet, this approach not only ignores the identification and
detection of force oscillations but also the corrective mea-
sures for reducing the effects in a PS network. Multivariate
classification, an advanced time series technique, is suggested
in [165] and is capable of localising the FOs. Nevertheless,
it demonstrates some possible drawbacks of rotor angle and
rotor angle speed detail information being omitted.

DL techniques, which have proven to be an effective tool
for PS-based applications, can also be used in networks to
locate and categorise FOs. The LSTM method is used by
a DL method described in [166] to locate the source of
low-frequency FOs in PS networks. This approach connects
all potential source data to the model and displays more
accuracy. This model’s fundamental flaw is that it requires
enormous amounts of input data for both testing and training,
and it is impracticable to install PMUs on every source bus
conceivable. Using a two-stage deep transfer learning (DTL)
method, the authors of [167] suggested localising the FO
localization problem by converting it to an image recognition
problem. This approach is reliant on a fixed topology and only
functions with it; as a result, it cannot be used for slight or
substantial alterations in topologies without having to recon-
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TABLE 9. Machine learning applications in forced oscillation localization.

struct and recreate the code from scratch. Another problem
of this approach is the massive PS network’s scalability.
A transformer-based DL approach for FO localisation was
suggested in the work in [168]. The technique is quick and
robust, and it doesn’t require retraining to function in the
presence of modest or even substantial topology modifica-
tions. Even when non-gaussian noise is present, the approach
still performs well in terms of localization at a high speed.
Also, it can pinpoint the various FOs sources. Nevertheless,
the controller type of the oscillatory sources cannot be deter-
mined using this method. For the parameter calibration of
power plant models utilising the event playback approach,
a DL-based framework is proposed in [169]. The system
implements and tests both non-residual and residual CNN
architectures. When compared to traditional CNN, the sug-
gested residual CNN model (wavnet) exhibits a very signifi-
cant improvement in the calibration of the model parameters.
The results of the calibration show an average inaccuracy
of 1.43%. This research can be expanded to calibrate more
intricate models in DGs and renewable power plants. Table 9
shows the ML applications in forced oscillation localization
of PS network.

B. APPLICATIONS OF MACHINE LEARNING IN MICRO
SYNCHROPHASOR (µPMU) TECHNOLOGY
Modern PS uses distributed generation (DG) with RES,
unconventional generations, electric vehicles (EVs), as well
as controllable loads. This has led to the development of
microgrids and smart grids, which can handle a huge amount
of data on the power distribution side. The distribution system
needs high-resolution monitoring technology and devices to
find faults so that the right protective devices can be put
in place. This makes the system more stable and secure.
Even though PMUs are placed mostly on the transmission
side of a PS, they cannot handle the big data that occurs
on the distribution side. In this context, µPMUs are put in
place on the distribution side of the PS network to measure,

monitor, and find faults [170]. AllµPMUmeasurements have
been GPS time-stamped so that they can be seen at the same
time. Also, cyberattacks on the power network discussed in
Section I make researchers more interested in finding and
classifying faults in the distribution system with the help of
µPMUs. A man-in-the-middle attack, a playback attack, and
a denial-of-service attack are the major types of cyber-attacks
that the authors of [171] talked about. In man in a middle
attack, the attackers will inject malicious content into the
communications infrastructure between both the sensors and
the control centres or between the control centres and the
operators. In the playback attack, hackers send information
from the previous period to make it hard for the control centre
device and operators to figure out what the real normal and
fault conditions are. Lastly, the denial-of-service attack is the
most dangerous. In this attack, hackers restrict the communi-
cation channel by flooding the targeted network with useless
data to which the receiver will be unable to respond and
leads to network crashes. This makes it hard for legitimate
operators to get in, which can cause a blackout.

