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ABSTRACT For many practical industrial objects with time-varying operating points, strong nonlinearity,
and difficulty in obtaining analytical models, the data-driven identification method is usually used to model
such nonlinear systems. However, it is difficult for traditional modeling algorithms to effectively extract the
dynamic characteristics of nonlinear systems from data and obtain accurate mathematical models. In this
paper, we consider using the deep learning network combined with the state-dependent exogenous variable
autoregressive (SD-ARX) model framework to build the nonlinear system model, so as to effectively and
accurately learn the space-time characteristics of the nonlinear system from the sample data. Based on the
idea, the hybridmodels, i.e., the RNN-ARXmodel, CNN-ARXmodel, andRNN-CNN-ARXmodel are built,
which use recurrent neural networks (RNN), convolutional neural networks (CNN) and their combination to
fit the function-type coefficients of SD-ARX model, respectively. SD-ARX model based on deep learning
has the advantages of local linearity and global nonlinearity. Compared with the other two models, the
RNN-CNN-ARX model has a stronger ability to extract the multidimensional spatiotemporal dynamic
characteristics of nonlinear systems, because it combines the advantages of RNN inmining temporal features
and CNN in extracting spatial features. According to the structural characteristics of these models, three
model-based predictive control (MPC) strategies are designed, i.e., RNN-ARX-MPC, CNN-ARX-MPC, and
RNN-CNN-ARX-MPC. The real-time control comparative experiment on an actual multi-water-tank object
shows that the proposed modeling and MPCmethod is feasible and effective for the modeling and predictive
control of the nonlinear system.

INDEX TERMS RNN-ARX model, CNN-ARX model, RNN-CNN-ARX model, model predictive control,
deep learning.

I. INTRODUCTION
Model predictive control (MPC) is an optimal control algo-
rithm developed for industrial process control. Because its
control mechanism has good adaptability to complex indus-
trial processes, it has attracted the extensive attention of
scholars and has achieved a lot of research results [1], [2].
MPC algorithm uses a dynamic model to predict the future
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behavior of the system. Therefore, the key to realizing MPC
is to establish a suitable model to accurately represent the
dynamic characteristics of the system, and the model is easy
to be used to design subsequent predictive controllers. Con-
sidering that the actual object to be controlled is usually a
complex nonlinear system, using physical modelingmethods,
some important parametersmay not be determined or difficult
to obtain, whichwill lead to the failure to establish an accurate
model [3]. Therefore, in this paper, input/output data-driven
technology is used to build the model of a nonlinear system.
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Its remarkable advantage is that it does not need to accurately
understand the complex variable relations in nonlinear sys-
tems in advance.

When the data identification model of the nonlinear sys-
tem is used to design a predictive controller, the traditional
piecewise linearization [4] or local linearization [5] modeling
method is beneficial to the design of the predictive controller.
However, these models have some limitations in describing
the dynamic characteristics of complex nonlinear systems.
In addition, directly using the nonlinear models that can well
describe the nonlinear characteristics of the object, such as
the bilinear model [6], Volterra series model [7], and neural
network model [8], to design MPC needs to solve a high-
order, constrained, non-convex nonlinear optimization prob-
lems online to obtain the control signal. Usually, it requires
a lot of online computation, and sometimes even cannot
obtain a feasible solution. Therefore, this method has strong
limitations for complex industrial objects with high real-time
requirements.

In the past few years, many researches and applications
have tended to adopt compositemodels, such asHammerstein
model [9], Wiener model [10], and SD-ARX model [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21]. The
combined model can solve the aforementioned problems
well, but the Hammerstein model andWiener model can only
describe the static nonlinear characteristics. SD-ARX model
can well describe nonlinear dynamic characteristics because
of its state-dependent function coefficients, and it may be
easily used to design predictive controllers because of its
quasi-linear ARX model structure, so it has broad applica-
tion prospects. For example, the regression tree and random
forest algorithm in machine learning technology were com-
bined with the ARX model for complex system modeling
and MPC design to improve prediction accuracy and control
performance [11], [12]. RBF-ARX model based on radial
basis function (RBF) neural network has been widely used
in nonlinear time series modeling and predictive control [13],
[14], [15], [16], [17], [18], [19]. In addition, wavelet neural
network [20] and deep belief network [21] were also used to
combinewith the ARXmodel for nonlinear systemmodeling.
However, these feedforward neural networks can only trans-
fer data information from the input layer to the output layer,
and there is no information feedback between nodes of each
layer of the neural network, which cannot well extract the
multi-dimensional spatiotemporal dynamic characteristics of
the nonlinear system, so it is difficult to ensure the accuracy
of modeling in some cases.

Recently, deep learning technology has performed well in
various fields [22], [23]. Using a multi-layer network struc-
ture and a series of nonlinear functions, the deep learning
model can effectively extract the dynamic characteristics of
nonlinear systems, and convert complex process data infor-
mation into more abstract mathematical expressions. One
of the promising deep learning networks is RNN, which
has achieved great success in machine translation [24], [25],

sentiment analysis [26], [27], speech recognition [28], [29],
fault diagnosis [30], [31], etc. The biggest characteristic of
RNN is the feedback between neural network nodes at all
levels. The output of the neural network node at one time
can be transmitted to the neural network node again as the
input at the next time, which can maintain the sequence
dependency in the data, and has great advantages in non-
linear system modeling. For instance, Alhajeri et al. [32]
studied an RNN-based output feedbackmodel predictive con-
troller, and the experiment in a continuous stirred tank reactor
proved the effectiveness of this method. Zhang et al. [33]
studied a predictive control scheme based on RNN, which
achieved the formation flight of multiple unmanned quad-
copters and trajectory tracking control through computer sim-
ulation. Wu et al. [34], [35] developed the MPC algorithm
based on the RNN model set to predict the dynamic char-
acteristics of a nonlinear system. These nonlinear system
modeling methods based on RNN can better capture the time
dimension features in the data, but some spatial features may
not be well captured, which has a certain impact on modeling
accuracy. In addition, these methods have only been tested
and validated through digital simulation and have not been
applied to actual systems.

CNN has a strong local spatial feature extraction ability,
which is widely used in image processing [36], [37], [38],
[39]. Therefore, the hybrid neural network composed of RNN
and CNN can make up for the above shortcomings and better
capture the spatiotemporal dynamic characteristics contained
in the nonlinear system data. However, so far, the research
on the hybrid neural network composed of RNN and CNN
mainly focused on image recognition [40], [41], [42], emo-
tion analysis [43], [44], [45], and text recognition [46], [47],
but its research in MPC and nonlinear system modeling has
not been found.

In this paper, the RNN-ARX model, CNN-ARX model,
and RNN-CNN-ARX model are established to express the
dynamic behavior of the nonlinear system by fitting the func-
tion coefficients of SD-ARX model with deep learning RNN
or/and CNN. The SD-ARXmodel based on deep learning has
the characteristics of local linearity and global nonlinearity,
which is more conducive to system modeling and controller
design. In addition, the three model-based predictive con-
trollers, i.e., RNN-ARX-MPC, CNN-ARX-MPC, and RNN-
CNN-ARX-MPC are designed, and real-time control exper-
iments are carried out for the actual multi-tank object. The
results show that the proposed model and model-based con-
trol strategy are feasible, especially RNN-CNN-ARX-MPC
is superior to other control methods, because it combines the
advantages of RNN in mining temporal features and CNN in
extracting spatial features, and can effectively and accurately
learn the temporal and spatial features of nonlinear systems
from a large amount of data.

