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ABSTRACT In viticulture, yield estimation is a key activity, which is important throughout the wine industry
value chain. The earlier that an accurate yield estimation can be made the greater its value, increasing
management options for grape growers and commercial options for winemakers. For the yield estimate based
on in-field measurements at scale, the number of inflorescences emerging after bud-burst offers the earliest
practical signal, allowing a yield potential to be determined months before harvest. This paper presents an
approach to automatically count the inflorescence number at the phenological stage E-L 12 using RGB
video data and demonstrates its use for estimating yield. A dataset consisting of RGB videos was collected
shortly after bud-burst from multiple vineyards, in conjunction with hand counts to produce a manual
ground-truth for the inflorescence counting task. The video frames were annotated using bounding-boxes
around the inflorescences to produce a digital ground-truth. A deep learning architecture was developed
to learn features from the video frames during training and detect the inflorescences at the later inference
stage. The detection results were fed to a tracking pipeline built using computer vision and deep learning
techniques to generate numbers of inflorescences present in test videos. The visual and quantitative results
are presented and evaluated for the inflorescence detection and counting tasks. The developed inflorescence
detector achieves an average precision of 80.00%, a recall of 83.92%, and an F1-score of 80.48%, through a
five-fold cross-validation on the annotated dataset. For the test videos, the developed automatic inflorescence
counting model reports an absolute error of 11.03 inflorescences per panel, a normalized mean absolute error
of 10.80%, and an R2 of 0.86, when the predicted per-panel counts were compared to the corresponding
manual ground-truth. Based on the counting results, we estimate an early yield that is within 4% to 11%
error when compared to the actual yield after harvest. Based on these results and a separate analysis of the
relationship between hand counts of inflorescences and harvest yields in three vineyards over three growing
seasons, we conclude that computer vision andmachine learning based methods have the potential to provide
early yield estimation in viticulture with a commercially viable accuracy.

INDEX TERMS Grapevine, inflorescence detection, inflorescence tracking, early yield estimation, viticul-
ture, computer vision, deep learning.
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approving it for publication was Li He .

I. INTRODUCTION
Yield estimation is of increasing importance in agricultural
industries as they become more vertically integrated. All
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aspects of logistical planning can benefit, from crop insurance
for growers to the delivery to processors or wholesalers,
to the marketing of products. In the wine industry, where
fruit quality can drive a ten-fold difference in the value of the
crop for the same genetics, yield and fruit composition are
commonly assumed to be linked, so vital in-season manage-
ment decisions can also depend on accurate yield estimation
at an early stage. Grapevine yield (per vine) is composed of
three factors, bunch number, berry number per bunch, and
mean berry weight. Bunch number is considered to be the
largest single driver of season-to-season yield variation in
Australian viticulture [1] and can potentially be estimated
at a much earlier stage than the other factors [2], [3], [4].
The maximum number of bunches is limited to the number
of inflorescences a vine produces, which in most production
systems emerge and develop only at a certain phenological
stage, during spring growth. Where no human intervention
occurs and there are no adverse climatic events, such as frost,
hail, or severe drought, the vast majority of inflorescences
are retained and will form grape bunches. Inflorescence pri-
mordia are laid down during bud formation in the previous
season, thus over-wintering buds can be dissected and the
primordia counted, providing the earliest possible measure
of potential fruitfulness in the subsequent growing season.
However, this is a time-consuming and destructive process,
expensive to undertake, does not determine the actual number
of inflorescences that emerge at bud-burst, and cannot realis-
tically be developed into an on-the-go measurement system.
Consequently, the earliest estimate of the potential number
of bunches that could be assessed at scale is a count of the
number of emerged inflorescences shortly after bud-burst.

A. RELATED WORK
Current methods of yield estimation, whether bud dissec-
tion or in-field counts and weights during the season, are
labour-intensive and rely on a sample density adequate to
fully represent the variation across a vineyard block for
accuracy, something that is very rarely achieved. Utilizing a
non-destructive, on-the-go, method of yield estimation would
not only overcome the problems associated with achieving a
statistically valid sample density but also potentially provide
a high-resolution spatial map of yield, which could be utilized
by the vineyard manager using precision agriculture princi-
ples to manage the crop more efficiently and profitably ([5]
and references therein).

Recent advances in computing power, computer vision,
and robotics have provided the potential to provide just such
an on-the-go system. The combination of image process-
ing, computer vision, and machine learning techniques are
becoming widely available and are already being used as
management tools for agriculture [6]. In viticulture, these
techniques have already been explored for some aspects of
yield estimation [2]. Much of these have been to estimate
bunch size or berry number per bunch close to harvest [2], [7],
[8], but some attempts have been made at early inflorescence

stages when flowers are separate and about to open. To date,
these have aimed to measure the number of flowers within
inflorescences, providing a potential maximumberry number.
A variety of imaging, both indoor and outdoor in a controlled
or uncontrolled environment with natural or artificial back-
grounds through a destructive or non-destructivemanner have
been used. A range of image analysis, computer vision, and
deep learning techniques have been applied for flower count-
ing within inflorescence images [9], [10], [11], [12], flower
counting within segmented inflorescences [13], [14], [15],
[16], opened and unopened flower classification within inflo-
rescence images [17], and spikelet detection within detected
inflorescences for thinning analysis [18]. A summary of these
approaches is given in Table 1. All of thesemethods used only
static images and none of themworked with video sequences.
Only one of the methods in [15] provided a yield estimation
through a relationship between predicted number of flowers
versus actual yield per vine. Furthermore, all of thesemethods
work with images of inflorescences at or after E-L 15 stage
[19] when flowers are usually separate and quite visible just
before flowering.

If used for early yield estimation, the above techniques
based on individual flower count per inflorescence would
typically rely on a manual estimate of the total number
of inflorescences and an empirical relationship between the
flower number and berries set for a given plot. Given the
aforementioned relationship between the bunch number and
inter-seasonal variation and the requirement to predict yield
at the earliest possible time (E-L 12 stage [19]), we aimed
to develop a new technique that would provide on-the-go
counts of grapevine inflorescences from videos, which could
be combined with historical bunch weight information to
provide an early estimate of yield at an earlier E-L 12 stage,
or simply compared with inflorescence counts obtained in
previous seasons as an index of yield potential.

