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ABSTRACT Recurrent Neural Networks (RNNs) and their variants have been demonstrated tremendous
successes in modeling sequential data such as audio processing, video processing, time series analysis, and
text mining. Inspired by these facts, we propose human activity recognition technique to proceed visual data
via utilizing convolution neural network (CNN) and Bidirectional-gated recurrent unit (Bi-GRU). Firstly,
we extract deep features from frames sequence of human activities videos using CNN and then select
most important features from the deep appearances to improve performance and decrease computational
complexity of the model. Secondly, to learn temporal motions of frames sequence, we design Bi-GRU
and feed those deep-important features extracted from frames sequence of human activities to Bi-GRU
which learn temporal dynamics in forward and backward direction at each time step. We conduct extensive
experiments on realistic videos of human activity recognition datasets YouTube11, HMDB51 and UCF101.
Lastly, we compare the obtained results with existing methods to show the competence of our proposed
technique.

INDEX TERMS Human activity recognition, recurrent neural networks (RNNs), convolution neural
networks (CNNs), bidirectional-gated recurrent unit (Bi-GRU), deep learning.

I. INTRODUCTION
The recent era of artificial intelligence has witnessed the fame
of human activity recognition because of its wide range of
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real-world applications such as healthcare, videos surveil-
lance, smart-homes and human-computer interaction. Human
activity recognition plays vital roles in these domains, but
more specifically in surveillance applications, it becomes the
key factor due to sensitivity of surveillance applications such
as employee safety, public security, public transportation and
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analysis of shopping behavior. Human activities refer to the
movement of one or more parts of human body, while human
activity recognition is the process of allocating different
descriptions to human activities in videos such as (walking,
playing, laughing, eating, and so on) and train a system based
on these descriptions which enable the trained system to
intelligently and spontaneously recognize different activities
performed by human in unseen videos.

It is necessary to recognize improper activities of humans
in surveillance applications because these may lead to the
attempt of stealing, harm of human and many others destruc-
tions. Optimal evaluation of human activity is a crucial
task which yields challenges to computer vision researchers
because of camera motions, human to human interaction,
visual similarity, human to object interaction, facial action
with object interaction and the same viewpoint of different
human activities. To alleviate the problem of sub-optimal
recognition performance of human activities many early
approaches have been introduced in literature [1], [2], [3].
Although these techniques achieved state-of-the-art perfor-
mances, but these techniques mostly employed visual data
of pre-planned actions in control and unrealistic conditions
which may cause many challenges in real-life surveillance
applications, because the situation of real-world visual data
are more crucial and unstoppable due to clutter background,
illumination conditions and variations of camera motions [4],
[5], [6].

Several other earlier studies have been presented for human
activity recognition based on human silhouettes [7], [8],
in which the outline of a person in frames sequence of
human activities was extracted via analyzing, examining,
decomposing and subtracting noisy background in order to
achieve discrimination among different activities, where tem-
poral information was obtained via tracking the movement of
human body parts from the combination of extracted silhou-
ettes. However, these approaches extract only local contents
of human activities which are suitable only for simple activity
recognition and could not be effective in situations where
multiple persons perform some activities.

Besides these traditional approaches many deep learning
based approaches have been constructed for human activity
recognition [9], [10], [11], [12], [13]. The key motivation for
computer vision researchers to work in deep learning based
human activity recognition was the remarkable improve-
ment in performance via using deep learning in many other
domains such as image recognition, face recognition, object
detection and person re-identification [14], [15], [16], [17],
[18]. Some researchers designed 3-dimensional (3D) Convo-
lution Neural Network (CNN) for human activity recognition
[11], and used 2 dimensions for learning the spatial appear-
ances and the third dimension of CNN was allocated to learn
temporal motions of human activity frames sequence. Their
method outperformed for realistic videos of human activity
recognition but 3D CNN faced challenges in long stream
realistic videos because the third dimension of CNN can only
learn temporal motions of few frames.

The problem of temporal modeling for human activity
recognition can be reduced via using RNNs and their variants,
due to their gated structures they memorize the earlier infor-
mation very efficiently of the sequence. RNNs and their vari-
ants have showed significant contributions and achieved great
results to process sequential data such as time series analysis,
audio processing and sequential text data. The sequential
characteristics of visual data attracts researcher to work with
RNNs and their variants based human activity recognition
[9], [12]. Nevertheless, these methods performed well for
realistic visual data but RNNs based methods mostly pro-
duced vanishing gradients problem for long stream videos
due to extensive calculations and sharing the same weights at
every time step t , while the RNN variant i.e., long-short term
memory (LSTM), requires extensive computations for long
stream and high dimensional realistic visual data to process
because of its complicated gated structure.

Inspired by the above mention facts, we propose in this
paper to tackle these challenges such as sub-optimal evalu-
ation and computational complexity faced by human activity
recognition. The main contributions of this paper are summa-
rized as follows:

1) The basic purpose of video surveillance systems is to
correctly identify different human activities of realistic
visual data. To achieve this we use realistic benchmark
videos datasets, YouTube11, HMDB51 and UCF101
[4], [5], [6], while, to improve recognition rate of
human activities, we extract deep features from deep
network VGG16 [14], which has been trained on mil-
lion of images. Thus, we argue that extracting deep
features for human activities from pre-trained model
can enhance recognition performance.

2) We employee random forest algorithm to select most
important features from deep features and reduce the
dimension of features map. After that, the reduced
features vector which consists of only important fea-
tures fed to train our model with the aim to decrease
computational complexity.

3) Bi-GRU consists of simple gated structure i.e., reset
and update gates which memorize a long sequence of
data. Moreover, it propagates the input sequence in
forward and backward directions. Therefore, we pro-
pose Bi-GRU which effectively learns the frame to
frame changes of human activities at each time step t
to alleviate the problem of temporal modeling.