The main contributions of this paper are as follows: 1)
Three state-dependent ARX models based on deep learn-
ing are proposed to describe the dynamic characteristics of
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FIGURE 1. The schematic diagram for RNN.

a class of nonlinear systems, namely RNN-ARX model,
CNN-ARXmodel, and RNN-CNN-ARXmodel; 2) Based on
the proposed models, the predictive controllers are designed;
3) Using the proposed modeling and control method, the
real-time control experiment is successfully carried out on
a practical nonlinear multi-tank device. As far as we know,
there is no report on the successful application of deep learn-
ing methods in nonlinear system modeling and MPC in prac-
tical nonlinear process control objects. This work shows how
to build deep learning related models for existing nonlinear
systems, design MPC strategies, and present actual control
results, rather than just provide digital simulation results, as is
done in relevant papers.

The structure of the rest of this paper is as follows.
Section II introduces the associated work. The RNN-ARX,
CNN-ARX, and RNN-CNN-ARX models are established in
Section III. The above models-based predictive controllers
are designed in Section IV. Section V shows the real-time
control results on the multi-water tank plant using the pro-
posed method. Section VI concludes this study.

II. ASSOCIATED WORK
An overview of the SD-ARX model, RNN, and CNN will be
provided in this section.

A. SD-ARX MODEL
With regard to the actual industrial process, a class of non-
linear systems can be expressed as the nonlinear ARX model
shown below [18]:

y(z) = λ (δ(z− 1)) + γ (z)

δ(z− 1) = [y(z− 1)T, . . . , y(z− ny)T,

u(z− 1)T, . . . , u(z− nu)T]T (1)

where y(z) denotes the output, u(z) denotes the input, γ (z)
denotes the Gaussian white noise, ny and nu are the orders of
the model. λ (•) can be extended using Taylor polynomials at
a given operating point δ0 as follows

λ (δ(z− 1)) = λ (δ0) + λ
′(δ0)T(δ(z− 1) − δ0)

+
1
2
(δ(z− 1) − δ0)Tλ

′′(δ0)(δ(z− 1) − δ0)

+ . . .+ rn(δ(z− 1)) (2)

where rn(δ(z − 1)) is the remainder after Taylor expansion,
and then the equation (1) can be converted to

y(z) = ψ0 (δ(z− 1))+

ny∑
i=1

ψy,i (δ(z− 1)) y(z− i)

+

nu∑
j=1

ψu,j (δ(z− 1)) u(z− j) + γ (z)

η0 = λ (δ0) − λ
′(δ0)Tδ0 +

1
2
δT0λ

′′(δ0)δ0 + . . .

η1(δ(z− 1)) = rn(δ(z− 1))

�0 = λ
′(δ0)T −

1
2
δT0λ

′′(δ0) −
1
2
δT0λ

′′(δ0)T + . . .

�1(δ(z− 1)) =
1
2
δ(z− 1)Tλ

′′(δ0) + . . .

η0 + η1(δ(z− 1)) = ψ0 (δ(z− 1))
�0 +�1(δ(z− 1))
=
[
ψy,1 (δ(z− 1)) , . . . , ψy,ny (δ(z− 1)) ,

ψu,1 (δ(z− 1)) , . . . , ψu,nu (δ(z− 1))
]

(3)

where
{
ψy,i(δ(z− 1))|i = 1, . . . , ny

}
,
{
ψu,j(δ(z− 1))|

j = 1, . . . , nu} and ψ0(δ(z − 1)) are the state-dependent
function coefficients of each regression variable after Taylor
expansion, which changewith the state working point δ(z−1);
δ(z−1) is the state variable that causes the nonlinear change of
the system. It can be the system output signal, control input
signal, or a combination of these signals. When δ(z − 1) is
fixed, model (3) is simplified to a linear ARX model, which
is a local linearization of the model at a working point of
the system, and when δ(z − 1) follows the system change,
it can naturally switch to the next local linear ARX model.
This feature decomposes the complexity of the model into the
autoregressive parts of their respective variables and is helpful
for the subsequent model-based predictive controller design.
The coefficients ψy,i, ψu,j and ψ0 in (3) can be fitted by
some neural networks, such as BRF neural network [13], [14],
[15], [16], [17], [18], [19] and wavelet neural network [20].
In the next section, we will obtain a class of SD-ARX
models by approximating the coefficients of the model (3)
through deep learning networks, which can better represent
the spatiotemporal dynamic properties of nonlinear systems.

B. RNN
RNN is a neural network with memory, which can maintain
sequence correlation. In addition to the input information
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of the current time step, the input of each neural network
node also includes the memory information generated in the
previous time step. The architecture of RNN is shown in
Fig. 1 [48], it is repeated according to the time series, and the
weight coefficients are shared in each time step, which can
significantly reduce the number of parameters in the model,
thus reducing the complexity of calculation and saving calcu-
lation time. RNN can be expressed as follows{

hz = σ (xzWxh + hz−1Whh + bh)
yz = f (hzWhy + by)

(4)

where xz and yz denotes the input and output, respectively;
σ (•) and f (•) denotes the nonlinear activation functions; hz
represents the hidden layer unit at time z,Whh,Wxh andWhy
represent the weight coefficients, bh and by represents the
offset.

C. CNN
CNN has excellent nonlinear property extraction capabili-
ties and can capture the local spatial characteristics in the
data, and its fundamental composition is seen in Fig. 2.
The connection of neurons between the traditional neural
network layers is completely connected, which inevitably
leads to the rapid increase of the number of parameters to
be identified with the increase of the network layer. CNN
uses a convolution kernel smaller than the input size as a
filter to extract local features in the input and establishes local
connections between neurons, thus reducing the number of
network parameters. In addition, CNN uses weight sharing,
and the convolution kernel can extract the same features at
different input positions, which further reduces the number
of recognition parameters, reduces the risk of over-fitting,
and enhances the generalization ability of the model. The
convolution operation is its core, and its calculation form is
as follows

xl1j1 = σ1

 g1∑
i1=1

xl1−1
i1

⊗ Wl1
i1j1

+ bl1j1

 (5)

where ⊗ denotes convolution operation; xl1j1 is the j1 -th

feature map of the l1 -th convolution layer; Wl1
i1j1

is the

convolution kernel matrix, bl1j1 is the offset, g1 is the amount of
input feature maps; σ1(•) is the nonlinear activation function.

III. THE PROPOSED MODELS
This section introduces the three combined models proposed
in this article, i.e., the RNN-ARX model, CNN-ARX model,
and RNN-CNN-ARX model.

A. RNN-ARX MODEL
RNN uses time series data of nonlinear systems as input,
which can overcome the shortcoming of no feedback between
nodes in traditional forward neural networks (such as RBF
neural network and wavelet neural network). The output of
the RNN node at one time can be used as the input of the next

time to be transmitted to the neural network node again so that
the sequence correlation in the data can be maintained, so as
to better process the time series data of the nonlinear system.
Using RNN to approximate the functional coefficients of the
model (3), the RNN-ARX model can be obtained, which
combines the advantages of RNN in processing sequence
data and the nonlinear description ability of SD-ARX model
to better describe the nonlinear dynamic characteristics of
nonlinear system. Fig. 3 depicts the structure of RNN-ARX
model, and its formula is as follows.

y(z) = ψ0 (δ(z− 1))+

ny∑
i=1

ψy,i (δ(z− 1)) y(z− i)+

nu+nd−1∑
j=nd

ψu,j (δ(z− 1))u(z− j) + γ (z)

W
(
f (hnd (z)Why + by)