B. CONTRIBUTIONS
There are a few problems to overcome while developing such
an approach based on inflorescence counts. Firstly, there is
no public dataset available for inflorescence detection and
counting tasks in videos. A few datasets can be found but only
for the bunch and berry detection in images, at the veraison
or harvest stages. To this end, a new video dataset needs to be
collected and labelled. Secondly, efficient detection of inflo-
rescences is required in videos. This is because localization
and detection of inflorescences is a very challenging task due
to complex backgrounds with leaves, stems, and occlusions.
Thirdly, the inflorescence counting needs to be performed
as soon as inflorescences are visible (E-L 12 stage [19])
with less occlusion by leaves, which is before the individual
flowers are separated (E-L 15 stage [19]).

To solve the aforementioned problems, in this work, the
major contributions include:
1. A new dataset was collected in the form of RGB videos

at the inflorescence E-L 12 stage. The videos were taken
in a natural environment without any disturbance or
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TABLE 1. Related methods using image analysis, computer vision, and deep learning techniques at grapevine inflorescence stages.

customization of the background. The video frames
were labelled manually to provide ground-truth
bounding-boxes for inflorescences as per the standards
of object detection in computer vision. A part of this
dataset was made public for other researchers to work
with.

2. To efficiently detect inflorescences in videos, an inflo-
rescence detector was developed based on convolutional
neural network (CNN) architectures. The detector was
trained using the collected inflorescence dataset which
can detect inflorescences, in the wild and in different
weather, lighting, and background conditions.

3. A new tracking pipeline was developed using computer
vision and deep learning approaches to automatically
track the detected inflorescences and count them in
videos. Both the detector and the tracker were evaluated
rigorously using the ground-truth data produced during
and after the data collection.

4. The developed inflorescence detection model and the
tracker were tested for a selected number of videos/rows
of two different grapevine varieties in different weather
and lighting conditions. The panel-wise and row-wise
inflorescence counting results were evaluated using
ground-truth counts. In the end, the counts were used to
produce an early yield estimate and compared with the
actual yield for that season.

A block diagram of the proposed framework for the
early yield estimation based on inflorescence detection and
counting in videos is given in Fig. 1. Every component
of the framework is discussed in detail in the following
sections.

II. GRAPEVINE INFLORESCENCE DETECTION AND
COUNTING
In this section, firstly, we present the developed inflores-
cence detector based on a CNN for the efficient detection
of inflorescences in RGB videos. Secondly, our K-shortest
paths (KSP) and deep learning-based inflorescence tracker
is described to track and count the inflorescences in videos.
Thirdly, we describe the imaging and video datasets collected
and labelled for the inflorescence detection and counting
tasks, followed by the discussion on the experimental set-
ups, pre and post-processing of data, hyper-parameters of our
proposed machine learning models, and evaluation protocols.

A. THE INFLORESCENCE DETECTOR
Accurate detection of inflorescences is a critical component
of the vision-based early yield estimation system in viticul-
ture. The task is to detect inflorescences in an outdoor and
contactless scenario where the videos have naturally complex
backgrounds. The detection accuracy is affected by occlu-
sions, complex backgrounds, and multiple targets. As in our
case, there can be many inflorescences present in a single
video frame, any number of which could be occluded by
other inflorescences and leaves. Furthermore, there can be
other rows and trees in the background of inflorescences.
These challenges make the inflorescence detection problem
difficult. Recently, deep learning approaches have been
widely and successfully used for various object detection
tasks [21], [22]. A similar methodology can be adapted for
the inflorescence detection task.

Some of the widely used CNN architectures include VGG
[23], GoogLeNet [24], ResNeXt [25], HRNet [26], and Swin-
Transformer [27]. There have been many object detectors
designed by building upon the above architectures. Such
object detectors can be divided into three categories: one-
stage, two-stage, and multi-stage detectors. One-stage detec-
tors including OverFeat [28], you-only-look-once (YOLO)
[29], and RetinaNet [20], are fast for near real-time detec-
tion but they compromise on localization ability. Whereas
two-stage detectors including Faster-RCNN [30], feature
pyramid networks (FPN) [31], and EfficientNet [32], and
multi-stage detectors including Cascade-RCNN [33] and
hybrid-task cascade (HTC) [34], have strong localization
ability but with added complexity. In this work, a deep
learning-based object detection framework was developed
based on a combination of ResNeXt, FPN, and RetinaNet to
localize and detect inflorescences in videos.

The architecture of the inflorescence detector is shown in
Fig. 2. The deep features are extracted using ResNeXt acting
as a backbone network that uses group convolutions to reduce
the number of parameters and increase accuracy. A ResNeXt
architecture with 101 layers is used with 64 group convolu-
tions. The extracted features at different layers can be used
to build a pyramid structure to extract multi-scale features.
For this purpose, a feature pyramid network is used to exploit
the natural pyramid structure of the backbone network. The
multi-scale features from the FPN network are then used
by RetinaNet to produce the bounding-box detections and
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FIGURE 1. Block diagram of the proposed early yield estimation framework based on inflorescence detection, tracking, and counting in videos.

classes associated with those detections. RetinaNet makes
use of anchor boxes and focal loss to produce the detections
and optimise the network weights, respectively. There are
two subnets: Class Subnet and Box Subnet. A Class Sub-
net is a fully-connected network to predict the probability
of an object present at a spatial location; whereas a Box
Subnet is a fully-connected network to output locations of a
bounding-box around a classified object.