µPMUs, whichwere created specifically for the distributed
PS network, were made available by the University of Cali-
fornia in association with the Power Standards Lab as well
as Lawrence Berkeley National Lab [172]. These µPMUs
adhere to IEEE standard C37.118, which guarantees the
device’s standardisation. When compared to PMUs on the
transmission side, the micro-PMUs offer the potential advan-
tages of higher measurement resolution, high accuracy level
in the phase angle measurements, and the ability to store and
process big data [173]. The µPMUs are capable of millide-
gree accuracy and microsecond resolution than conventional
transmission-type PMUs. The major potential applications of
µPMUs are listed in Fig. 7.
The distribution side of a PS network with deployed

µPMUs can also benefit greatly from the ML methods that
are becoming more popular in PMUs on the transmission
side. All of the applications shown in Fig. 7 can be used
successfully with ML techniques. A lot of research is hap-
pening in this field where big data is involved. In [174] and
[175], the fuzzy logic method, a knowledge-based approach
which is considered one of the earliest ML techniques is used
to pinpoint the defect and categorise it in the context of an
unbalanced radial power distribution as well as a transmission
line system where µPMUs are deployed. The technique has
a very high level of precision and is not at all reliant on the
kinds of transients that occur during the fault. Over a wide
variety of pre-fault power levels, system configurations, fault
resistance, and fault inception angles, themethod is extremely
effective. To set the fuzzy rule set and tune the approach, more
expertise is required.

In [176], it is suggested to use CNN to categorise faults in
PS distribution networks with DGs. The proposed method’s
advantages are that it requires only loop grids and it does not
require the line parameters, load values or the type of fault.
However, this approach necessitates high sampling rates and
a well-processed data source. The measurement device needs
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FIGURE 7. Applications of µPMUs.

to be installed in each node as a result, which places a
heavy computational burden on the system. Based on the fault
current analysis (FCA), it is suggested in [177] to use ANN to
locate the problem in the distribution network. Measurements
are obtained from the µPMUs deployed in the substation
and are taken into account when using the distributed line
model. No load values and line arguments are required for
processing using this method. But because of its complicated
structure, the suggested method cannot be used without a
trained data set and sensors with high sampling rates. Addi-
tionally, loop grids, which have a significant computational
cost, are not covered by this approach. Another drawback is
that the proposed method would only work with a current
signal. In [178], a back propagation-based ANN approach for
high impedance fault (HIF) detection and the location in DG
systems where µPMUs were installed is proposed. Although
less heuristic than other algorithms, this one requires more
software to function properly. Deep graph convolutional net-
works (GCN) have been suggested by [179] to discover dis-
tributed network faults without identifying the problem type
or load values. The suggested method performs admirably
when dealingwith unbalanced loads and is effective with loop

grids. By using phasor readings from the µPMUs, the phase
angle investigations will improve the system’s accuracy. The
suggested method, however, is challenging due to the high
penetration level, and as a result, it is unable to identify the
precise fault position. This approach has a very considerable
level of computational complexity. To accurately identify the
kind and location of defects in DG systems, an MLP-based
NN is also suggested in [180]. Additionally, this technique
requires more hardware and software components to support
it. As suggested in [181], SVM can be utilised on the distri-
bution side, where µPMUs are located, to detect faults in dis-
tribution lines with accuracy and precision. The use of spec-
tral kurtosis (SK) with random forest (RF) in the µPMU is
suggested in [182] for intelligent-based island detection. This
technique contributes to improving the microgrid’s resilience
to defects that are not intentional. The suggested programme,
however, employs complex algorithm techniques to manage
large datasets in the microgrid. An efficient ML technique
based on RF in the renewable-based smart grid is proposed in
[183] which is a sustainable solution to cyber-based attacks
resiliency in DG systems. The proposed method is noise
resistant as well as cyber-attack resistance with a detection
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TABLE 10. Overview of micro PMU applications and machine learning
approaches in distribution networks and DGs.

time of 8.5 ms and shows a precision of 99.89% with 98.91%
accuracy. Since a PMU is used to operate the fault detection
algorithm, the method is cost-effective because it does not
need any extra hardware or software. But this method has a
few minor flaws, such as the fact that it takes a lot of time to
pre-process the data and has a heavy computational structure.