)
+ b

= [ψ0(δ(z− 1)) ,ψy,i(δ(z− 1)),
ψu,j(δ(z− 1))]
hrl (z) = σ (hr−1

l (z)Wr
xh + hrl−1(z)W

r
hh + brh),

r = 2, 3,. . . ,n
h1l (z) = σ (δlW1

xh + h1l−1(z)W
1
hh + b1h), l = 1, 2, . . . , d

hm0 (z) = 0,m = 1, 2, . . . , n
δ(z− 1) = [δ1, δ2, . . . , δd ]T

(6)

where y(z) denotes the output; u(z) denotes the input; γ (z)
denotes white noise; nynu, d are the orders of the model,
and nd is the time delay; ψ0(δ(z − 1)), ψy,i(δ(z − 1)) and
ψu,j(δ(z − 1)) are the functional coefficients of the model,
which are determined by the state working point δ(z−1), and
they relate to the system input or/and output; n represents the
number of hidden layers; hrl (z) denotes the state of the r -th
hidden layer of time step l at time z; σ (•) and f (•) are the
activation functions of the hidden and full connection layers,
such as Sigmoid function, Relu function, and Tanh function,
which can enhance the ability of themodel to capture the non-
linearity of the complex system; {Wm

xh,W
m
hh|m = 1, . . . , n}

and {bmh |m = 1, . . . , n} are the weight coefficients and offsets
of the hidden layer, respectively;

{
Why,W

}
and

{
by,b

}
are

theweight coefficients and offsets of the full connection layer,
respectively.

B. CNN-ARX MODEL
TheCNN-ARXmodel can be constructed by using CNN to fit
the functional coefficients of the model (3), which combines
the local feature extraction ability of CNN and the nonlinear
description ability of the SD-ARX model. Fig. 4 depicts the
structure of the CNN-ARXmodel. The convolution layer and
pooling layer of CNN are the basic structures that distinguish
CNN from other traditional neural networks. The convolution
layer can extract the features of the data to be recognized.
Using the pooling layer to remove redundant information
extracted from the convolution layer can reduce the complex-
ity of the network and improve the robustness of the model.
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FIGURE 2. Framework for CNN.

FIGURE 3. Structure of the RNN-ARX model.

The CNN-ARX model is represented as follows

y(z) = ψ0 (δ(z− 1))+

ny∑
i=1

ψy,i (δ(z− 1)) y(z− i)+

nu+nd−1∑
j=nd

ψu,j (δ(z− 1))u(z− j) + γ (z)

W1
(
f1(x̃n1 (z)Wxy + bx)

)
+ b1

= [ψ0 (δ(z− 1)) ,ψy,i (δ(z− 1)) ,
ψu,j (δ(z− 1))]

x̃n1 (z) = σ3

(
x̂n1j1 (z)

)
;x̂n1j1 (z) = σ2

(
xn1j1 (z)

)
xl1j1 (z) = σ1

 g1∑
i1=1

xl1−1
i1

(z) ⊗ Wl1
i1j1

+ bl1j1

 , 1≤ l1 ≤ n1

x0(k) = δ(z− 1) = [δ1, δ2, . . . , δd ]T

(7)

where x0(z) is the input of the CNN at time z; σ1(•) and
f1(•) are the activation functions of the convolutional and
full connection layer, such as the Sigmoid function, Relu
function, and Tanh function; σ2(•) is the pooling function to

perform pooling operation on the input feature map; σ3(•)
indicates the flattening operation x̃n1 (z) represents the one-
dimensional vector obtained by flattening the output feature
maps x̂n1j1 (z) ; xl1j1 (z) represents the j1 -th feature map of
the l1 -th convolution layer at time z; ⊗ indicates the con-
volution operation, and g1 is the number of input feature
maps; {Wl1

i1j1
|l1 = 1, . . . , n1} and {bl1j1 |l1 = 1, . . . , n1} are

the weight coefficients and offsets of the convolution layer,
respectively;

{
Wxy,W1

}
and {bx ,b1} are the weight coeffi-

cients and offsets of the full connection layer, respectively.

C. RNN-CNN-ARX MODEL
Combining RNN and CNN to approximate the SD-ARX
model coefficients, the RNN-CNN-ARXmodel can be estab-
lished, which will have RNN’s ability to mine temporal
features of sequence data, CNN’s ability to extract spa-
tial features and the SD-ARX model’s nonlinear description
ability. It can effectively and accurately learn spatiotem-
poral characteristics from a large number of data to fully
describe the dynamic behavior of nonlinear systems. Fig. 5
depicts the structure of the RNN-CNN-ARX model, and its
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FIGURE 4. Framework of the CNN-ARX model.

FIGURE 5. Framework of the RNN-CNN-ARX model.

mathematical expression is given below

y(z) = ψ0 (δ(z− 1))+

ny∑
i=1

ψy,i (δ(z− 1)) y(z− i)+

nu+nd−1∑
j=nd

ψu,j (δ(z− 1))u(z− j) + γ (z)

W1
(
f1(x̃n1 (z)Wxy + bx)

)
+ b1

= [ψ0 (δ(z− 1)) ,ψy,i (δ(z− 1)) ,
ψu,j (δ(z− 1))]

x̃n1 (z) = σ3(x̂
n1
j1
(k));x̂n1j1 (z) = σ2

(
xn1j1 (z)

)
xl1j1 (z) = σ1

 g1∑
i1=1

xl1−1
i1

(z) ⊗ Wl1
i1j1

+ bl1j1

 , 1 ≤ l1 ≤ n1

x0(z) = hnl (z)
hrl (z) = σ (hr−1

l (z)Wr
xh + hrl−1(z)W

r
hh + brh),

r = 2, 3,. . . ,n
h1l (z) = σ (δlW1

xh + h1l−1(z)W
1
hh + b1h), l = 1, 2, . . . , d

hm0 (z) = 0, m = 1, 2, . . . , n; δ(z− 1) = [δ1, δ2, . . . , δd ]T

(8)

It can be seen from Fig. 5 and formula (8) that
in the RNN-CNN-ARX model, the time characteris-
tics of the input sequence data are first mined by
RNN, and then the spatial characteristics are extracted
by CNN. Finally, the state-dependent coefficients of
the model are calculated through the full connection
layer.

The estimation methods of the above three SD-ARX mod-
els based on the deep learning model are as follows. First,
set the model structure parameters (such as model order, net-
work layers, number of nodes) and super parameters (such as
activation function, parameter optimization algorithm), and
initialize the parameters to be estimated in the model. Then,
calculate the loss function based on the predicted output
sequence of the model, i.e., the mean square error (MSE) of
predicted output and actual output, and update the parameters
of themodel through the back-propagation algorithm until the
loss function is minimized. Finally, change the structure and
super parameters of the model and repeat the above steps, and
select the model with the minimum loss function value as the
final RNN-ARX model, CNN-ARX model, or RNN-CNN-
ARX model.
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IV. MODEL PREDICTIVE CONTROLLER DESIGN
The proposed models-based predictive controllers are
designed in this section. The goal of predictive controller
design is to use the pseudo linear characteristics of local
linearity and global nonlinearity of the model, calculate the
predictive output of the nonlinear system by locally lineariz-
ing the model under the current state of the working point,
and finally solve the quadratic programming problem (QP)
online to obtain the MPC law.