B. TRACKING BASED INFLORESCENCE COUNTING
The inflorescence detector is run on videos captured on-the-
go using cameras mounted on a Kubota vehicle. To count
the inflorescences in the videos, individual inflorescences
need to be tracked in subsequent frames. During tracking,
there are different problems that can arise. For example,
occlusions by vines, leaves, and other inflorescences. Due to
the occlusions, an inflorescencemay disappear at a location in
a video frame and re-appear at another location of a different
frame after some time. Appearance-based strategies to match

the bounding-boxes for an object in different frames may not
work in this case, as all the target objects (inflorescences)
have similar shapes and appearances. In addition, the depth
of field varies for the inflorescences in the middle of the
video frame than the ones on either side. This causes irregular
motion patterns, and the camera motion estimation becomes
difficult to predict. Furthermore, there can be missing detec-
tions in the video frames along with false positives which
makes the tracking problem more complex.

To build the inflorescence detector based on tracking,
KSP [35] is used to track the inflorescences as a series
of disconnected trajectories, called tracklets. A finite state
machine (FSM) is then designed to connect the tracklets into
continuous trajectories which result in inflorescence counts,
as described in Section II-B2.

1) GRAPH CONSTRUCTION USING K-SHORTEST PATHS
Given the i-th detection in the j-th frame as node N i

j ,

which has five parameters: Pji = (x1, x2, y1, y2, c). Here,
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FIGURE 2. The inflorescence detector based on ResNeXt, FPN, and RetinaNet adapted from [20].

(x1, y1) and (x2, y2) represent the top-left and bottom-right
corners of a detected bounding-box, whereas c is the confi-
dence of the detection. Besides the nodes of the detections,
following [35], a weighted graphG is constructed. Firstly, the
source node Nsource is linked to every detection node in every
frame. The source edge cost Csource is defined as Csource =

−log c
1−c , where c is the confidence score of the detection.

Then all the detection nodes are linked in every frame to
the sinking node Nsink without setting any punishment in the
sinking edges (Csink = 0).

Each detection node is linked in frame j to every detection
node in frame j+ 1. The edge cost of the n-th detection node
in the j-th frame to the m-th detection node in the (j + 1)-th
frame Cm,j+1

n,j is defined as:

Cm,j+1
n,j = −log

cm,j+1

1 − cm,j+1
+ µ × min(1x1, 1x2, 1y1, 1y2),

(1)

where cm,j+1 is the confidence score of the m-th detection
in the (j+ 1)-th frame. (1x1, 1x2, 1y1, 1y2) is the location
change of the two detections between two frames, and µ is a
combination factor. The weighted graph is solved by adapting
the approach in [35].

2) SiameseNet BASED INFLORESCENCE TRACKING
Missing detections in some video frames due to occlusions
can cause multiple trajectories for inflorescences resulting
in duplicate counting. To fix this problem, we adapt Siame-
seNet (SiamFC) [36] to match the detected inflorescences
in surrounding regions and locate them in the subsequent
frames. The inflorescence tracker based on SiamFC is shown
in Fig. 3. Based on [36] and following the idea of tracking
bounding-boxes andmasks in [37] and [38], we use the depth-
wise cross-correlation between the two feature streams and
use the Response of a candidate Window (RoW) to localise
the bounding-boxes with certain confidence scores in the
subsequent frames. A pre-trainedmodel of [37] on ImageNet-
VID [39] is used and validated on our video data.

The proposed FSM to predict the state of each trajectory
is demonstrated in Fig. 4. There are four possible states

for a trajectory: DETECTED, TRACKED, BLOCKED, and
END. DETECTED is the initial state when a new trajectory
is created. TRACKED denotes that the trajectory can be
associated with detection or tracked by SiamFC in the new
frame. BLOCKED denotes that the trajectory cannot find
an association and cannot be tracked by SiamFC in the new
frame. END means the trajectory is blocked for too long or
moves out of view. We solve the FSM using the Hungarian
algorithm [40] and SiamFC. The detailed state transferring
conditions and parameters are described in Section IV-B.

III. GRAPEVINE INFLORESCENCE DATASET
A new video dataset was collected at the inflorescence stage
and curated for the inflorescence detection and counting
tasks. As there is no public dataset available for these tasks,
a part of the dataset has been made publicly available to
enable other researchers to reuse and analyze the data. A set
of annotated RGB images for the inflorescence detection task
is available at https://doi.org/10.25919/5de4546aeacce.

A. VIDEO DATA ACQUISITION
The RGB videos were captured at the inflorescence stage
at two vineyards, one at Woodside and another at McLaren
Vale, both in South Australia. The grape varieties include
Tannat and Shiraz, with vertical shoot position (VSP) and
‘sprawl’ canopy management, at Woodside and McLaren
Vale, respectively. To capture the videos, GoPro Hero 5 and
7 cameras were used. The cameras weremounted on aKubota
ground vehicle driving at speeds of 3 to 4 km/h, at a distance
of nearly one metre away from the canopy, as shown in
Fig. 5(a). The videos were captured from three different cam-
era views of the canopy: top, middle, and bottom, as shown in
Fig. 5(b). The distance between the cameras was 30cm. The
cameras were set to 30◦, 45◦, 60◦ angles for the top, middle,
and bottom views, respectively. The video capturing was per-
formed in an ‘‘on-the-go’’ manner without customization or
interactionwith vines. This was to approximate an acquisition
method that would be easily amenable to commercial use.
There was no customization performed on the vines and the
data collection was carried out in a contact-less manner.
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FIGURE 3. Block diagram of the inflorescence tracker based on SiameseNet [36].

FIGURE 4. The FSM with different states and conditions of the transitions.

The videos were captured at resolutions 4,000 × 3,000 and
3,840 × 2,160 with a frame-rate of 30 frames per second
using auto exposure. The videos were captured in conditions
with all variations likely to be encountered in a commercial
setting, as shown in Fig. 6. The variations in the background
include the sun, clouds, trees, and other rows, whereas the
variations in illumination include low and bright light during
the cloudy and sunny weather, respectively. These varia-
tions make the detection problem challenging. Furthermore,
inflorescences become partially visible due to occlusions by
leaves, stems, or other inflorescences. This makes the prob-
lem more complex.

B. PREPARING THE GROUND-TRUTH
To obtain the digital ground-truth, inflorescences were
labelled manually using bounding-boxes in the extracted
video frames. The images were labelled by experts in the
field of viticulture. An open-source software called QuPath
[41] was used to annotate videos by drawing bounding boxes
around inflorescences. The bounding-box corners as (x, y)
coordinates were extracted for the labelled video frames.
A total of 800 frames were labelled which include varia-
tions in background and illuminations, as shown in Fig. 6.