In [184], three ML techniques namely naive bayes clas-
sifier (NBC), support vector machine (SVM), and extreme
learning machines (ELM) are presented for the detec-
tion and classification of microgrid faults relying on the
Hilbert-Huang transform (HHT). Neither line arguments nor
load values are required for computation with this method.
Comparing this structure to other ML methods stated in the
literature, the computational load is quite minimal, and it also
works well with loop grids. However, this method is limited
to only the present signal and is unable to pinpoint the precise
problem location. All nodes must also have measuring equip-
ment. Table 10 provides an overview of µPMU applications
and ML approaches used in PS distribution networks and
DGs.

V. DISCUSSION AND FUTURE TRENDS
The extensive literature review in synchrophasor technology
is carried out in this work by using PMUs and µPMUs com-
bined with ML techniques to aid in the resolution of major
PS issues such as fault detection and classification, TSA,
VSA, and cyber security challenges. Because of the high
sampling rate and time-synchronized measurements from the
PMUs, it is capable of doing so, paving theway for significant
advancements in the areas of power grid protection, estima-
tion, and control. This paper thoroughly discusses the issues
associated with PS networks and how ML techniques can
assist in addressing and correcting such issues. Based on a
thorough review of the literature, the following observations
as well as insights are summarised.

i. Due to the development of DERs, EVs, microgrids, and
smart-grid in contemporary PS, synchrophasor tech-
nology (ST), utilizing PMUs on the transmission side

as well as µPMUs on the distribution side, is cur-
rently in huge demand. A country’s productivity plan
and cyber-security policy will suffer significantly if a
slight PS blackout occurs. This paper provides a thor-
ough analysis of the significant blackouts that occurred
worldwide between 1965 to 2021 in the introduction.

ii. Several potential benefits of PMUs over SCADA in
a PS network led to the evolution of advanced mea-
surement and monitoring technology known as syn-
chrophasor andWAMS technology. PMUs andµPMUs
can measure the ROCOF in addition to the amplitude
and phase angles of voltage and current. One possible
benefit of ST highlighted in Section II of this paper is
that it can provide highly accurate time-stamped data
using GPS, which aids in dealing with PS stability and
security issues. Furthermore, using synchrophasor as
well as WAMS technology allows for accurate state
estimation, fault classification and identification fault
location identification, and efficient real-time tracking
of PS events as mentioned in Section III.

iii. ST successfully assesses transient stability using ML
techniques and algorithms. SVM and KNN perform
better than other supervised learning techniques when
using DTs, Bayesian multiple k-learning, SVM, and
KNN. For TSA research with better accuracy and
precision, a cutting-edge method called DL is also
mentioned that makes use of ELM-ANN and CNN-
TSVMNN-based works. This work also discusses RL
as well as DRL-based works that can handle more
difficult computational tasks.

iv. Voltage stability assessment (VSA) can also be per-
formed effectively in a PMU-installed PS network
by using ML algorithms. According to the literature,
supervised learning methods such as ANN, MLP-NN,
ELM, and DT improve voltage stability assessments
while requiring less computational effort. Advanced
supervised learning techniques such as NNE, SVM,
and GA-based SVR produce better results in terms of
precision and accuracy.

v. Cybersecurity is the most important concern in
sophisticated PS networks because of their scal-
ability and excellent classification accuracy. ML-
based cyber-attack detection techniques have shown
promising performance. The review reveals a notice-
able increase in supervisory ML algorithms used for
cybersecurity-related concerns in the PS network in
which PMUs were installed. The literature also identi-
fies FDIAs as well as anomaly detection in PS networks
as major cybersecurity issues.

vi. It has been observed that fault detection and classifica-
tion usingML in PS where PMUs are deployed primar-
ily employ supervised learning techniques such as DTs,
RTs, ANN, SVM, KNN, and so on. Almost all methods
produce good fault detection and classification results.

vii. Moreover, the ML and DL methods reveal a focus
on forced oscillation localization research where
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PMUs and µPMUs can be deployed. According to
a review, advanced k-NN, multivariate approaches,
LSTM, CNN, the ensemble, and transformer-based DL
techniques produce better results when used to study
the localisation of FOs and calibrate model parameters
in PS networks.

viii. The rapid increase in renewable-based DGs, EVs, and
controllable loads will increase demand for ML appli-
cations in distribution PS networks whereµPMUs have
been deployed. ML techniques have a broad research
application in event detection, system state awareness
and monitoring, data mining, and auxiliary operations
where large amounts of data and complex computa-
tional algorithms are required.