First, in order to facilitate the design of the predictive con-
troller, the model (6) - (8) is transformed into the following
polynomial form



y(z) = ψ0 (z− 1)+

ks∑
p=1

⌢
α p,z−1y(z− p)+

ks∑
p=1

⌢

β p,z−1u(z− p) + γ (z)

ψ0 (z− 1) = ψ0 (δ(z− 1))

ks = max
(
ny, nu + nd − 1

)
⌢
α p,z−1 =


ψy,p (δ(z− 1)) , (p ≤ ny)

0 , (p > ny)

⌢

β p,z−1 =


ψu,p (δ(z− 1)) , (nd ≤ p ≤ nu + nd − 1)

0 , else

(9)

In order to convert the above polynomial model into state
space form, the following state vector is defined



x(z) = [xT1,zx
T
2,z · · · x

T
ks,z]

T ,

xT1,z = y(z),

xp,z =

ks+1−p∑
i=1

⌢
α i+p−1,z−1y(z− i)+

ks+1−p∑
i=1

⌢

β i+p−1,z−1u(z− i),

p = 2, 3, . . . , ks

(10)

Then, model (9) can be transformed into the subsequent state
space model

{
x(z+ 1) = Dzx(z) + Ezu(z) + ψ z +�(z+ 1)
y(z) = Fx(z)

(11)

where

Dz =



⌢
α 1,z I 0 · · · 0
⌢
α 2,z 0 I · · ·

...
...

...
...

. . . 0
⌢
α ks−1,z 0 0 · · · I
⌢
α ks,z 0 0 · · · 0

 ,
Ez = [

⌢

β 1,z
⌢

β 2,z · · ·
⌢

β ks,z]
T,

F = [I 0 · · · 0],
ψ z = [ψ00 · · · 0]T,
�(z+ 1) = [γ (z+ 1)0 · · · 0]T,

(12)

The multi-step forward prediction output of the model (11)
can be computed using equations (11-12). To further develop
the MPC algorithm, the following vectors are defined

X̃(z) = [x̃(z+ 1|z)Tx̃(z+ 2|z)T · · · x̃(z+ Ny|z)T]T

Ỹ(z) = [ỹ(z+ 1|z)Tỹ(z+ 2|z)T · · · ỹ(z+ Ny|z)T]T

Ũ(z) = [u(z)Tu(z+ 1)T · · · u(z+ Nu − 1)T]T

9̃z = [ψT
z ψ

T
z+1 · · ·ψT

z+Ny−1]
T

(13)

where X̃(z) and Ỹ(z) represent the multi-step forward predic-
tion vector of the state and output;

{
x̃(z+ i|z)T|i = 1, . . . ,Ny

}
and

{
ỹ(z+ i|z)T|i = 1, . . . ,Ny

}
are the i -step forward pre-

diction of the state and output based on the models (9) and
(11) at time z, respectively; Ny is the prediction time domain,
Nu(Nu ≤ Ny) is the control time domain, and the control
input after step Nu will not change, i.e., u(z+ i) = u(z+Nu−

1)(i ≥ Nu). Then at time z, the output expression of multi-
step forward predictive control of the nonlinear system is as
follows {

X̃(z) = D̃zX(z) + ẼzŨ(z) + 6̃z9̃z,

Ỹ(z) = F̃X̃(z)
(14)

where (15) and (16), as shown at the bottom of the next page.
Note that D̃z, Ẽz, F̃, and 6̃z are the coefficient matrices, and

the calculation requires the state operation point δ(z+i|z)(i =
1, 2, . . . ,Ny−1). However, in practical application, the infor-
mation of the future state working point of the system is often
unavailable at time z, and the current operating state δ(z) has
to be employed instead of δ(z+ i|z) for calculation. Based on
model (11), a local linearization model can be obtained, and
can be used to design the following MPC algorithm.

According to equations (10) - (16), the model prediction
output can be obtained in the following form

Ỹ(z) = WzŨ(z) + Y0(z)
Wz = F̃Ẽz
Y0(z) = F̃D̃zX(z) + F̃6̃z9̃z

(17)

where Ỹ(z) represents the model prediction output vector,
Ũ(z) represents the model prediction control vector, and Wz
is the coefficient matrix. The desired output sequence Ỹr (z)
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and control increment sequence 1Ũ(z) are defined below

{
1Ũ(z) = [1u(z)T1u(z+ 1)T · · ·1u(z+ Nu − 1)T]T

Ỹr (z) = [yr (z+ 1)Tyr (z+ 2)T · · · yr (z+ Ny)T]T

(18)

where 1u(z) = u(z) − u(z − 1) . The optimization function
of the MPC is designed as follows

minŨ(z)J =

∥∥∥Ỹ(z) − Ỹr (z)
∥∥∥2
Q1

+

∥∥∥Ũ(z)∥∥∥2
S1

+

∥∥∥1Ũ(z)
∥∥∥2
S2

s.t.Ymin ≤ Ỹ(z) ≤ Ymax,Umin ≤ Ũ(z) ≤ Umax,

1Umin ≤ 1Ũ(z) ≤ 1Umax

(19)

D̃z =



0∐
i=0

Dz+i

1∐
i=0

Dz+i

...

Ny−1∐
i=0

Dz+i


,

p∐
i=j

Dz+i =

Dz+pDz+p−1 · · ·Dz+j, j ≤ p

I, j > p

6̃z =



I 0 0 · · · 0
1∐
i=1

Dz+i I 0 · · · 0

2∐
i=1

Dz+i

2∐
i=2

Dz+i I · · · 0

...
...

. . .
. . .

...

Ny−1∐
i=1

Dz+i

Ny−1∐
i=2

Dz+i · · ·

Ny−1∐
i=Ny−1

Dz+i I



(15)

Ẽz =



Ez 0 · · · · · · 0(
1∐
i=1

Dz+i

)
Ez Ez+1 0 · · ·

...

...
...

. . .
. . . 0(Nu−1∐

i=1

Dz+i

)
Ez

(Nu−1∐
i=2

Dz+i

)
Ez+1 · · ·

 Nu−1∐
i=Nu−1

Dz+i

Ez+Nu−2 Ez+Nu−1( Nu∐
i=1

Dz+i

)
Ez

( Nu∐
i=2

Dz+i

)
Ez+1 · · ·

 Nu∐
i=Nu−1

Dz+i

Ez+Nu−2
∑Nu

j=Nu−1

 Nu∐
i=j+1

Dz+i

Ez+j

...
...

...
...

...Ny−1∐
i=1

Dz+i

Ez

Ny−1∐
i=2

Dz+i

Ez+1 · · ·

 Ny−1∐
i=Nu−1

Dz+i

Ez+Nu−2
∑Ny−1

j=Nu−1

Ny−1∐
i=j+1

Dz+i

Ez+j



F̃ =


F 0 · · · 0

0 F · · · 0
...

...
. . .

...

0 0 · · · F

 (16)
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where ∥X∥
2
λ

= XTλX; Q1, S1 and S2 are the weight coeffi-
cient matrices. By substituting Eq. (17) and Eq. (18) into Eq.
(19) and removing the constant terms, the objective function
(19) can be converted to the following QP problem, which
can be easily solved online.

minŨ(z)J̃ =
1
2
Ũ(z)T

[
WT

zQ1Wz + S1 + L−TS2L−1
]
Ũ(z)

+

[
Y0(z)TQ1Wz − Yr (z)TQ1Wz

−U0(z− 1)TL−TS2L−1
]
Ũ(z)

s.t.

[
Wz

−Wz

]
Ũ(z) ≤

[
Ymax − Y0(z)
−Ymin + Y0(z)

]
,

Umin ≤ Ũ(z) ≤ Umax,

U0(z− 1) + L1Umin ≤ Ũ(z) ≤ U0(z− 1) + L1Umax.

(20)

where

Ũ(z) = U0(z− 1) + L1Ũ(z),
U0(z− 1) = [U(z− 1)T U(z− 1)T · · · U(z− 1)T ]T

L =



I 0 0 · · · 0
I I 0 · · · 0

I I I
. . .

...

...
...