FIGURE 5. (a) Kubota vehicle used for video data collection. (b) Three
different cameras are mounted on the vehicle.

A sample video frame with its close-up image, labelled
using QuPath, is shown in Fig. 7. The ground-truth inflo-
rescences are shown in black coloured bounding-boxes. The
bounding-boxes enclose the inflorescences from the bottom
(attachment point) to top, also a multi-branch inflorescence
was considered as one.

For the counting task, five rows of inflorescences were
selected for testing our inflorescence detector, which were
not used for training the detector. The videos for the five test
rows exhibit the variations discussed previously. To provide
the ground-truth for the counting task, the inflorescences
were counted manually in the field at the time of data col-
lection. For these videos, panel-wise counts were produced
as manual ground-truth for counting. Four of the rows were
counted from both sides to counter any missing counts. The
details of the videos for the five test rows are given in
Table 2.
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FIGURE 6. Sample video frames from the collected dataset. The black bounding-boxes represent the ground-truth inflorescences. The videos contain
backgrounds with (a) sun, (b) other rows, (c) clouds, and (d) trees, and different lighting conditions (a, c) bad lighting (b, d), good lighting.

The viticultural practice at theWoodside vineyard includes
significant bunch thinning, potentially reducing the link
between inflorescence number and bunch number at harvest.
Further, per panel harvest data were not able to be collected
from the McLaren Vale rows. To support the counting data
collected in conjunction with the video data acquisition,
hand counting of inflorescences, and bunches at harvest and
measurement of harvest weight were conducted over three
growing seasons on each panel for five additional rows of
vines at McLaren Vale.

IV. EXPERIMENTAL SETUP
The experiments were conducted using a Tesla P100-SXM2
GPU with 16 GB of memory. The implementation of the
inflorescence detector was adapted from the MMDetection
toolbox from the OpenMMLab [42]. This toolbox makes use
of libraries including Python, PyTorch, and OpenCV. For the
quantitative evaluation, a five-fold cross-validation approach
was adopted. That is for each fold, the labelled video frames
(as described in Section III-B) were split into 80% for training
and 20% for testing of the inflorescence detector. Horizontal
flipping of the training images was performed as data aug-
mentation to increase the training data. For training, transfer
learning was performed. That is, the deep learning network
was initialized using a pre-trained network (trained on a

public object detection dataset), and then fine-tuned on our
inflorescence detection dataset.

The inflorescence detection results were obtained for the
five test videos (as described in Section III-B). The inflo-
rescence detector was run at every frame of the test videos
and the spatial locations of the detected bounding-boxes with
their confidence scores were stored in JSON files. The detec-
tion results were then used by the inflorescence tracker to
produce panel-wise counts for the test videos. To compare
the panel-wise counting of the tracker with the ground-truth,
a key framewas selectedmanually for the first panel when the
post (a wooden pole separating two panels) is at the centre of
the view. Then the key frames of the upcoming panels were
estimated based on the vehicle speed.

A. DATA PRE/POST-PROCESSING
The video frames are of high resolution. To fit the video
frames of 4,000× 3,000 and 3,840× 2,160 into the GPU,
the frames were split into several smaller images of
1,024× 1,024 pixels with some overlap. The amount of
overlap was calculated based on the size of the largest
ground-truth bounding-box present in the corresponding
frame. The bounding-box locations were then re-calculated
for the smaller images which were then used for training
and testing of the inflorescence detector. During testing, the
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FIGURE 7. A sample video frame labelled using QuPath [41]. The ground-truth bounding-boxes for the inflorescences are shown in black colour.

TABLE 2. Test videos/rows of inflorescences for the counting task.

bounding-box locations of the detected inflorescences on the
smaller images were projected back to the original resolution
for the test frame. There may be duplicated detections due to
the overlap which were removed during the back-projection
of the detected bounding-boxes.

B. PARAMETER SETTINGS
For each fold of the five-fold cross-validation, the batch size
was set to 1 and the learning rate was set to 0.001 during the
training. After pre-processing, 640 frames for training were
split into 12,680 smaller images. The inflorescence detector
network was fine-tuned on these images for 15 epochs after
which there was no significant reduction in training loss.
The trained network with the best results was selected as the
final detection model. During the testing of the inflorescence
detector, intersection-over-union (IOU) was calculated for
the predicted bounding-boxes. For a predicted bounding-box
with area A and the corresponding ground-truth with area B,
the IOU is defined as (A ∩ B)/(A ∪ B). The IOU threshold
was set to 0.5 which is standard across different object detec-
tion platforms. This means if a detected bounding-box had
a 50% overlap with the corresponding ground-truth, it was
considered a true-positive (TP), otherwise, it was considered
a false-positive (FP). If there were multiple detections on
the same ground-truth, then one of them was considered
as a TP and the others as FPs. The minimum confidence
value for a bounding-box detection was set to 0.3 for accept-
ing it as a valid detection. This means that the predicted

bounding-boxes with at-least 30% confidence were selected,
and the rest were discarded. This threshold was tuned through
a grid search during the experiments.

During inflorescence tracking, the following set of rules
and parameters are used by the FSM in Fig. 4:
i. A new trajectory is created and enters the state of

DETECTED when a potential inflorescence is detected
and not associated with any previous trajectories. The
confidence score threshold is set to 0.995. We define
the distance of a detection to a trajectory as the distance
between the detection and the predicted location of the
trajectory.

ii. When a new detection can be associated with a previous
trajectory, the location is updated and the new location
is estimated in the next frame. The average speed of the
previous five frames is used to predict the location in the
next frame. If there no detection can be associated with
the trajectory in the new frame, we crop the predicted
region and use a pre-trained SiamFC to localize the tra-
jectory in the new frame, as described in Section II-B2.

iii. When a trajectory cannot find any detection in the cur-
rent frame and the confidence score is lower than a
threshold, which is set to 0.5 based on experiments, the
trajectory is assumed to be occluded and the previously
saved information is used to estimate the motion pattern.
In the meantime, the location prediction keeps updating
for new frames.

iv. If a trajectory is BLOCKED for more than five frames
or the estimated location is out of view, we pop the
trajectory out of the tracking list.