II. RELATED WORKS
In this section we review the literature which are related
to our proposed method. For human activity recognition,
some traditional methods have been studied which based
on hand-crafted features extraction [19], [20], [21], [22] for
non-realistic videos, which defined visual data of human
activity as local descriptors. One popular method [23], uses
two kinds of features for human activity recognition such
as histogram of oriented gradients (HOG) and motion his-
tory image (MHI). For instance, HOG based features are
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FIGURE 1. Structure of the proposed deep-temporal learning with features selection for human activity recognition.

extracted from boundaries of human activities videos via
analyzing magnitude and viewpoint, while in MHI the noisy
background is subtracted. Afterward, these features are fused
and input for recognition through generic classifier which
is implemented on top of these features. Subsequently, Liu
et al. [6] presented classification of human activities for
realistic videos via extracting spatial and motion features.
They applied motion statistics to transform noisy motion
features into well-structure shapes. Furthermore, they also
used data mining technique of PageRank to select different
spatial features which are informative for particular human
activity class. However, human activity recognition based
on hand-crafted features only captures limited contents of
particular activity which may cause confusions between two
different activities. In addition, these methods may also not
feasible for multiple person activity recognition in visual
data.

In contrast to hand-crafted based methods, many deep
learning approaches have been introduced for human activity
recognition [10], [11], [24], [25], [26], [27], [28]. Karpathy
et al. [10] presented a framework for features connectivity
in time axis via capturing local spatial-temporal contents
of human activity. In addition, they evaluated their experi-
ments via introducing one million videos dataset. To improve
recognition performance, [28] applied features fusion strat-
egy for two types of features acquired from different fully

connected (FC) layers of pre-trained CNN. Furthermore, they
also reduced dimensions of features map via exploiting fea-
tures selection techniques and then at later stages a generic
classifier trained over those selected features. Others famous
approaches relied on 3DCNN [11], [24], [25], whichwere the
extensions of 2D CNN, and used two dimensions of CNN to
learn spatial information and the third dimension devoted to
capture temporal motions. However, 3D CNN requires high
training complexity and only processes few frames efficiently
in the third dimension. By these constructions, 3D CNN faces
challenges to capture fine details of temporal motions in
processing long stream videos.

To improve the performance of temporal motions several
works have been proposed based on RNNs [29], [30]. The
former approach used framework of features extraction from
different FC layers of pre-trained CNN for human activity
frames sequence and then input those features to multilayer
gated recurrent unit (GRU) for prediction whereas the later
approach applied features fusion technique of two-stream
LSTM for human activity recognition task.

Recently, several extensions have been presented to
improve recognition of human activity by self-supervised
video transformer [31], VideoMoCo [32], and confidence
distillation [33]. Furthermore, graph convolution networks
(GCN), and attention based models [34], [35], [36] have been
used extensively in recent years due to optimal performance
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for skeleton based human activity recognition. One popular
approach mRi multi-model [37], proposed 3d human pose
estimation skeleton dataset. In addition, this method provide
the most comprehensive sensing modalities and action detec-
tion via using pyramid attention architecture.

Deep learning basedmethods have the capability to capture
fine details of visual data [38], due to huge weighted layers
of features representation [39], [40]. However, deep learn-
ing based approaches need extensive computations and huge
amounts of data for training the model from the scratch. Thus,
in this paper we propose a framework to stabilize computation
complexity via using pre-trained CNN for features extraction
and then select the most important features with the aim to
reduce dimension of feature maps. Furthermore, we design
Bi-GRU for modeling temporal dynamics of human activity
videos.

III. PROPOSED FRAMEWORK
In this section, we describe the key components of our pro-
posed method for human activity recognition including deep
features Ftdp extraction from frames sequence Fs of human
activity videosVh, after that we select most important features
Ftimp from deep extracted features to reduce dimension of
features map by using random forest algorithm which helps
in decreasing computational complexity in training, lastly
we feed important features of every individual frame Ft iimp
along with descriptions (one-hot labels) Tlbs of every class
to Bi-GRU for training. Bi-GRU learns deep and temporal
information of each frame at each time step t , and then the
trained Bi-GRU evaluates the unseen frames of test data for
prediction of different classes CA of human activity recog-
nition. The workflow structure of our proposed method is
shown in Fig. 1.

A. PREPARATION AND PREPROCESSING OF FRAMES
Videos are the combination of frames sequence at 30 frames
per second. To understand the story of running video, people
need to analyze several frames in a sequence. In addition,
features extraction from pretrained model for video data also
require RGB frames sequence. Therefore, we extract frames
sequence of size 224× 224 × 3 from human activity videos
which is the desired and fixed input size of VGG16 model
[14]. Preprocessing plays vital role for any machine learning
model [41], without which may lead to extensive computa-
tions and sub-optimal recognition performance. Thus, we use
mean subtraction preproceesing strategy for frames sequence
of human activity videos. The given frames sequence Fs =
{F1,F2,F3, . . . .Fi . . . ,FN }, where each frame Fi ∈ Rh×w×c,
h represents height, w width and c color channel of RGB
frame. The mean of frame Fi can be computed as follows

µFi =
Fh×w×ci

h× w× c
, (1)

where the superscript h× w× c represents pixel values and
divisor h× w× c are the total count of height, width and
color channel of frame Fi. Now, to achieve mean subtraction

preprocessing for RGB frame Fi, we require to subtract µFi
from ImageNet mean µImgNi such as

Fpre = µImgNi − µFi, (2)

where Fpre is our required preprocessing of frame Fi for
features extraction from VGG16 model and the values
of µImgNi equivelent to [0.485, 0.456, 0.406] which is pro-
vided by ImageNet dataset [42].