. . .
. . . 0

I I I · · · I


(21)

Using QP can solve the convex optimization problem (20)
with constraints online. Additionally, if there is a reasonable
solution to equation (20) in each sampling period, the stability
of the MPC will be guaranteed [15], [17]. If there is no
solution to the QP problem (20) in a certain control cycle,
from a practical perspective, we can use the feasible solution
obtained from the previous cycle to implement control.
In actual control, only the first element in the optimized

optimal control sequence is used for control. The actual
output at the next moment is observed, and the feedback
correction is performed. Then the online rolling optimization
is carried out again to effectively avoid environmental inter-
ference and the incompatibility between the model and the
nonlinear system
According to the above predictive controller design pro-

cess, the SD-ARX model based on deep learning has a spe-
cific structure that is easy to be locally linearized, so it is very
convenient to develop a predictive control algorithm. This
is different from the MPC based on the general nonlinear
neural network model, which needs to calculate the higher-
order derivative of the model online to generate the quadratic
approximate local linearization model.

V. REAL-TIME CONTROL EXPERIMENTS
This section takes the water tank plant (WTP) commonly
used in the process control equipment as the experimental
object, uses the data-driven modeling method to build the

object model, designs the predictive control algorithm, and
carries out real-time control experiments on the WTP.

A. WATER TANK PLANT
The WTP is a two-input and two-output experimental equip-
ment with strong coupling and nonlinearity, as shown in
Fig. 6. Water from water storage tank 3 enters water tank
1 and 2 through the pump. The input flow of water tank 1 and
2 is controlled by adjusting the opening of electric valves EV1
and EV2, the output flow is controlled by proportional valves
V1 and V2, and the liquid level height is measured by static
pressure sensors LV1 and LV2, respectively. The modeling
and real-time control experiments are carried out on theWTP,
and its deep learning-based SD-ARX model is designed as
follows.

Y(z) =

ny∑
i=1

Ai,z−1Y(z− i)

+

nu+nd−1∑
j=nd

Bj,z−1U(z− j) + ψ0,z−1 + 0(z)

Ai,z−1 =

[
α11i,z−1α

12
i,z−1

a21i,z−1α
22
i,z−1

]
,Bj,z−1

=

[
β11j,z−1β

12
j,z−1

β21j,z−1β
22
j,z−1

]
,ψ0,z−1 =

[
ψ1
0,z−1

ψ2
0,z−1

]
(22)

where Y(z) = [y1(z), y2(z)]T are the fluid levels of tank 1 and
2; U(z) = [u1(z), u2(z)]T are the electric valve openings (0%
∼ 100%); {Ai,z−1|i = 1, . . . , ny}, ψ0,z−1, and {Bj,z−1|j =

nd , . . . , nu+nd −1} are the state-dependent functional coef-
ficients, which are from models (6)-(8). In this experiment,
we set δ(z−1) = [Y(z−1)T, . . . ,Y(z−d)T]T, which indicates
the state of the operating point, because the change of the
liquid level is the main factor that causes the nonlinear change
of the characteristics of the WTP.

B. MODEL ESTIMATION
In order to obtain the identification data including all dynamic
modes of the object to estimate an accurate model, we first
use the PID controllers to control the water levels of the water
tanks, so that the input and output signals of the system can
change within the full operating range as much as possible,
and obtain the input and output data suitable for system
identification. The system sampling period is 2 seconds, and
the observation data are depicted in Fig. 7.
The sample data are divided into a training set and a

test set. The first 3500 data of the sample data are used
to estimate the model, and the last 1000 data are used to
verify the modeling results. For the deep learning based SD-
ARX model (22), we use the adaptive momentum (Adam)
stochastic optimization algorithm to optimize the parameters
of the model. It can dynamically change the learning rate of
each parameter by calculating the moment estimation of the
gradient to obtain a better modeling effect, and it has higher
computational efficiency than other stochastic optimization
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FIGURE 6. Water tank system.

FIGURE 7. Identification data for WTP.

algorithms. The activation function of the full connection
layer of the model is the Tanh function, which makes the
model have faster convergence speed. For RNN in the model,
the hidden layer activation function of RNN is the Sigmoid
function to avoid divergence of the parameter training pro-
cess. For CNN in the model, its convolution activation func-
tion is the Relu function, which can reduce the problem of
gradient disappearing or exploding when training the model.
The average pool is selected as the pool function, which
is more conducive to transferring information to the next
module for feature extraction and reducing dimensions. The
kernel sizes of the convolution and pooling layers are 3 and 4,
respectively. To estimate the model, first set the structure
and super parameters of the model, calculate the prediction
output sequence and mean square error (MSE) based on the
model, and then update the parameters of the mode through
the backpropagation algorithm until the MSE is minimized.
Finally, compare the MSE under different model structures,
and select the model with the minimum MSE, as shown in
Table 1, for real-time control experiments.

FIGURE 8. Training result of the RNN-CNN-ARX model.

In order to easily use the estimated model to design MPC,
the collected raw data is directly used for modeling, and the
measurement noise impact will be reflected in the modeling
residual. Taking the RNN-CNN-ARX modeling as an exam-
ple, the modeling results are shown in Figs. 8-9, from which
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TABLE 1. The MSE of different models.

FIGURE 9. Test result of the RNN-CNN-ARX model.

one can see that the model output is very close to the actual
output, and the residual for training and test data is very small.
Table 1 gives the order andMSE of the estimatedmodels. The
results show that the MSE of the linear ARX model is the
largest, because it cannot fully describe the dynamic charac-
teristics of the nonlinear system. The MSE of the estimated
RBF-ARX model is larger than that of the SD-ARX model
based on deep learning, because the RBF neural network is
a single-layer network and there is no feedback between the
nodes of the neural network, so it cannot handle the sequence
data of the nonlinear system well. The estimated RNN-ARX
model has a slightly lower modeling error than the CNN-
ARX model, which benefits from the memory function of

RNN and thus maintains the advantage of dependence on
sequence data. Among all models, the MSE of the estimated
RNN-CNN-ARX model is the smallest, which can better
capture the nonlinear dynamic characteristics of WTP. This
is because the RNN-CNN-ARX model combines the ability
of RNN to mine the temporal characteristics of sequence data
and the ability of CNN to extract the spatial characteristics of
data, and can skillfully handle the spatiotemporal correlation
of WTP sequence data. By the way, in Table 1, one can see
that the MSE of y1(z) for the test data is lower than that of
y1(z) for the training data, this is because in the reference
signal of y1(z) there are the sinusoidal signal and step signal
in the training data, while in the reference signal of y1(z) there
are not the step signal in the test data, as seen in Fig. 7, so the
volatility of the test data is smaller than that of the training
data.

C. REAL-TIME CONTROL EXPERIMENTS
In this section, we will show the real-time control results of
using different model-based MPC algorithms on the WTP in
Fig. 6. The control quantity calculation is implemented on
MATLAB/Simulink platform. The nonlinear water tank sys-
tem operating in different liquid level regions has obviously
different dynamic characteristics. Therefore, the real-time
control experiment is conducted in three different liquid level
areas, namely, low liquid level area, middle liquid level area,
and high liquid level area. Furthermore, for comparison,
we also use the PID control, linear ARX model-based MPC
(ARX-MPC), and the RBF-ARX model-based MPC (RBF-
ARX-MPC) approaches to carry out the water level control
experiments to show the advantages of the methods proposed
in this paper.