C. EVALUATION METRICS
To quantitatively evaluate the detection results, precision,
recall, and F1-score are calculated as p = TP/(TP + FP),
r = TP/(TP+FN), and F1-score = 2×

(
p × r
p + r

)
, respectively,

FN refers to false-negative. Precision gives a percentage that
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shows how accurately a model predicts and recall gives a
percentage that shows how many actual targets are detected
out of the total targets. At each detection, a pair of preci-
sion and recall values is obtained to draw a curve called
the recall-precision curve (RPC). From this curve, average
precision (AP) is calculated which provides a quantitative
score that shows how good the detection model is. The AP is
calculated by finding the area under the RPC by interpolating
over all levels of recall as:

AP =

∑
(rn+1 − rn)pinterp(rn+1), (2)

pinterp(rn+1) = max
r̃≥rn+1

p(̃r), (3)

where n = 0 to all, rn represents the nth recall value,
pinterp(rn+1) represents the interpolated precision at recall
level rn+1.
To quantitatively evaluate the inflorescence counting

results, mean absolute error (MAE), root mean square error
(RMSE), and the coefficient of determination R2 are used.
MAE and RMSE are given as:

MAE =
1
N

N∑
i=1

|yi − ŷi|, (4)

RMSE =

√√√√ 1
N

N∑
i=1

(yi − ŷi)2, (5)

where yi represents the ground-truth value and ŷi represents
the predicted value.N represents the total number of samples.
R2 represents the proportion of the variation in the dependent
variable that is predictable from the independent variable, and
it can be calculated as:

R2 = 1 −

∑
i(yi − ŷi)2∑
i(yi − y)2

, (6)

where i ranges from 1 to the total number of y and ŷ pairs, y
represents the mean of ground-truth values yi.

V. RESULTS AND DISCUSSION
In this section, the inflorescence detector’s training process
followed by some visual and quantitative results is discussed.
The tracking and counting results for the test dataset are also
analysed. The overall and panel-wise inflorescence counts are
presented and discussed. Based on the automatic counting
results for the test videos, an estimate of the yield is pro-
vided and compared with the actual yield after harvest. The
evaluation metrics described in Section IV-C are calculated
to support the above-mentioned analysis.

A. INFLORESCENCE DETECTION RESULTS
1) TRAINING THE DETECTOR
There were four different deep learning based detectors
including OverFeat, YOLOv5, Cascaded-RCNN, and Reti-
naNet, explored to develop our inflorescence detector. The
inflorescences can be very small and hard to detect in the
video frames, the best detection results were obtained using

RetinaNet, chosen for our final model development of the
inflorescence detector.

The inflorescence detector was trained on the training
dataset with the hyper-parameters described in Section IV-B.
An epoch means going through the whole training data once.
For batch size 1, an iteration represents processing one image
at a time. This means each epoch contains 12,680 images
represented by 12,680 iterations (Fig. 8). To complete the
training process, the total computational time taken by a
single GPU of 16 GB memory was around 68 hours.

The behaviours of different losses during the training pro-
cess are discussed. The graphs for class loss, bounding-box
loss, and overall training loss are shown in Fig. 8. The class
loss starts decreasing from 1.08 and quickly reaches 0.27 just
after 5,100 iterations. The training was stopped and resumed
at 101,440 (8 epochs) iterations which causes a quick drop
in the loss to 0.034. This is because the training parameters
were reset. The minimum loss obtained is 0.004. Similarly,
the bounding-box loss has a starting point of 0.45 which
reaches swiftly 0.186 after 5,900 iterations. After 101,440
iterations, a further decline is observed that is 0.043 and a
minimum loss of 0.014 is achieved. For the overall training
loss, a significant reduction in loss is seen from 1.53 to
0.45 in the first 5,100 iterations. A minimum overall training
loss of 0.018 is achieved. Multiple models were obtained
after training for different numbers of epochs and the above
graphs helped in selecting the appropriate model which could
provide the optimal results.

2) VISUAL RESULTS AND ANALYSIS
In this section, some visual results are presented and dis-
cussed. The experiment settings described in Section IV
were used during the training. The detected inflorescences
are shown in Fig. 9 and Fig. 10 for some of the test
video frames in different lighting and background conditions,
respectively. The ground-truth inflorescences are represented
by the bounding-boxes in blue colour, whereas the detected
inflorescences are represented by red coloured bounding-
boxes. The percentages above the bounding-boxes represent
the confidence scores of the predictions.

The detector can efficiently detect the inflorescenceswhich
are either completely visible with clear texture as shown in
Fig. 9(b) or partially occluded by leaves, stems, or other
inflorescences as illustrated in Fig. 9(a). Most of the detected
inflorescences have confidence scores of more than 90%
which is promising. The results show that the detector can
work well in different lighting conditions, e.g., sunny and
cloudy weather (Fig. 9). In addition, the inflorescence detec-
tor is robust for different backgrounds with other rows
(Fig. 10(a)) and trees (Fig. 10(b)). Although some of the
inflorescences were not labelled as ground-truth due to heavy
occlusions, the detector can still detect those inflorescences.
This demonstrates that the detector can easily detect the
texture presented in the inflorescences with heavy occlusions
that human expert annotators cannot always easily identify.
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FIGURE 8. Graphs of different losses during training. The losses include
class loss, bounding-box loss, and overall training loss.

3) QUANTITATIVE RESULTS AND ANALYSIS
The performance of the inflorescence detector is evaluated
quantitatively using the metrics including average precision,
recall, and F1-score. The experiment set-up is described
in Section IV and the hyper-parameters for the inflores-
cence detector are detailed in Section IV-B. During infer-
ence, 160 test video frames were split into smaller images
of size 1,024× 1,024, resulting in 3,120 images for testing.
The performance of the inflorescence detector trained for
different numbers of epochs is analysed here. During the five-
fold cross-validation, the inflorescence detector was trained
for 15 epochs for each fold. The intermediate models for
different numbers of epochs were obtained and tested on the
test dataset.