B. DEEP FEATURES EXTRACTION
Standard Convolution neural networks (CNNs) contains stack
of convolution layers which perform dot product of input
image and filters (kernels) with respect to defined strides
[43], and then followed by pooling layers to reduce size of
features map acquired from convolution layers. Moreover,
pooling layers also help speed up the required calculations.
At the end, the convoluted features extracted from previous
layers are injected to FC layers with the aim to obtain intrinsic
information from convoluted features [44] and then those
features are used for prediction of image classes. Training
CNNs from scratch required huge dataset, extensive compu-
tation and powerful hardware resources. On the contrary, the
same results can be obtained for classification and prediction
task via using pretrained CNNs. Therefore, we exploit the
pretrained model for feature extraction from human activity
frames sequence because pretrained CNNs learn deep hidden
patterns from million of images in ImageNet dataset. In addi-
tion, pretrained CNNs also have the ability in knowledge
inferences and features representation. However, there are
many famous CNNs such as VGG19, DenseNet and Xception
[14], [15], [16] but we select VGG16 model for features
extraction because of the following factors.

1) VGG16 model consists of only 16 weighted layers
for features representation and uses the small number
of weighted layers which can help reduce the com-
putation cost during features extraction from frames
sequence.

2) Optimization of machine learning model requires man-
ual setting of hyper-parameter but VGG16 model uses
3×3, 2×2 filters and 1, 2 strides for every convolution
and max-pooling layers respectively instead of using
large number of hyper-parameters.

3) Human activity recognition requires deeper network
for discriminative features extraction, and VGG16 is
generally deeper than other models because it has
138 million learning parameters.

According to the above facts, we use VGG16 as base
model for features extraction. The architecture of VGG16
model with features map representation of frames during
features extraction is given in Table. 1. The base model
divided into five convolution blocks, whereas every block
consists of convolution layers followed by max-pooling lay-
ers and at the end three FC layers were injected. The ReLU
non-linear activation function is used regularly in training the
model.
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TABLE 1. Features map representation of human activity video frames at each layer of VGG16 model.

We preprocess frame Fpre of size 224 × 224× 3, then by
feeding it to the first convolution layer of base model we get

Ftconv1 = Fpre ∗ K , (3)

where Ftconv1 are the features map of frame Fpre obtained
from the first convolution layer of base model and K repre-
sents filters (kernels) with size of 3× 3 which is pre-defined
in base model. Now, if we further elaborate (3), we get:

Ftconv1 =
∑
p

∑
q

K [p, q]Fpre[m, n], (4)

where m, p represents rows and n, q are columns of frame
Fpre and kernel K respectively. In (4), the dot product will be
performed between part of input frame Fpre and kernelKwith
respect to defined sliding window e.g., (stride = 1) and the
resultant vector Ftconv1 considers features map of frame Fpre
acquired from first convolution layer. After the first convolu-
tion layer, VGG16 model uses the second convolution layer
to further shrink the spatial dimension of input imagewhereas
the same intuition were applied in conv2 layer, we can write
(4) for frame Fpre as

Ftconv2 =
∑
p

∑
q

K [p, q]Ftconv1[m, n], (5)

where Ftconv2 are features map of frame Fpre extracted from
conv2 layer of base model. After the second convolution, one
max-pool layer is added to reduce size of features vector.

The output of Max-pool layer can be computed via apply-
ing it on (5), and then we get

Pool1max = max ji (Ft
n
mconv2 ), (6)

where i, j are filters of max-pool operation whereas n, m
represents rows and columns of Ftconv2. After that, the same
intuition is applied for features extraction in subsequent lay-
ers up-to block five. We can write extracted features map of
frame Fpre for max-pool of block five in equation such as

Pool5max = max ji (Ft
n
mconv3) (7)

Lastly, (7) followed by three FC layers with aim to extract
intrinsic information from frame Fpre. The operation in FC
layer change the dimension of convoluted features extracted

in (7) to be flattened. The stack of three FC layers are
of dimension 4096, 4096 and 1000 were applied on (7),
respectively. The mathematical representation of first FC
layer for frame Fpre can be written as

FtCA = (Pool5max ,Dflatn),

FtCA = Ftpool5pre , (8)

where FtCA represents features of human activities classes
while Dflatn operation convert (7) features i.e., (Pool5max)
into intrinsic information and change the dimension to 4096.
However, the second FC layer is applied in the same manner
but the last FC layer which is the deep representation of frame
Fpre consists of 1000 dimension and its our desired features
extraction layer for human activity recognition. The extracted
features for frame Fpre from last layer of VGG16 model can
be written as

Ftdp = (FtCA ,Dflatn) (9)

C. IMPORTANT FEATURES SELECTION
Important features selection from the dataset can play a sig-
nificant role in reducing the model training complexity [45].
Additionally, feeding all features to the model may decrease
the model performance [46] due to the presence of some
noisy and redundant features. However, there are numerous
features selection techniques such as filter based and wrapper
methods. The former select features based on uni-variate
statistics instead of cross validation which face difficulties
in optimal set of selected features whereas the later select
features based on greedy search algorithm which is compu-
tationally expensive. Therefore, we use random forest algo-
rithm which carefully select important features from deep
representationFtdp of frameFpre on basis of their contribution
towards human activity. We need to implement random forest
algorithm between deep features Ftdp and ground truth Tlbs
(one-hot-labels). First, we need to construct decision tress
based on information gain between deep features of human
activity frames Ftdp and ground truth target labels Tlbs.

Infgain(Ftdp,Tlbs) = Entropy(Tlbs)

− Entropy(Ftdp,Tlbs) (10)
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Information gain Infgain(Ftdp,Tlbs) helps us find the purest
child nodes of decision tree because its reduce uncertainty
recursively and continues until all child nodes are not pure.
In (10), Entropy equivalent to

Entropy =
∑
i

−pi(log2pi),

where pi is the probability of ith feature. We assume the
constructed decision tree Dtree, which we rewrite (10) in
mathematical form as

Dtree = L1,L2, . . .Ln
L1 = Ch1,Ch2 . . . .Chn
:

:

:

Ln = Chn1,Chn2 . . . .Chnm

where L1,L2, . . .Ln are leaves nodes of features and
Ch1,Ch2 . . . .Chn represent child nodes of leaves nodes
respectively. Nodes importance can be calculated by using
gini impurity index. We assume gini index applied on leave
node Li, then we get:

ILi = wV − wlftVlft − wrtVrt . . . . . .wnVn, (11)

where ILi represent importance of Li, w is weighted number
of features reached to Li where V is impurity value and wlft ,
wrt are left and right childs node of leave node. Next, the
importance of each feature computed in decision tree via
calculating their weighted average as

Fti =

∑
ILi∑
Ln

, (12)

where Fti is the ith deep feature of human activity frame.
Moreover, feature Fti normalized between 0 and 1 via divid-
ing it on the summation of all important features.

normFti =
Fti∑
Ftall

(13)

Lastly, the normFti feature is divided by total decision tree,
and then we get the most important features Ftimp from
random forest algorithm of human activity frame such as

Ft iimp =

∑
normFti
Dtree

. (14)

D. BIDIRECTIONAL GRU
RNNs are type of artificial neural network design for process-
ing sequential data e.g., time series, text mining, audio data.
In sequential data, every data point in a sequence depends
upon the previous data point such as sentence, audio and
speech data, but traditional artificial neural networks cannot
process such data efficiently because they construct only
independent data points. RNNs have the principle of memory
cells which helps store information of previous inputs to gen-
erate next outputs of the sequence. Simple RNNs have made

great successes in modeling sequential data, but, for long
stream and high dimensionality of sequential visual data, they
may suffer vanishing gradient problems. Therefore, we use
Bi-GRU a variant of RNN to learn visual data of human
activity to overcome vanishing gradient problem. Bi-GRU
consists of two GRU stack one after another where the input
information of sequence propagate by one GRU in forward
direction to previous time step and the other propagate in
backward direction to later time step to make prediction of
current state. The general structure of Bi-GRU for processing
sequential data is presented in Fig. 2.We have deep important
featuresFt iimp obtained from (14), and then input those feature
to Bi-GRU for training. The training process of Bi-GRU for
human activity recognition can be summarized as follows

It = σ (Ft iimpWr + Ht−1Wr + br ), (15)

Zt = σ (Ft iimpWz + Ht−1Wz + br ), (16)

H̃t = tanh(Ft iimpWh + (It +⊙Ht−1)Wh + bh), (17)

H⃗t = Zt ⊙ H⃗t−1 + (1− Zt )⊙ H̃t ), (18)
←

H t = Zt ⊙
←

H t−1 + (1− Zt )⊙ H̃t ). (19)

For the given time step t the human activity deep important
featureFt iimp input for processing then reset gate It and update
gate Zt of GRU computed, whereHt−1 represent hidden state
of previous time step t . Next, reset and update gates integrated
to form candidate hidden state H̃t . We use Bi-GRU, and then
the intuition of new hidden state Ht is applied separately
for each GRU cell in both forward and backward direction.
Forward hidden state H⃗t of one GRU cell is compared with
the earlier hidden state Ht−1 in order to resembles the new
candidate hidden state H̃t , and the second GRU cell compare
its hidden state

←

H t with new candidate state H̃t to know the
upcoming information of next frame for human activity in
the sequence. Finally, the trained Bi-GRU forward the infor-
mation to softmax activation function for prediction. We can
represent softmax function as

finalstate = softmax(Ht ). (20)

IV. EXPERIMENTAL EVALUATION
A. ENVIRONMENT
The experiment has been conducted in python 3.8 with cuda
and cudnn versions of 11.2 and 8.8.1. CoreTM i7-4790 pro-
cessor with 16 GB RAM and GeForce GTX 1080Ti GPU of
11GB used for processing our experiment.We use deep learn-
ing framework ‘keras’ for features extraction, Sklearn library
for features selection and tensorflow for implementation of
Bi-GRU. For training, our proposed Bi-GRU is with the total
number of 100 epochs, mini-batch size of 256, weight decay
of 1e−6. and the initial learning rate of 0.001 are applied
which later decrease to 0.0001. The dataset are split in ratio
of 60:20:20, where (60%) are allocated for training, (20%)
for validation and for performance assessment on unseen
data by our proposed Bi-GRU, (20%) of data assigned to
testing. As for performance evaluation, we have used three
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FIGURE 2. General structure of bidirectional gated recurrent unit for processing sequential data.

metrics such as score of average accuracy, confusion matrix
and class-wise accuracy for the three benchmark dataset
i.e., (YouTube11, HMDB51 and UCF101) to show effective-
ness of our method.

B. DATASETS
1) YouTube11 Dataset: Its a realistic video dataset of

human activity recognition which contain 1160 sports
videos and divided into 11 classes i.e., walking, volley-
ball, jumping, tennis swing, swing, soccer, horse riding,
golf swing, diving, biking and basektball. Each class
of YouTube11 dataset further divided into 25 groups
where every group consists of more than 4 videos of
human activities which share some similarity such as
similar actor, viewpoint and background conditions.
This dataset of human activity recognition is small but
very challenging due to clutter background, illumina-
tion condition and camera motion of videos.

2) HMDB51 Dataset: its a large dataset of human activ-
ity videos based on realistic conditions. The dataset
include 6849 videos which are divided in 51 classes
where each class holds at least 101 videos. The
videos of dataset were captured from movie clips and
youtube in short duration which make it more chal-
lenging than any other dataset. Additionally, classes
of the dataset based on similiarity among different
human activities such as facial action of human:(talk,
laugh), facial action by using objects:(eat, drink),
body movement:(climb, walk), human to human body
movement:(shake hands, hugging), body movement by
interacting some objects:(shooting a gun, hiting some-
thing), which make recognition of human activity more
difficult for any system.

3) UCF101 Dataset: The largest realistic dataset of
human activity recognition include approximately
13320 videos which split up in 101 classes. Videos of
UCF101 dataset capture from youtube in five different

FIGURE 3. Sample frames of human activities datasets in (a) YouTube11,
(b) HMDB51 and (c) UCF101.

types such as sports, human body movement, paly-
ing music, human to human interaction and human
to object interaction. The dataset is very challenging
due to similarity between different classes, different
illumination condition and viewpoint. UCF101 dataset
consists of real-life videos where many others dataset
of human activity recognition based on unrealistic and
pre-planned action perform by actor.

