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ABSTRACT Amharic is morphologically complex and under-resourced language, posing difficulties in the
development of natural language processing applications. This paper presents the development of semantic
role labeler for Amharic text using end-to-end deep neural network architecture. The system implicitly
captures morphological, semantic and contextual features of a word at different levels of the architecture, and
incorporates the syntactic structure of an input sentence. The proposed neural network architecture has four
core layers from bottom to top, namely non-contextual word embedding, contextual word embedding, fully
connected and sequence decoding layers. The non-contextual word embedding layer is formed from the
concatenation of character-based, word-based and sentence-based word embeddings. This layer captures
the morphological and semantic features of a given word by making use of BiLSTM recurrent neural
network. At the contextual word embedding layer, a context sensitive embedding of a word is generated by
applying a new LSTM layer on the top of the non-contextual concatenated word embedding layer. A fully
connected network layer is added on top of contextual word embedding layer to supplement it by extracting
dependencies among training samples in the corpus. At the sequence decoding layer, a sequence of semantic
role labels is predicted using a linear-chain conditional random field algorithm by capturing the dependency
among semantic role labels. In addition to the four core layers, the architecture has dropout layers to prevent
overfitting problem. The proposed system achieves 94.96% accuracy and 81.2% F1 score when it is tested
using test data.

INDEX TERMS Semantic role labeling, Amharic text processing, multiple embeddings, deep neural
network.

I. INTRODUCTION
Semantic roles are shallow semantic representations that ex-
press the roles that can be taken by arguments of a predicate
describing an event. Computational systems use semantic
roles as a shallow meaning representation to make simple
inferences that are not possible from the pure surface string
of words [1]. Semantic roles, thus, can help to generalize over
different surface realizations of predicate arguments [1], [2].
Semantic role labeling (SRL) is a sentence-level semantic
analysis of a text concerned with the characterization of
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events, such as determining who did what to whom, where,
when, and how [1]. Given a sentence, SRL consists of three
basic tasks: predicate identification, argument identification,
and argument classification [1], [2], [3]. This task of under-
standing how participants relate to events is a central question
of natural language understanding [3] and, therefore, can
potentially benefit many natural language processing (NLP)
applications, such as question answering [4], information
extraction [5], [6], text summarization [7], machine trans-
lation [8], [9], language understanding [10] and sentence
similarity measurement [11].

Semantic role labeling can be feature-based, neural-based
or a hybrid of the two. Feature-based algorithms estimate
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a parse tree of a sentence and extract hand-designed fea-
tures from its syntactic constituents in the parse tree, which
includes part-of-speech tags, chunks and clauses [1], [2].
Neural algorithms for SRL are generally designed based on
sequence processing neural networks in which each input
word in a sentence is mapped to pre-trained embeddings
and the concatenation of these embeddings is passed through
multiple layers of the network [3]. Output from the last
network can then be turned into a tag sequence by passing
it through a single layer into a probability distribution over
all the SRL roles (tags), and the most likely tag computed
for each word is selected. Neural-based SRL systems are
implemented using deep learning which has been proven
to be particularly good at learning intermediate represen-
tations and providing an effective end-to-end joint system
learning [12], [13]. SRL systems using deep learning can,
therefore, easily learn important representations from just
the raw input and can avoid the need to address the SRL
problem in modular steps such as prunning, argument iden-
tification and argument classification. From the perspective
of implementation, neural-based semantic role labeling sys-
tems can be modeled using dependency-based style [14],
[15], span-based style [16], [17], or cross-based style [18].
Dependency-based and span-based styles annotate the syn-
tactic heads of arguments and the entire argument span, re-
spectively whereas cross- based style integrates both. From
the perspective of the number of predicates, neural-based
SRL systems can be first-order or second-order. When there
are two predicates in a given sentence, first-order SRL sys-
tems detect each of predicate-argument pairs in isolation
using local and short features [14], [15], [16], [17] whereas
second-order SRL systems consider the detection of both
pairs of predicate-arguments simultaneously [19]. To further
improve the performance of pure neural-based SRL systems,
syntactic information can be used as an additional input.
Such types of SRL systems are considered as hybrid SRL
systems, and they combine automatically extracted features
from neural network model and syntactic features extracted
by a syntactic parser from the featured-based approach
[14], [15].