For one of the five-folds, the quantitative results as the
number of TPs and FPs, recall, and AP, are shown in Table 3.
The corresponding RPCs of the intermediate models obtained
on the test subset are shown in Fig. 11. From the RPCs,
we can see that the curves for the first few epochs go
downhill very quickly. For epochs 9 to 15, the RPCs look
quite stable and similar, and this is where the training has
converged. To further analyse the performance of the inter-
mediate models, we can refer to Table 3. For epochs 9 to
15, the average precision and F1-score do not change much
and remain within ranges of 80.1% to 81.1% and 82.5% to
83.2%, respectively. Similarly, the recall varies only a little
from 84.9% to 85.3%. This can further be analysed by looking
at the number of TPs and FPs. We need to minimise the
number of FPs and maximise the number of TPs. Only the
model trained for 11 epochs provides these numbers, i.e., FPs:
556 and TPs: 2,343, resulting in an AP of 81.1%, a recall of
85.3%, and an F1-score of 83.2%. This model was finalised
for the current fold of the five folds. For the five-fold cross-
validation, mean±standard error of the mean is given as,
average precision: 80.00%±2.04%, recall: 83.92%±1.86%,
and F1-score: 80.48%±1.48%, achieved by the inflorescence
detector on the annotated dataset. The above number of FPs

TABLE 3. Different evaluation metrics obtained on the test dataset by the
intermediate models trained for different numbers of epochs.

is affordable because for the next step in the overall pipeline
(i.e., inflorescence counting) the inflorescence detection is
performed at every frame in a test video and FP detections
may not appear consistently in the subsequent frames. Such
FP detections can be removed through the tracking process
later during the counting of inflorescences.

B. INFLORESCENCE TRACKING AND COUNTING RESULTS
In this section, the performance of the developed inflores-
cence tracker and counter is evaluated on the test videos.
Firstly, the process of tracking and counting inflorescences is
analysed visually. Secondly, the average panel-wise and total
row-wise, ground-truth and predicted counting results are
presented for the test videos. Thirdly, the counting results are
quantitatively evaluated by comparing them with the ground-
truth. Lastly, the performance of the counter is analysed for
different panel densities and lighting/background variations.

1) VISUAL RESULTS
The inflorescence detection results from the inflorescence
detector were fed to the tracker for the five test videos/rows,
as described in Section III-B. The experiment set-up
and parameters for the tracking and counting models are
described in Sections IV and IV-B, respectively. Some visual
results for the tracking and counting of inflorescences are
presented in Fig. 12 for different lighting conditions and
backgrounds. The red bounding-boxes represent the tracked
inflorescences and the numbers above the bounding-boxes
represent the counts. The overall counts to a particular frame
are given at the top left corner of the frame. We can see that
the inflorescence counter performs quite well for all types of
variations mentioned above.

2) QUANTITATIVE RESULTS
The ground-truth and predicted inflorescence counting
results for the five test videos/rows: R83-east, R85-east,
R86-west, R87-west, and R97-north, are presented here.
Only videos with bottom camera views were used which
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FIGURE 9. Inflorescence detection results on test video frames of different lighting variations. The ground-truth and detected
bounding-boxes are represented in blue and red colours, respectively. The percentages above the bounding-boxes are the
confidence scores. (a) A video frame with the sun in the background and high exposure. (b) A video frame in bad light with other
rows in the background.

TABLE 4. Average panel-wise inflorescence counting results for the five
test videos along with NMAE errors.

showed less occlusions and complexity in backgrounds. The
inflorescence counter produced counts for each panel in
the videos. In the first experiment, the average panel-wise
counts and the total row-wise counts are given in Tables 4
and 5, respectively. A comparison of the ground-truth counts
and the predicted counts is presented. To compare the
counts, the normalised MAE (NMAE) error is calculated
with NMAE = MAE/mean(yi). For the average panel-wise

TABLE 5. Total row-wise inflorescence counting results for the five test
videos along with NMAE errors.

counts, the minimum and maximum errors obtained are
3.46% and 5.88%, respectively. For the total row-wise counts,
the minimum and maximum errors obtained are 2.10% and
5.89%, respectively. This shows an impressive counting
performance with absolute errors less than 5.00% mostly.
An estimate of the panel-wise counts within 5.00% error
for different weather and background conditions shows the
great potential of computer vision and deep learning-based
approaches for yield estimation in viticulture.
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FIGURE 10. Inflorescence detection results on test video frames with different backgrounds. The ground-truth and detected
bounding-boxes are represented in blue and red colours, respectively. The percentages above the bounding-boxes are the
confidence scores. (a) A video frame with other rows in the background in good light. (b) A video frame with trees in the
background in good light.

FIGURE 11. Recall-precision curves of the models trained up to
15 epochs.

In the second experiment, the panel-wise counts for the
five test videos are analysed through scatter plots. For each

test row/video, the inflorescence counter produced inflores-
cence counts for individual panels. The ground-truth and the
predicted counts for each row using the panel-wise counts
are shown in Fig. 13. The videos include different back-
ground variations, e.g., R83-east: the sun and blue-sky, R85-
east: the sun and other rows, R86-west: trees, R87-west:
trees and blue-sky, and R97-north: cloudy. The scatter plots
show that for the test videos with different background vari-
ations, the predicted counts are quite close to the trend lines.
In some cases, e.g., for sunny backgrounds (i.e., R83-east
and R85-east), the trajectories tend to break and result in
duplicate counting which then leads to over-estimating the
counts. Moreover, for row R97-north, sometimes the counter
has over-estimated the counts, and this is because Shiraz
variety has a lot of inflorescences per panel and there are
duplicate counts due to occlusions.