The sample frames of different human activities classes from
the three benchmark dataset given in Fig. IV-C (a) YouTube11
(b) HMDB51 and (c) UCF101.

C. COMPARATIVE ANALYSIS
The proposed method is compared with existing methods
with respect to average accuracy captured from test set of data
given in Table. 2. The dash ‘‘-’’ sign indicates accuracy not
reported by the reference paper for the corresponding dataset
and accuracy given in bold represent high accuracy.
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TABLE 2. Comparison of proposed method with existing methods.

FIGURE 4. Confusion matrices of proposed method for human activity recognition obtain from test set of data, in
(a) YouTube11 dataset, (b) HMDB51 dataset and (c) UCF101 dataset.

The existing methods such as single stream CNNs [47],
hierarchical multi task learning [48] and soft kernel learning
[49] reported 93.1%, 89.7% and 91.6% average accuracy for
human activity recognition using YouTube11 dataset while
our proposed method obtain 93.38% for the same dataset and
improve 0.28% recognition accuracy.

In the given Table 2, we can observe average accuracy
for HMDB51 dataset by two stream CNNs [26], hierarchical
multi-task learning [48], improved trajectories [22], unsuper-
vised LSTM [9], P-RRNs [50]. They claimed 59.4%, 51.4%,

57.2%, 44.0% and 68.2% accuracies for HMDB51 dataset
respectively. The second highest accuracy of 70.4% reported
for this dataset by bidirectional LSTM [51]. However, our
method holds the highest accuracy of 71.8% which enhance
recognition performance up to 1.4% for HMDB51 dataset.
As for UCF101 dataset the comparison based on average
accuracy are demonstrated in Table 2. Few existing methods
claimed more than 75% accuracy for UCF101 dataset such
as hierarchical multi-task learning [48] and soft kernel learn-
ing [49]. On the other hand, several existing state-of-the-art
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FIGURE 5. Class-wise accuracy of proposed method for human activity recognition for three benchmark datasets, in (a) YouTube11 dataset,
(b) HMDB51 dataset and (c) UCF101 dataset.

techniques obtained more than 80% accuracy. Additionally,
P- RRNNs [50] gain 91.4% accuracy, even though ourmethod
achieved 91.79% and increase 0.3% accuracy for UCF101
dataset which demonstrate effectiveness of our method.

D. PERFORMANCE EVALUATION
We evaluate performance on test split of each dataset par-
ticipated in the experiment. In order to show recognition
performance of our proposed method for each dataset, con-
fusion matrices presented in Fig. 4 (a) YouTube11 dataset,
(b) HMDB51 dataset and (c) UCF101 dataset.

Confusion matrix for YouTube11 dataset can be visualized
in Fig. 4 (a), where most of the classes surpass 90% recogni-
tion accuracy instead of class ’1’ and ’11’ which represents
basketball and walking. These two classes have received
86.1% and 87.4% recognition accuracy respectively. The
class ‘basketball’ perform poorly because some other classes
interfere and has a tendency of predicting basketball as soccer
and volleyball. In addition, class walking is misclassified as
biking and horse riding.

The class-wise accuracy is obtained for each dataset used in
our experiment and can be observed from Fig. 5. The graphs
in Fig. 5 (a), (b) and (c) represent class-wise accuracy of
YouTube11, HMDB51 and UCF101 datasets respectively.

The graph Fig. 5 (b) is acquired from test set of data during
evaluation of our experiment for HMDB51 dataset. In graph
Fig. 5 (b), many classes get moderate accuracy, for example,
more than half classes exceed 55% recognition accuracy
and some classes achieve the highest accuracy i.e., (above
90%). Moreover, few classes perform poorly and get the
lowest accuracy i.e., (less than 50%). For instance, it can be
seen classes at points 13, 18, 21, 22 and 43 in horizontal
axis, obtain 32.91%, 48.48%, 39.01%, 44.28% and 43.45%
accuracies (can be seen in vertical axis) of Fig. 5 (b) graph.
These points represent classes ‘fall on the floor’, ‘hit’, ‘kick’,
‘kick ball’ and ‘stand’ in HMDB51 dataset respectively. The
highest accuracy is achieved by class ’ baby situp’ which can
be seen at point 39 in horizontal axis whereas the accuracy
can be observe at vertical axis of the same graph.

Class-wise accuracy for UCF101 dataset is presented in
Fig. 5 (c) graph, in which numerous classes receive more
than 75.0% recognition accuracy. However, very few classes
demonstrate unsatisfactory performance such as in points
40, 45 and 68 possess 49.7%, 55.95 and 54.3% recognition
accuracywhich express classes ‘jumping high’, ‘metal-tipped
javelin throwing’ and ‘vaulting pole’ in UCF101 dataset
respectively. The highest accuracy of 99.95% is achieved by
class ’playing music with sitar ’ which can observed at point
65 in horizontal axis of Fig. 5 (c) graph.
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We also evaluate performance and time complexity of our
proposed method by employing deep features of YouTube11,
HMDB51 and UCF101 dataset to prove feasibility and
significance of random forest features selection technique.
We trained Bi-GRU upto 100 epochs and used same trainable
parameters i.e., (described in section IV-A) for deep fea-
tures and obtain 92.05%, 67.53% and 88.07% recognition
accuracy while selected features gain 93.38%, 71.89% and
91.79% accuracy for YouTube11, HMDB51 and UCF101
datasets respectively. Furthermore, we also evaluate average
time complexity of training the Bi-GRU by using deep fea-
tures and selected important features of each dataset which
shows that time complexity of our method significantly
decrease by using random forest algorithm for important
features selection which also helps in improvement of accu-
racy. In addition, [54] claimed 1.12 seconds average time
complexity to train their model by using every six frames
in the sequence of YouTube11 dataset while our proposed
method consumes 1.03 seconds average time for training
the Bi-GRU which shows the efficiency of our propose
method. The acquired results of deep features and important
selected features for each dataset are presented in the given
Table. 3.