In the real-time control experiments, the MPC parameters
in equation (20) are selected as S1 = diag [0.0001, 0.0001] ,
S2 = diag [0.80, 0.80], Q=diag [1, 1]. The real-time control
results of the water level of the WTP under different con-
trollers are depicted in Figs 10-15, where y1(z) and y2(z)
are the fluid level heights; u1(z) and u2(z) are the electric
control valve openings (0% ∼ 100%); yr (z) is the reference
trajectory, which is depicted by the pink dotted line. Addition-
ally, Tables 2-4 give the control performance parameters of
every controller at different liquid levels, including overshoot,
peak time (PT), and settling time (ST), where ↑ represents the
ascending step response and ↓ represents the descending step
response.
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TABLE 2. Control performance of the low fluid level area.

TABLE 3. Control performance of the middle fluid level area.

TABLE 4. Control performance of the high fluid level area.

1) REAL-TIME CONTROL IN LOW FLUID LEVEL AREA
Figs. 10-11 and Table 2 show the real-time control results in
the low fluid level area (50 ∼ 100mm), which illustrate that
the control performance of RNN-CNN-ARX-MPC is better
than that of other control algorithms. In the low liquid level
area, for the liquid level y1(z) and y2(z) under the control
of RNN-CNN-ARX-MPC, in the descending step response,
its PT is 258s and 230s, the overshoot is 18.4% and 17%,
the ST is 348s and 334s, and in the ascending step response,
its overshoot is 3.4% and 3.8%, the ST is 170s and 162s,
which are all better than the performance indicators of other
controllers. In particular, the overshoot of RNN-CNN-ARX-
MPC in the descending step response is much smaller than
that of other controllers. This is because the RNN-CNN-ARX
model combines the excellent temporal feature extraction

ability of RNN and the spatial feature extraction ability of
CNN, which can well represent the nonlinear dynamic behav-
ior of WTP, thus achieving excellent control performance.

2) REAL-TIME CONTROL IN MIDDLE FLUID LEVEL AREA
Figs. 12-13 and Table 3 show the real-time control results in
the middle fluid level area (100 ∼ 250 mm), from which it
can be seen that the PID controller is inferior to other con-
trollers in control performance, and its overshoot and ST are
the largest. Compared with the ARX-MPC, the RBF-ARX-
MPC has better control performance, and the latter has a
smaller overshoot and PT. Nevertheless, the RBF-ARX-MPC
is inferior to the RNN-ARX-MPC, CNN-ARX-MPC, and
RNN-CNN-ARX-MPC in terms of overshoot and ST. This
is because RBF belongs to the shallow neural network, and
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FIGURE 10. Step response results in low fluid level area (y1 and u1).

FIGURE 11. Step response results in low fluid level area (y2 and u2).

FIGURE 12. Step response results in middle fluid level area (y1 and u1).

there is no information feedback between nodes of each layer,
so the RBF-ARX modeling accuracy and the model-based
predictive control effect are not as good as the deep learning-
based SD-ARX. In addition, the overall control performance

FIGURE 13. Step response results in middle fluid level area (y2 and u2).

FIGURE 14. Step response results in high fluid level area ( y1 and u1).

FIGURE 15. Step response results in high fluid level area ( y2 and u2).

of RNN-ARX-MPC is slightly higher than that of the CNN-
ARX-MPC, because RNN has a memory function and can
maintain the correlation in sequence data, so it has advantages
in sequence data modeling of nonlinear systems. Among all
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controllers, the RNN-CNN-ARX-MPC has the best control
performance, with the lowest PT, ST, and overshoot in the
descending step response. On the other hand, the overshoot of
its rising step response is the smallest of all algorithms, which
enables the liquid level of the WTP to follow the reference
trajectory well.

3) REAL-TIME CONTROL IN HIGH FLUID LEVEL AREA
Figs. 14-15 and Table 4 shows the outcomes of the real-time
control experiments under different controllers in the high
fluid level area (250 ∼ 300 mm). From the results, it is clear
that the PID controller has the worst control performance
among all controllers, and its overshoot and ST are the largest.
Due to the limited ability of the linear ARXmodel to describe
the nonlinear characteristics ofWTP, the control performance
of ARX-MPC is also poor. The comprehensive control perfor-
mance of RNN-ARX-MPC is better than that of ARX-MPC
and RBF-ARX-MPC, while the CNN-ARX-MPC is not as
good as the RNN-CNN-ARX-MPC in the high fluid level
area. The RNN-CNN-ARX-MPC has the best control perfor-
mance, its overshoot, and ST are the smallest, especially its
overshoot in the descending step response, which is greatly
reduced compared with the overshoot under the control of
other controllers. Because the RNN-CNN-ARX model has
good spatiotemporal feature extraction ability, it can well
describe the nonlinear dynamic characteristics of WTP.

Although the PID control and ARX-MPC can track the
reference trajectory of liquid level, their control performance
is quite poor due to the strong nonlinearity of WTP devices
and the local adaptability of these controllers, which limits
the scope of application of PID control and ARX-MPC.
On the whole, the comprehensive control performance of the
RBF-ARX-MPC is not as good as that of the RNN-ARX-
MPC, CNN-ARX-MPC, and RNN-CNN-ARX-MPC, since
the RBF neural network belongs to a single-layer network,
its nonlinear description ability is not as good as that of the
SD-ARX model based on multi-layer deep learning neural
network. In addition, the RNN-ARX-MPC benefits from the
memory function of RNN, which can maintain the depen-
dency on sequence data, so its control performance is slightly
better than that of the CNN-ARX-MPC. The RNN-CNN-
ARX-MPC performs better in almost all cases, especially in
the descending step response of low and high liquid level
areas. In these areas, the strong coupling and nonlinearity
of WTP lead to a large overshoot of all controllers, but the
overshoot of RNN-CNN-ARX-MPC is far less than that of
other controllers. This is mainly because the RNN-CNN-
ARX model combines the advantages of RNN’s strong tem-
poral feature extraction ability and CNN’s strong local spatial
feature extraction ability, so it can well extract the nonlinear
dynamic characteristics of WTP.

VI. CONCLUSION
In this paper, two types of deep learning models were used
to fit the state-dependent functional regression coefficient of
the SD-ARX model, RNN-ARX model, CNN-ARX model,

and RNN-CNN-ARX model were constructed to describe
the dynamic characteristics of nonlinear systems, and the
three models based MPCs were designed. These models have
the characteristics of local linearity and global nonlinearity,
which is conducive to the design of predictive controllers for
nonlinear systems. The real-time control experiment results
on the WTP showed that the three predictive control algo-
rithms proposed in this paper, namely RNN-ARX-MPC,
CNN-ARX-MPC, and RNN-CNN-ARX-MPC, can better
realize the tracking control of water tank level compared
with other control strategies based on non-deep learningmod-
els, such as PID, ARX-MPC, and RBF-ARX-MPC. This is
because the deep learning network has strong data feature
extraction ability and can well express the nonlinear dynamic
characteristics of WTP. The real-time control results also
showed that the control performance of RNN-CNN-ARX-
MPC is superior to the other two MPCs based on the deep
learning model, namely RNN-ARX-MPC and CNN-ARX-
MPC. Because the RNN-CNN-ARX model integrated the
temporal feature extraction ability of RNN and the spatial
feature extraction ability of CNN, it can better describe the
multidimensional spatiotemporal dynamic characteristics of
nonlinear systems.

However, the model built with RNN is prone to the
problem of gradient vanishing or explosion when optimiz-
ing the model parameters, and may not be able to handle
the long-term sequence correlation well. In future research,
we will consider further optimizing the model structure,
changing the RNN structure into long and short-termmemory
(LSTM) network, gated recurrent unit (GRU), or other rele-
vant neural network structure, to improve the model’s ability
to describe the dynamic characteristics of nonlinear systems.