In the third experiment, the performance of the devel-
oped inflorescence tracker and counter has been analysed
quantitatively through evaluation metrics, as described in
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FIGURE 12. Inflorescence tracking and counting results in test videos, produced by our inflorescence tracker and counter for different variations in
lighting and backgrounds. (a) the sun/exposure, (b) trees/blue-sky, (c) cloudy, and (d) the sun/other rows. The total counts produced up to a
particular video frame are displayed in the top left corner of the frame.

Section IV-C. Different metrics including MAE, NMAE,
RMSE, normalised RMSE (NRMSE) with NRMSE =

RMSE/mean(yi), and R2, were calculated using the
panel-wise counts for the five test rows/videos. The metrics
are shown in Table 6. For the row R83-east, MAE and RMSE
of 8.44 and 10.08 inflorescences per panel were obtained,
respectively. When these errors were normalised, NMAE
and NRMSE of 9.32% and 11.13% per panel were obtained,
respectively. The R2 of 0.72 was obtained when comparing
the ground-truth and predicted counts per panel. Similarly,
these metrics were calculated for the other four rows. From
these results, MAE ranges from 8.44 to 16.53 inflorescences
per panel with percentage error ranging from 9.32% to
12.37%. Most of the time, we get R2 more than 0.70. For
all the panels combined in the five rows (Fig. 14), we achieve
MAE and RMSE of 11.03 and 14.82 inflorescences per panel,
respectively, NMAE and NRMSE of 10.80% and 14.50%,
respectively, and R2 of 0.86. Although these results show
great potential, the viticulture industry is more interested in
the average panel-wise counts and total row-wise counts,
given in Tables 4 and 5, respectively, which give us a
high-level and clear picture of the counting results rather than
individual panel results.

In the fourth experiment, we discuss the panel densities
and their relationship with the counting error. Panel density
is a susceptible factor for tracking multiple inflorescences,

TABLE 6. Evaluation metrics calculated for each test row using the
panel-wise ground-truth and predicted inflorescence counts.

as a dense panel would cause more occlusions and confusion
in the association of inflorescences detected in consecutive
video frames for tracking and counting. To observe the poten-
tial relationship of counting error with panel density, ground-
truth versus predicted inflorescence counts per panel are
analysed, as shown in Fig. 14. Here the auto counter refers
to our developed inflorescence counter. The predicted counts
by the auto counter are compared to the manual ground-truth,
whereas themanual counter refers to manual counts produced
by humans from one side of the row (predicted) and then com-
pared with the other side of the row (ground-truth). The trend
lines of the auto and manual counters almost coincide, which
means that the auto counter can effectively approximate the
manual counter in general. However, specifically, when the
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FIGURE 13. Ground-truth vs. predicted counts for the test rows/videos
with different background variations.

panel density is low (less than 100 inflorescences per panel),
the auto counter tends to under-estimate the counts. When
the panel density is higher than 200 inflorescences per panel,
the auto counter is more likely to over-estimate the inflores-
cence number. We have noticed that even manual counters
cannot be perfect when counting inflorescences from two
sides of the rows. Error distribution of the manual and auto
counters are illustrated in Fig. 15 showing negative error for
under-estimating and positive error for over-estimating the
counts. Although the average error of the manual counter is
lower than the auto counter (as expected), there is a certain
percentage of error introduced during manual counting.

C. EARLY YIELD PREDICTION
Grapevine yield can be factored out into three components:
the number of bunches (per vine, row or vineyard block), the
number of berries per bunch, and the average berry weight.
Berry weight is only able to be accurately assessed at harvest,
as it can change throughout the maturation period, but is
generally thought to have the lowest contribution to inter-
seasonal variation. The berry number per bunch is determined
by the number of individual flowers that set fruit. This occurs
several weeks after bud-burst (October to November in the
Southern hemisphere). The number of bunches is limited
to the number of inflorescences that a vine produces and
is typically considered to account for the largest proportion

FIGURE 14. The relationships between counting error and panel density.

FIGURE 15. Error distribution of manual and automatic inflorescence
counting.

of inter-seasonal variation, around 60% [1]. Although some
inflorescences can be produced on lateral cane growth during
the growing season, these account for a very small proportion
of harvested yield and are undesirable, and vineyard man-
agement generally attempts to prevent or remove these. The
inflorescences on the main canes, those that grow at bud-
burst, are present in the unopened buds as primordia and can
be counted using dissection and a microscope. These buds
are generated by the vine around anthesis (opening of the
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flowers) in the preceding season, but most buds are pruned
off the vine in Winter, so can only really be sampled for
bud dissection shortly before the start of the growing season,
following pruning. Not all buds will grow into new shoots
and not all primordia will develop into inflorescences. Fur-
thermore, there is no practical method foreseeable for on-the-
go assessment of inflorescence primordia within unopened
buds. Consequently, the earliest point in time that a yield can
be predicted using data collected at scale is once the new
inflorescences are visible, around growth stage E-L 12.

Neither berry weight nor berry number can be known at
E-L 12 as the berries do not yet exist, thus multiplying the
inflorescence number by the long-term average of bunch
weight (berry number× berry weight) from previous seasons
is the most straightforward method to generate a yield predic-
tion. The potential accuracy of using this method was tested
using data collected over three seasons on three different
vineyard blocks to the ones used for video data acquisition
at the McLaren Vale site. The method relies on a strong rela-
tionship between the inflorescence number at E-L 12 and the
bunch number at harvest. Across the three blocks and seasons,
this was indeed the case, with R2 of this relationship varying
between 0.66 and 0.96, and a mean R2 of 0.79 (Fig. 16). The
data also demonstrates the potential year-to-year variation
in bunch number, with inflorescence and bunch counts in
2021/2022 being almost half those of 2019/2020 for example.
TheFiano (another grapevine variety) inflorescence counts in
2019/2020 were higher than the bunch counts due to bunch
thinning being carried out by the grower, in all other cases
bunch counts were 10% to 15% higher than inflorescence
counts due to bunches on laterals formed later in the season.