TABLE 3. Comparison of recognition performance and average time
complexity between deep features and selected most important features
for YouTube11, HMDB51 and UCF101 dataset.

V. CONCLUSION
In this paper, we have proposed human activity recogni-
tion based on deep-temporal learning by using deep CNN
features, then selected most important features among deep
representations and feed selected features to learn temporal
dynamics. We have discussed different problems faced by
human activity recognition and mainly focused on improve-
ment in accuracy, reduction computational complexity and
learn long sequence temporal motions. To achieve this we
have extracted intrinsic information of human activity frames
sequences from pre-trained CNN which help the increas-
ing performance, while, to reduce computational complexity,
we have employed random forest algorithm to select most
important features from deep intrinsic information of human
activity. After this, we have proposed to use Bi-GRU and
feed selected deep information at each time step t to improve
temporal dynamics of long stream videos. The experimental
results have shown that our proposed method perform well
compared with other existing methods. The proposed method
has some limitations, such as, it can recognize human activ-
ities when it runs on GPU, but its unable to predict human
activity on internet of things (IOT) based devices.

REFERENCES
[1] C. Schuldt, I. Laptev, and B. Caputo, ‘‘Recognizing human actions: A

local SVM approach,’’ in Proc. IEEE Int. Conf. Pattern Recognit. (ICPR),
Aug. 2004, pp. 32–36.

[2] M. Bregonzio, S. Gong, and T. Xiang, ‘‘Recognising action as clouds
of space-time interest points,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2009, pp. 1948–1955.

[3] M. D. Rodriguez, J. Ahmed, andM. Shah, ‘‘ActionMach a spatio-temporal
maximum average correlation height filter for action recognition,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2008, pp. 1–8.

[4] K. Soomro, A. Roshan Zamir, and M. Shah, ‘‘UCF101: A dataset of 101
human actions classes from videos in the wild,’’ 2012, arXiv:1212.0402.

[5] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, ‘‘HMDB: A
large video database for human motion recognition,’’ in Proc. Int. Conf.
Comput. Vis., Nov. 2011, pp. 2556–2563.

[6] J. Liu, J. Luo, and M. Shah, ‘‘Recognizing realistic actions from videos ‘in
the wild,’’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2009,
pp. 1996–2003.

[7] A. F. Bobick and J. W. Davis, ‘‘The recognition of human movement using
temporal templates,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 23,
no. 3, pp. 257–267, Mar. 2001.

[8] L. Wang and D. Suter, ‘‘Informative shape representations for human
action recognition,’’ in Proc. 18th Int. Conf. Pattern Recognit. (ICPR),
vol. 2, Aug. 2006, pp. 1266–1269.

[9] N. Srivastava, E. Mansimov, and R. Salakhutdinov, ‘‘Unsupervised learn-
ing of video representations using LSTMs,’’ 2015, arXiv:1502.04681.

[10] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, ‘‘Large-scale video classification with convolutional neural
networks,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014,
pp. 1725–1732.

[11] S. Ji, W. Xu, M. Yang, and K. Yu, ‘‘3D convolutional neural networks
for human action recognition,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 1, pp. 221–231, Jan. 2013.

[12] J. Donahue, L. A. Hendricks, M. Rohrbach, S. Venugopalan,
S. Guadarrama, K. Saenko, and T. Darrell, ‘‘Long-term recurrent
convolutional networks for visual recognition and description,’’ 2014,
arXiv:1411.4389.

[13] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals,
R. Monga, and G. Toderici, ‘‘Beyond short snippets: Deep networks for
video classification,’’ 2015, arXiv:1503.08909.

[14] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556.

[15] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, ‘‘Densely
connected convolutional networks,’’ 2016, arXiv:1608.06993.

[16] F. Chollet, ‘‘Xception: Deep learning with depthwise separable convolu-
tions,’’ 2016, arXiv:1610.02357.

[17] R. Couturier, H. N. Noura, O. Salman, and A. Sider, ‘‘A deep learning
object detection method for an efficient clusters initialization,’’ 2021,
arXiv:2104.13634.

[18] S. Zhong, Z. Bao, S. Gong, and K. Xia, ‘‘Person reidentification based
on pose-invariant feature and B-KNN reranking,’’ IEEE Trans. Computat.
Social Syst., vol. 8, no. 5, pp. 1272–1281, Oct. 2021.

[19] P. Scovanner, S. Ali, and M. Shah, ‘‘A 3-dimensional sift descriptor and its
application to action recognition,’’ in Proc. 15th ACM Int. Conf. Multime-
dia, Sep. 2007, pp. 357–360.

[20] H. Wang, A. Klaser, C. Schmid, and C.-L. Liu, ‘‘Action recognition by
dense trajectories,’’ in Proc. CVPR, Jun. 2011, pp. 3169–3176.

[21] A. Klaeser, M. Marszalek, and C. Schmid, ‘‘A spatio-temporal descrip-
tor based on 3D-gradients,’’ in Proc. Brit. Mach. Vis. Conf., 2008,
pp. 275–1275.

[22] H. Wang and C. Schmid, ‘‘Action recognition with improved trajectories,’’
in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2013, pp. 3551–3558.

[23] Y. Hu, L. Cao, F. Lv, S. Yan, Y. Gong, and T. S. Huang, ‘‘Action detection
in complex scenes with spatial and temporal ambiguities,’’ in Proc. IEEE
12th Int. Conf. Comput. Vis., Sep. 2009, pp. 128–135.

[24] L. Sun, K. Jia, D.-Y. Yeung, and B. E. Shi, ‘‘Human action recognition
using factorized spatio-temporal convolutional networks,’’ in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 4597–4605.

[25] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, ‘‘Learning
spatiotemporal features with 3D convolutional networks,’’ in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 4489–4497.