REFERENCES
[1] O. Palma-Flores and L. A. Ricardez-Sandoval, ‘‘Simultaneous

design and nonlinear model predictive control under uncertainty:
A back-off approach,’’ J. Process Control, vol. 110, pp. 45–58,
Feb. 2022.

[2] F. Grimm, P. Kolahian, Z. Zhang, and M. Baghdadi, ‘‘A sphere decoding
algorithm for multistep sequential model-predictive control,’’ IEEE Trans.
Ind. Appl., vol. 57, no. 3, pp. 2931–2940, May 2021.

[3] J. Kwapien and S. Drozdz, ‘‘Physical approach to complex systems,’’Phys.
Rep., vol. 515, nos. 3–4, pp. 115–226, Jun. 2012.

[4] P. Pareek and A. Verma, ‘‘Piecewise linearization of quadratic branch flow
limits by irregular polygon,’’ IEEE Trans. Power Syst., vol. 33, no. 6,
pp. 7301–7304, Nov. 2018.

[5] M. Lawrynczuk, ‘‘Nonlinear predictive control of a boiler-turbine unit:
A state-space approach with successive on-line model linearisation and
quadratic optimisation,’’ ISA Trans., vol. 67, pp. 476–495, Mar. 2017.

[6] Z. Nie, F. Gao, and C. Yan, ‘‘Amulti-timescale bilinear model for optimiza-
tion and control of HVAC systems with consistency,’’ Energies, vol. 14,
no. 2, pp. 400–412, Jan. 2021.

[7] J. A. Becerra, ‘‘A bivariate Volterra series model for the design of power
amplifier digital predistorters,’’ Sensors, vol. 21, no. 17, pp. 5897–5909,
Sep. 2021.

[8] T. A. Tutunji, ‘‘Parametric system identification using neural networks,’’
Appl. Soft Comput., vol. 47, pp. 251–261, Oct. 2016.

[9] S. Mete, S. Ozer, and H. Zorlu, ‘‘System identification using Hammerstein
model optimized with differential evolution algorithm,’’ AEU-Int. J. Elec-
tron. Commun., vol. 70, no. 12, pp. 1667–1675, Dec. 2016.

[10] I. Aliskan, ‘‘Optimized inverse nonlinear function-based Wiener model
predictive control for nonlinear systems,’’ Arabian J. Sci. Eng., vol. 46,
no. 10, pp. 10217–10230, Oct. 2021.

32592 VOLUME 11, 2023



T. Kang et al.: Deep Learning-Based SD-ARX Modeling and Predictive Control of Nonlinear Systems

[11] V. De Iuliis, G. Domenico Di Girolamo, F. Smarra, and A. D’Innocenzo,
‘‘A comparison of classical identification and learning-based tech-
niques for cyber-physical systems,’’ in Proc. 29th Medit. Conf. Con-
trol Autom. (MED), Jun. 2021, pp. 179–185. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9480333

[12] F. Smarra, G. D. Di Girolamo, V. De Iuliis, A. Jain, R. Mangharam, and
A. D’Innocenzo, ‘‘Data-driven switching modeling for MPC using regres-
sion trees and random forests,’’ Nonlinear Analy., Hybrid Syst., vol. 36,
May 2020, Art. no. 100882.

[13] H. Peng, T. Ozaki, V. Haggan-Ozaki, and Y. Toyoda, ‘‘A parameter opti-
mization method for radial basis function type models,’’ IEEE Trans.
Neural Netw., vol. 14, no. 2, pp. 432–438, Mar. 2003.

[14] F. Zhou, H. Peng, Y. Qin, X. Zeng, W. Xie, and J. Wu, ‘‘RBF-ARXmodel-
based MPC strategies with application to a water tank system,’’ J. Process
Control, vol. 34, pp. 97–116, Oct. 2015.

[15] H. Peng, K. Nakano, and H. Shioya, ‘‘Nonlinear predictive control using
neural nets-based local linearization ARX model—Stability and indus-
trial application,’’ IEEE Trans. Control Syst. Technol., vol. 15, no. 1,
pp. 130–143, Jan. 2007.

[16] T. Kang, H. Peng, F. Zhou, X. Tian, and X. Peng, ‘‘Robust predictive
control of coupled water tank plant,’’ Int. J. Speech Technol., vol. 51, no. 8,
pp. 5726–5744, Aug. 2021.

[17] X. Tian, H. Peng, X. Zeng, F. Zhou, W. Xu, and X. Peng, ‘‘A modeling and
predictive control approach to linear two-stage inverted pendulum based on
RBF-ARX model,’’ Int. J. Control, vol. 94, no. 2, pp. 357–369, Feb. 2021.

[18] H. Peng, J. Wu, G. Inoussa, Q. Deng, and K. Nakano, ‘‘Nonlinear system
modeling and predictive control using the RBF nets-based quasi-linear
ARX model,’’ Control Eng. Pract., vol. 17, no. 1, pp. 59–66, Jan. 2009.

[19] M. Gan, H.-X. Li, and H. Peng, ‘‘A variable projection approach for
efficient estimation of RBF-ARX model,’’ IEEE Trans. Cybern., vol. 45,
no. 3, pp. 476–485, Mar. 2015.

[20] G. Inoussa, H. Peng, and J. Wu, ‘‘Nonlinear time series modeling and
prediction using functional weights wavelet neural network-based state-
dependent AR model,’’ Neurocomputing, vol. 86, pp. 59–74, Jun. 2012.

[21] W. Xu, H. Peng, X. Tian, and X. Peng, ‘‘DBN based SD-ARX model
for nonlinear time series prediction and analysis,’’ Int. J. Speech Technol.,
vol. 50, no. 12, pp. 4586–4601, Dec. 2020.

[22] J. Schmidhuber, ‘‘Deep learning in neural networks: An overview,’’Neural
Netw., vol. 61, pp. 85–117, Jan. 2015.

[23] R. Mu and X. Zeng, ‘‘A review of deep learning research,’’ KSII Trans.
Internet Inf. Syst., vol. 13, no. 4, pp. 1738–1764, 2019.

[24] S. K.Mahata, D. Das, and S. Bandyopadhyay, ‘‘MTIL2017:Machine trans-
lation using recurrent neural network on statistical machine translation,’’
J. Intell. Syst., vol. 28, no. 3, pp. 447–453, Jul. 2019.

[25] A. Esan, J. Oladosu, C. Oyeleye, I. Adeyanju, O. Olaniyan, N. Okomba,
B. Omodunbi, and O. Adanigbo, ‘‘Development of a recurrent neural
network model for English to Yorùbá machine translation,’’ Int. J. Adv.
Comput. Sci. Appl., vol. 11, no. 5, pp. 602–609, May 2020.

[26] C. R. Aydin and T. Gungor, ‘‘Combination of recursive and recurrent neural
networks for aspect-based sentiment analysis using inter-aspect relations,’’
IEEE Access, vol. 8, pp. 77820–77832, 2020.

[27] J. A. Laura, G. O. Masi, and L. Argerich, ‘‘From imitation to prediction,
data compression vs recurrent neural networks for natural language pro-
cessing,’’ Inteligencia Artif., vol. 21, no. 61, pp. 30–46, Mar. 2018.

[28] S. Hashemnia, L. Grasse, S. Soni, andM. S. Tata, ‘‘Human EEG and recur-
rent neural networks exhibit common temporal dynamics during speech
recognition,’’ Frontiers Syst. Neurosci., vol. 15, Jul. 2021, Art. no. 617605.

[29] J. Wang, ‘‘Speech recognition in English cultural promotion via recurrent
neural network,’’ Pers. Ubiquitous Comput., vol. 24, no. 2, pp. 237–246,
Apr. 2020.