Because of the need to improve the monitoring and con-
trol of electric power systems, PMU devices became more
common in the power generation and transmission sectors.
As a result, a large amount of data is generated and sent
to control centres, which are eager to find new ways to use
this type and quantity of data. Because of the evolution of
µPMUs [185], ML and DL-based big data analysis with new
and advanced algorithms are essential not only on the gener-
ation and transmission sides but also on the distribution side.
Traditional and analytical methods are incapable of dealing
with such massive amounts of raw data as these are. Because
of their high sampling rate, PMU-based WAMS can moni-
tor dynamic behaviours that traditional SCADA acquisition
devices cannot. Aside from real-time applications, having
synchronized measurements is critical for things like a post-
mortem analysis, which is difficult or impossible to perform
in real-time. The system’s security is dependent on how
well this procedure works, which can be greatly improved
by using PMU data. To precisely identify line-tripping and
oscillation events on the distribution side, where µPMUs are
installed, a larger dataset is required. For such events, a whole
data set training should be performed, followed by the use
of real-time data events to validate and test the algorithm’s
efficacy. By shifting from an offline to an online environ-
ment, DL techniques such as autoencoder-based neural net-
works [186], generative adversarial networks (GAN) [187],
and one-class support vector machines (OCSVMs) [188] can
forecast the occurrence and type of fault. Moreover, a lot of
the applications listed in [189] essentially evaluated the DL
techniques used in electrical PS as a whole, but they may
also be used successfully to investigate PS transmission as
well as the side of distribution where PMUs and µPMUs are
installed.

Synchrophasor-based smart grid networks are primarily
IoT and cloud-based networks, with data processing and stor-
age occurring primarily on cloud servers. Even though cloud-
based computation has the potential benefits of high storage
capacity, reducing complex computational issues with an
efficient computation rate, it has limitations such as high
delay, which impedes real-time applications in smart grids.
This eventually leads to an increase in bandwidth utilization.

Furthermore, mobility support is a hindrance to the cloud
computing framework. To address the aforementioned issue
and speed up synchrophasor data processing, an intermediate
and storage-based system known as edge computing [190]
can be introduced. Edge computing is a cloud-based solution
that provides computing and storage resources at the ‘edge’
of a network. While also reducing latency and bandwidth
utilization, which results in fewer network delays and con-
gestion issues. PMU measurements and WAMS technology
necessitate extremely secure communication networks, such
as power line communication [191], as well as 5 G and 6 G
technologies [192] that employ novel concepts such as vir-
tualization, grid monitoring, and grid stability control. The
5 G and 6 G have high communication speeds, low energy
consumption, and enhanced security features, and can thus
provide a better communications network for WAMS tech-
nology. Machine learning techniques, due to their excellent
forecasting capabilities, can be employed to improve radio
resource allocation according to demand in 5 G and 6 G-
enabled synchrophasor technology [193].

VI. CONCLUSION
This survey provided a critical examination of current
research trends and machine learning applications in syn-
chrophasor technology. As the power system transitions to
a smart grid, more sophisticated measurement and monitor-
ing technologies must be implemented for better estimation,
monitoring stability, and protection. Blackouts in the PS net-
work can be identified and reported more quickly with the
help of PMUs as well asµPMUs using the ML and DLmeth-
ods discussed in this paper. This increases the stability and
security of the power system. This paper critically reviewed
various ML and DL approaches in synchrophasor technology
such as cybersecurity, fault detection and classification, tran-
sient stability assessment, and voltage stability assessment.
The ML/DL classifications and methodologies used are also
well described. The DL methods also address future trends in
identifying line-tripping and oscillation events that require a
large amount of data. Edge computing is also proposed as a
future scope in this paper to improve processing latency while
also reducing bandwidth utilization. Powerline communica-
tion research trends, 5 G and 6 G network communications in
synchrophasor technology with ML and DL techniques are
also discussed.
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