VOLUME 11, 2023 33157



T. Ahmad et al.: Human Activity Recognition Based on Deep-Temporal Learning

[26] K. Simonyan and A. Zisserman, ‘‘Two-stream convolutional networks for
action recognition in videos,’’ in Proc. Adv. Neural Inf. Process. Syst.
(NIPS), 2014, pp. 1–9.

[27] L. Wang, Y. Xiong, Z. Wang, and Y. Qiao, ‘‘Towards good practices for
very deep two-stream ConvNets,’’ 2015, arXiv:1507.02159.

[28] T. Ahmad, J. Wu, I. Khan, A. Rahim, and A. Khan, ‘‘Human action
recognition in video sequence using logistic regression by features fusion
approach based on CNN features,’’ Int. J. Adv. Comput. Sci. Appl., vol. 12,
no. 11, pp. 18–25, 2021.

[29] N. Ballas, L. Yao, C. Pal, and A. Courville, ‘‘Delving deeper
into convolutional networks for learning video representations,’’ 2015,
arXiv:1511.06432.

[30] H. Gammulle, S. Denman, S. Sridharan, and C. Fookes, ‘‘Two stream
LSTM: A deep fusion framework for human action recognition,’’ in Proc.
IEEE Winter Conf. Appl. Comput. Vis. (WACV), Mar. 2017, pp. 177–186.

[31] K. Ranasinghe,M. Naseer, S. Khan, F. Shahbaz Khan, andM. Ryoo, ‘‘Self-
supervised video transformer,’’ 2021, arXiv:2112.01514.

[32] T. Pan, Y. Song, T. Yang, W. Jiang, and W. Liu, ‘‘VideoMoCo: Con-
trastive video representation learning with temporally adversarial exam-
ples,’’ 2021, arXiv:2103.05905.

[33] S. M. Shalmani, F. Chiang, and R. Zheng, ‘‘Efficient action recognition
using confidence distillation,’’ in Proc. 26th Int. Conf. Pattern Recognit.
(ICPR), Aug. 2022, pp. 3362–3369.

[34] Y. Liu, H. Zhang, Y. Li, K. He, and D. Xu, ‘‘Skeleton-based human
action recognition via large-kernel attention graph convolutional network,’’
IEEE Trans. Vis. Comput. Graphics, early access, Feb. 22, 2023, doi:
10.1109/TVCG.2023.3247075

[35] Z. Deng, Q. Gao, Z. Ju, and X. Yu, ‘‘Skeleton-based multi-features and
multi-stream network for real-time action recognition,’’ IEEE Sensor J.,
early access, Feb. 23, 2023, doi: 10.1109/JSEN.2023.3246133.

[36] G. Zheng, ‘‘A novel attention-based convolution neural network for human
activity recognition,’’ IEEE Sensors J., vol. 21, no. 23, pp. 27015–27025,
Dec. 2021.

[37] S. An, Y. Li, and U. Ogras, ‘‘MRI: Multi-modal 3D human pose esti-
mation dataset using mmWave, RGB-D, and inertial sensors,’’ 2022,
arXiv:2210.08394.

[38] T. Ahmad and J. Wu, ‘‘SDIGRU: Spatial and deep features integration
using multilayer gated recurrent unit for human activity recognition,’’
IEEE Trans. Computat. Social Syst., early access, Mar. 9, 2023, doi:
10.1109/TCSS.2023.3249152.

[39] M. Woźniak, M. Wieczorek, and J. Siłka, Deep Neural Network
With Transfer Learning in Remote Object Detection From Drone.
New York, NY, USA: Association for Computing Machinery, 2022, doi:
10.1145/3555661.3560875.

[40] M. Woźniak, M. Wieczorek, and J. Siłka, ‘‘BiLSTM deep neu-
ral network model for imbalanced medical data of IoT systems,’’
Future Gener. Comput. Syst., vol. 141, pp. 489–499, Apr. 2023, doi:
10.1016/J.FUTURE.2022.12.004.

[41] A. Rahim, Y. Zhong, T. Ahmad, and U. Islam, ‘‘An intelligent approach
for preserving the privacy and security of a smart home based on IoT
using LogitBoost techniques,’’ J. Hunan Univ. Natural Sci., vol. 49, no. 4,
pp. 372–388, Apr. 2022.

[42] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘ImageNet:
A large-scale hierarchical image database,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248–255.

[43] A. Rahim, Y. Zhong, and T. Ahmad, ‘‘A deep learning-based intelligent
face recognition method in the Internet of Home things for security appli-
cations,’’ J. HunanUniv. Natural Sci., vol. 49, no. 10, pp. 39–52, Oct. 2022.

[44] M. A. Khan, N. S. Elmitwally, S. Abbas, S. Aftab, M. Ahmad, M. Fayaz,
and F. Khan, ‘‘Software defect prediction using artificial neural net-
works: A systematic literature review,’’ Sci. Program., vol. 2022, pp. 1–10,
May 2022.

[45] M. A. Ashraf, Y. D. Khan, B. Shoaib, M. A. Khan, F. Khan, and
T. Whangbo, ‘‘β lact-pred: A predictor developed for identification of
beta-lactamases using statistical moments and PseAAC via 5-step rule,’’
Comput. Intell. Neurosci., vol. 2021, pp. 1–10, Dec. 2021.

[46] F. Khan, I. Tarimer, H. S. Alwageed, B. C. Karadağ, M. Fayaz, A. B.
Abdusalomov, and Y.-I. Cho, ‘‘Effect of feature selection on the accuracy
of music popularity classification using machine learning algorithms,’’
Electronics, vol. 11, no. 21, p. 3518, Oct. 2022.

[47] S. Ramasinghe and R. Rodrigo, ‘‘Action recognition by single stream
convolutional neural networks: An approach using combined motion and
static information,’’ in Proc. 3rd IAPR Asian Conf. Pattern Recognit.
(ACPR), Nov. 2015, pp. 101–105.