[30] J. Van Gompel, D. Spina, and C. Develder, ‘‘Satellite based fault diagnosis
of photovoltaic systems using recurrent neural networks,’’ Appl. Energy,
vol. 305, Jan. 2022, Art. no. 117874.

[31] H. Liu, J. Zhou, Y. Zheng, W. Jiang, and Y. Zhang, ‘‘Fault diagnosis of
rolling bearings with recurrent neural network-based autoencoders,’’ ISA
Trans., vol. 77, pp. 167–178, Jun. 2018.

[32] M. S. Alhajeri, Z. Wu, D. Rincon, F. Albalawi, and P. D. Christofides,
‘‘Machine-learning-based state estimation and predictive control of non-
linear processes,’’Chem. Eng. Res. Des., vol. 167, pp. 268–280,Mar. 2021.

[33] B. Zhang, X. Sun, S. Liu, and X. Deng, ‘‘Recurrent neural network-
basedmodel predictive control for multiple unmanned quadrotor formation
flight,’’ Int. J. Aerosp. Eng., vol. 2019, pp. 1–18, Jun. 2019.

[34] Z. Wu, A. Tran, D. Rincon, and P. D. Christofides, ‘‘Machine learning-
based predictive control of nonlinear processes. Part I: Theory,’’ AIChE J.,
vol. 65, no. 11, p. 16729, Nov. 2019.

[35] Z. Wu, A. Tran, D. Rincon, and P. D. Christofides, ‘‘Machine-learning-
based predictive control of nonlinear processes. Part II: Computational
implementation,’’ AIChE J., vol. 65, no. 11, p. 16734, Nov. 2019.

[36] Y. Chang, T. Tan, W. H. Lee, L. Chang, Y. Chen, K. Fan, and
M. Alkhaleefah, ‘‘Consolidated convolutional neural network for hyper-
spectral image classification,’’Remote Sens., vol. 14, no. 7, pp. 1571–1586,
Apr. 2022.

[37] A. Fakhrou, J. Kunhoth, and S. Al Maadeed, ‘‘Smartphone-based food
recognition system using multiple deep CNN models,’’ Multimedia Tools
Appl., vol. 80, nos. 21–23, pp. 33011–33032, Sep. 2021.

[38] R. Dian, S. Li, and X. Kang, ‘‘Regularizing hyperspectral andmultispectral
image fusion by CNN denoiser,’’ IEEE Trans. Neural Netw. Learn. Syst.,
vol. 32, no. 3, pp. 1124–1135, Mar. 2021.

[39] Y. Sun, B. Xue, M. Zhang, G. G. Yen, and J. Lv, ‘‘Automatically designing
CNN architectures using the genetic algorithm for image classification,’’
IEEE Trans. Cybern., vol. 50, no. 9, pp. 3840–3854, Sep. 2020.

[40] Y.Guo, Y. Liu, E.M. Bakker, Y. Guo, andM. S. Lew, ‘‘CNN-RNN:A large-
scale hierarchical image classification framework,’’Multimed. Tools Appl.,
vol. 77, no. 8, pp. 10251–10271, Apr. 2018.

[41] Y. You, C. Lu, W. Wang, and C.-K. Tang, ‘‘Relative CNN-RNN: Learning
relative atmospheric visibility from images,’’ IEEE Trans. Image Process.,
vol. 28, no. 1, pp. 45–55, Jan. 2019.

[42] B. Zhao, X. Li, X. Lu, and Z. Wang, ‘‘A CNN–RNN architecture for
multi-label weather recognition,’’ Neurocomputing, vol. 322, pp. 47–57,
Dec. 2018.

[43] M. E. Basiri, S. Nemati, M. Abdar, E. Cambria, and U. R. Acharya,
‘‘ABCDM: An attention-based bidirectional CNN-RNN deep model for
sentiment analysis,’’ Future Gener. Comput. Syst., vol. 115, pp. 279–294,
Feb. 2021.

[44] D. Kollias and S. Zafeiriou, ‘‘Exploitingmulti-CNN features in CNN-RNN
based dimensional emotion recognition on the OMG in-the-Wild dataset,’’
IEEE Trans. Affect. Comput., vol. 12, no. 3, pp. 595–606, Jul./Sep. 2021.

[45] L. Li, X. Zhu, Y. Hao, S. Wang, X. Gao, and Q. Huang, ‘‘A hierarchical
CNN-RNN approach for visual emotion classification,’’ ACM Trans. Mul-
timedia Comput., Commun., Appl., vol. 15, no. 3, pp. 1–17, Nov. 2019.

[46] R. Geetha, T. Thilagam, and T. Padmavathy, ‘‘Effective offline handwrit-
ten text recognition model based on a sequence-to-sequence approach
with CNN–RNN networks,’’ Neural Comput. Appl., vol. 33, no. 17,
pp. 10923–10934, Sep. 2021.

[47] H. Butt, M. R. Raza, M. J. Ramzan, M. J. Ali, and M. Haris, ‘‘Attention-
based CNN-RNN Arabic text recognition from natural scene images,’’
Forecasting, vol. 3, no. 3, pp. 520–540, Jul. 2021.

[48] Y. Jiang, R. Qiao, Y. Zhu, and G.Wang, ‘‘Data fusion of atmospheric ozone
remote sensing LiDAR according to deep learning,’’ J. Supercomput.,
vol. 77, no. 7, pp. 6904–6919, Jul. 2021.

TIAO KANG received the M.Eng. degree in power
engineering from the Hunan Institute of engi-
neering, Xiangtan, China, in 2015. He is cur-
rently pursuing the Ph.D. degree in control science
and engineering with Central South University,
Changsha, China. His current research interests
include complex systems modeling, optimization,
and industrial process control.

VOLUME 11, 2023 32593



T. Kang et al.: Deep Learning-Based SD-ARX Modeling and Predictive Control of Nonlinear Systems

HUI PENG received the B.Eng. and M.Eng.
degrees in control science and engineering from
Central South University, Changsha, China, in
1983 and 1986, respectively, and the Ph.D. degree
in statistical science from The Graduate Univer-
sity for Advanced Studies, Japan, in 2003. He has
been a Professor with Central South University,
since 1998. His research interests include com-
plex systems modeling, control and optimization,
advanced control theory and intelligent automa-

tion systems, and industrial process control system development.

WENQUAN XU received the M.S. degree in con-
trol theory and control engineering from Hohai
University, Nanjing, China, in 2011. He is cur-
rently pursuing the Ph.D. degreewith the School of
Automation, Central South University, Changsha,
China. He is a Lecturer with the School of Elec-
tronic Engineering and Intelligent Manufacturing,
Anqing Normal University, Anqing, China. His
current research interests include deep learning,
system identification, and nonlinear time series
analysis.

YAPENG SUN received the bachelor’s degree in
computer science from Central South University,
in 2003, and the master’s degree in computer sci-
ence from the Hunan University of Technology,
in 2012. He is currently pursuing the Ph.D. degree
in computer sciencewith Central SouthUniversity.
After graduation, he was a Teacher with the School
of Computer Science and Technology, Hunan Uni-
versity of Science and Technology. His current
research interests include complex system model-

ing, optimization, and control.

XIAOYAN PENG received the B.S. and M.S.
degrees in mechanical engineering and the Ph.D.
degree in automatic control from Hunan Univer-
sity, Changsha, China, in 1986, 1989, and 2013,
respectively. She is currently a Professor with the
College of Mechanical and Vehicle Engineering,
Hunan University. Her research interests include
the control of mechatronic systems and the safety
analysis of autonomous vehicles.

32594 VOLUME 11, 2023