Yield predictions were made per panel as:

Ypred = Cinfl × µBWth × µCbun/Cinfl , (7)

where Ypred is the prediction, Cinfl is the inflorescence count,
µBWth is the multi-season mean bunch weight for the block,
and µCbun/Cinfl is the multi-season relationship between the
inflorescence count at E-L 12 and the bunch count at harvest.
The resulting predictions were compared to the harvest yield
on both a panel (Fig. 17) and a whole row (sum of all panels,
Fig. 18) basis. For the nine rows (three blocks × three sea-
sons) this method predicted yield with an R2 of 0.97. For the
panels within a single row and season (n = 39 in each case),
R2 values ranged from 0.07 to 0.83, with the lower values
occurring when there was a little panel-to-panel variation.
This situation did not affect the estimation at scale (row), with
the per panel data that produced the lowestR2 still providing a
per-row prediction within 3% of the actual yield. The mean%
error between the predicted and actual yield across the nine
datasets was 8%, whereas if the yield was predicted using the
three-year average yield for each block, the simplest form of
yield prediction, the mean error was 28%.

Of the five rows/videos used for testing here, four were
from the Woodside vineyard (i.e., rows R83-east, R85-east,
R86-west, and R87-west). At that site, 60% of the inflo-
rescences were removed as part of standard management

practice in that block. Whilst crop thinning in this man-
ner is not unusual, it is not practised over the majority of
Australia’s vineyard area and where it is practised, this extent
of removal is very unusual. However, the result of this was
that an estimate based on inflorescence counts and mean
bunch weight would be 60% higher than the actual yield.
When a yield estimatewas generated from the predicted inflo-
rescence counts produced by the auto counter and the average
bunch weight across the block at harvest if historical data was
not available, but block, rather than per row, bunch weights
could be used to simulate some variation, this was indeed
the case (Fig. 19). However, the row-to-row variation was
maintained, despite crop thinning so a second yield estimate
was generated for these rows by multiplying the predicted
counts by 0.4, simulating the 60% crop thinning applied in
practice. The McLaren Vale result (for the row R97-north)
was generated using the predicted inflorescence count and
a bunch weight estimated from the whole row harvest yield
and a hand count of bunches prior to harvest, potentially less
accurate than an actual harvest count. The average error of the
early yield prediction across the four Woodside rows, using
the adjusted estimate, was 4% below harvest yield and the
error of the McLaren Vale row was 11% below harvest yield.

VI. CONCLUSION
Accurate counting of grapevine inflorescences in the field
provides a mechanism to generate early yield estimations for
the wine industry. In this work, four main contributions were
made. First, a new video dataset was collected and curated
for the inflorescence detection and counting tasks, as there
were no public datasets available for these tasks. The inflo-
rescences were annotated and manual counts were generated
by domain experts to develop and evaluate the inflorescence
detection and counting algorithms. A part of the dataset was
made public for other researchers to work with. Second,
an inflorescence detector was developed based on ResNeXt,
FPN, and RetinaNet deep learning models. The detector
can efficiently detect inflorescences in different lighting
(e.g., bright and dark) and background (e.g., the sun, clouds,
trees, and other rows) conditions. Visual and quantitative
results for the inflorescence detection task are presented. For
a five-fold cross-validation, the detector achieved an average
precision of 80.00%, a recall of 83.92%, and an F1-score of
80.48%. Third, a KSP, FSM, and SiamesNet-based tracking
algorithm was developed to automatically track the detected
inflorescences and produce panel-wise and row-wise inflo-
rescence counts. Five different videos of inflorescences of
the Shiraz and Tannat varieties at two different vineyards
were tested. The panel-wise counting results for all the videos
were evaluated. An absolute error of 11.03 inflorescences per
panel, an NMAE of 10.80%, and an R2 value of 0.86 were
obtained by the automatic inflorescence counter. Fourth, the
counting results were used to generate an early yield estimate.
The estimate was within 4% to 11% error in comparison
with the actual yield after harvest and a broader analysis of
hand counts and yield over multiple vineyards and seasons
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FIGURE 16. Relationship between inflorescence counts and bunch counts
(per panel), for three different grapevine varieties across three
consecutive seasons.

FIGURE 17. Actual yield versus predicted yield (kg per panel), for three
different grapevine varieties across three consecutive seasons.

suggests a potential average accuracy of around 10%, com-
pared with almost 30% when simply using long-term pro-
duction averages. In conclusion, the results demonstrate that
deep learning and computer vision techniques can be used to
develop improved decision-support tools for the viticulture
industry.

FIGURE 18. Actual yield versus predicted yield (kg per row), over three
consecutive seasons.

FIGURE 19. Yield estimates using proposed early yield prediction method.

APPENDIX A MOSAIC IMAGE FROM VIDEOS
In an attempt to count inflorescences in video data, an image
mosaic based approach was also explored during this work.
The idea was that the inflorescences detected within a mosaic
image generated from a test video can represent the total
number of inflorescences present in that video. For this
task, a mosaic image of size 108,068× 1,024 was created
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FIGURE 20. A segment of the mosaic image showing the inflorescence detection results. The ground-truth and the detected inflorescences are
represented in black and red colours, respectively. The percentages above the bounding-boxes are the confidence scores.

from a test video using image stitching on the video frames.
A sample segment of the mosaic image is shown in Fig. 20.
Due to the image stitching, there are some image artefacts in
the mosaic image such as overlapping regions. This becomes
another challenge in detecting inflorescences, but it can
save the effort of tracking the inflorescences to produce the
counts.

The detection results on the mosaic image are demon-
strated in Fig. 20. The ground-truth and the detected
inflorescences are shown using black and red-coloured
bounding-boxes, respectively, along with the confidence
scores obtained for each detection. The inflorescences with
clear backgrounds such as the sky were not affected much
by the artefacts, whereas the inflorescences with complex
backgrounds (leaves and other rows) were affected. In addi-
tion, some inflorescences disappeared in the mosaic image
which were originally present in the video. This was because
of the fixed viewing angle used during the image stitching.
Furthermore, the FPs to TPs ratio was 38% in the mosaic
image with no more options to reduce the FPs as compared
to the detection and tracking approach. The algorithms for
creating mosaic images from the videos can be improved
further if this approach needs to be further explored in
future.
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