[48] A.-A. Liu, Y.-T. Su, W.-Z. Nie, and M. Kankanhalli, ‘‘Hierarchical cluster-
ing multi-task learning for joint human action grouping and recognition,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 1, pp. 102–114,
Jan. 2017.

[49] X. Xu, I. W. Tsang, and D. Xu, ‘‘Soft margin multiple kernel learning,’’
IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 5, pp. 749–761,
May 2013.

[50] S. Yu, L. Xie, L. Liu, and D. Xia, ‘‘Learning long-term temporal features
with deep neural networks for human action recognition,’’ IEEE Access,
vol. 8, pp. 1840–1850, 2020.

[51] W. Li, W. Nie, and Y. Su, ‘‘Human action recognition based on selected
spatio-temporal features via bidirectional LSTM,’’ IEEE Access, vol. 6,
pp. 44211–44220, 2018.

[52] W. Zhu, J. Hu, G. Sun, X. Cao, and Y. Qiao, ‘‘A key volume mining
deep framework for action recognition,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 1991–1999.

[53] A. Richard and J. Gall, ‘‘A bag-of-words equivalent recurrent neural net-
work for action recognition,’’ 2017, arXiv:1703.08089.

[54] A. Ullah, J. Ahmad, K. Muhammad, M. Sajjad, and S. W. Baik, ‘‘Action
recognition in video sequences using deep bi-directional LSTMwith CNN
features,’’ IEEE Access, vol. 6, pp. 1155–1166, 2017.

TARIQ AHMAD received the M.Sc. degree in
computer science from the University of Science
and Technology Bannu, Pakistan, in 2011, and
the M.Sc. degree in computer science, with a
focus on software engineering, from IMSciences,
Peshawar, Pakistan, in 2015. He is currently pur-
suing the Ph.D. degree in communication and
information systems, with a focus on artificial
intelligence, with the Guilin University of Elec-
tronic Technology, Guilin, China, under the super-

vision of Prof. Jinsong Wu.
His research interests include human activity recognition, sequence learn-

ing for visual data, machine learning, deep learning, context-based image
indexing and retrieval, facial expression prediction, and computer vision.
He has been a Reviewer of machine learning and deep learning in IEEE
ACCESS, since December 2021.

JINSONG WU (Senior Member, IEEE) received
the Ph.D. degree from the Department of Electri-
cal and Computer Engineering, Queen’s Univer-
sity, Kingston, ON, Canada, in 2006. He received
the 2020 IEEE Green Communications and
Computing Technical Committee Distinguished
Technical Achievement Recognition Award, for
his outstanding technical leadership and achieve-
ment in green wireless communications and net-
working, the 2017 IEEE Green Communications

and Computing Technical Committee Excellent Services Award for his
excellent technical leadership and services in the Green Communications and
Computing Community, the 2017, 2019, and 2021 IEEE SYSTEMS JOURNAL
Best Paper Awards, and the 2018 IEEEGreen Communications and Comput-
ing Technical Committee Best Magazine Paper Award. He was elected as the
Vice Chair of Technical Activities of the IEEE Environmental Engineering
Initiative (EEI) (2017–2022). He was the Founder and the Founding Chair
(2011–2017) of the IEEE Technical Committee on Green Communications
and Computing (TCGCC). Since 2022, he has been the Chair of the IEEE
Technical Committee on Big Data (TCBD). He was the Co-Founder and the
Founding Vice-Chair of the IEEE TCBD, in 2014 and from 2014 to 2022,
respectively. He was the very first proposer of IEEE Green ICT Journals or
Transactions, in 2012. He was a Proposer, in 2021, the Founder, in 2022,
and the Founding Editor-in-Chief, since 2022, for the new international
journal, Green Technologies and Sustainability (GTS), KeAi. He was the
leading Editor and the coauthor of the comprehensive book, titled Green
Communications: Theoretical Fundamentals, Algorithms, and Applications
(CRC Press, September 2012).

33158 VOLUME 11, 2023

http://dx.doi.org/10.1109/JSEN.2023.3246133
http://dx.doi.org/10.1109/TCSS.2023.3249152
http://dx.doi.org/10.1145/3555661.3560875
http://dx.doi.org/10.1016/J.FUTURE.2022.12.004


T. Ahmad et al.: Human Activity Recognition Based on Deep-Temporal Learning

HATHAL SALAMAH ALWAGEED received the
Ph.D. degree in computer engineering from the
Stevens Institute of Technology, Hoboken, NJ,
USA, in 2019. He has been with the College of
Computer and Information Sciences, Jouf Univer-
sity, Aljouf, Saudi Arabia, since 2019. He is cur-
rently an Assistant Professor. His current research
interests include machine learning, deep learning,
the Internet of Things, and computer networks.

FAHEEM KHAN received the Ph.D. degree
from the University of Malakand, Pakistan.
He was an Assistant Professor, for four years,
in Pakistan. He is currently an Assistant Profes-
sor with the Department of Computer Engineer-
ing, Gachon University, South Korea. His research
interests include computer networking, wireless
networks, MANET, VANET, the IoT, and artificial
intelligence.

JAWAD KHAN received the master’s degree
in computer science from the Kohat Uni-
versity of Science and Technology (KUST),
Pakistan, and the Ph.D. degree in computer engi-
neering from Kyung Hee University (Global
Campus), South Korea. He is currently a Post-
doctoral Researcher with the Department of
Robotics, Hanyang University (ERICA Campus),
South Korea. His research interests include natural
language processing, information retrieval, senti-

ment analysis/opinion mining, text processing, social media mining, and
machine and deep learning.

YOUNGMOON LEE (Member, IEEE) received
the B.S. degree in electrical and computer
engineering from Seoul National University,
South Korea, in 2014, and the M.S. and Ph.D.
degrees in computer science and engineering from
the University of Michigan, Ann Arbor, MI, USA,
in 2016 and 2019, respectively. He is currently
an Assistant Professor with the Department of
Robotics, Hanyang University, South Korea. His
research interests include cyber-physical systems,

embedded systems, and mobile computing.

VOLUME 11, 2023 33159