For languages like English having various resources, there
are several successful research works on semantic role la-
beling by applying advanced machine learning algorithms
on corpora that are annotated with semantic role labels like
FrameNet [20], PropBank [21] and NomBank [22]. These
corpora provide the training and test datasets to develop
SRL systems using feature-based, neural-based and hybrid
approaches to SRL systems. However, to our best knowledge,
under-resourced languages like Amharic have no standard
training and test data in Penn Treebank [23] and PropBank.
As a result of this, research on semantic role labeling and
other higher level NLP tasks for the language are still at their
infancy stages. Thus, this work aims at developing neural-
based SRL system for Amharic by considering its complex
morphological structure and lack of lexical resources. In
view of this, we proposed span-based first-order neural SRL

system for Amharic text. Themajor contributions of this work
are summarized as follows.

1) An end-to-end deep learning based semantic role la-
beling framework is proposed for morphologically rich
Semitic languages in general and for Amharic language
in particular. Although we developed semantic role
labeler for Amharic language, the framework can be
customized easily to other Semitic languages.

2) The unique morphological and syntactical character-
istics of the Amharic language that make it difficult
to develop semantic role labeler are identified and a
novel deep learning based multiple word embedding
is proposed to represent the lexical semantics of each
word at the input layer of the proposed neural based
semantic role labeler.

3) We prepared a dataset, in consultation with domain
experts, for training and testing Amharic semantic role
labeling systems. As Amharic is a low-resource lan-
guage, the dataset can serve as a baseline for the de-
velopment of Amharic semantic role labeler.

The remainder of the paper is organized as follows.
Section II describes the linguistic characteristics of Amharic
semantic role labeling. Section III discusses related works
employing various techniques and their limitations to ap-
ply directly for morphologically complex languages like
Amharic. Section IV presents the proposed model that takes
the characteristics of Amharic into consideration. Section V
describes experimental works and the results obtained. Con-
clusion and future work are presented in Section VI.

II. AMHARIC LANGUAGE
A. AMHARIC MORPHOLOGY AND GRAMMAR
Amharic is the working language of the government of
Ethiopia currently having an estimated population of 120mil-
lion. The language is written using a syllabic writing system
having 34 base characters and 7 vowels (ä, u, i, a, e, @ and o).
The vowels modify base characters to form a unique shape
representing consonant-vowel combination. There are some
homophone characters, along with their respective modifica-
tions, which are used interchangeably. These are €, H, p,
and ˆ /hä/; P and ˜ /sä/; € and a as /Pä/; and Ð and Ø
/s.ä/. Amharic uses its own punctuations such as ~ (full
stop), , (comma), ; (semi-colon), and it also borrows some
punctuation marks such as ‘?’ and ‘!’ from the Latin alphabet.

The language uses a set of numerals although there is
nowadays a tendency of using the Hindu-Arabic numerals.

Amharic exhibits a typical behavior Semitic languages
with regard to the pattern of inflectional and derivational
morphology [24]. Among other word classes, the most mor-
phologically complex ones are verbs, nouns and adjectives.
The prominent phenomenon of the language is the reliance of
verbs on root-and-pattern paradigms for word formation. The
standard account of word formation process in the language
describes words as combinations of two morphemes: a root
and a pattern [25]. The root consists of consonants only,
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Table 1. Examples of stem and word formation in Amharic.

called radicals. The pattern is a combination of vowels and,
possibly, consonants too, with ‘slots’ into which the root
consonants can be inserted. Stems are, therefore, formed by
interdigitating the vowels among root consonants. Surface
forms of words are then formed by combining stems with
a particular set of prefixes or suffixes representing a single
grammatical form. Table 1 presents examples of stem and
surface word formation from roots. Amharic verbal roots
can be marked for person, tense, aspect, mood and case.
Furthermore, they can be combined with a set of prefixes
and suffixes allowing the generation of thousands of words
from a single root form. Nouns, adjectives and adverbs can
be derived from a verbal root through the application of
patterns. For example, the noun fµ¶t /f@t.B-@nät ‘speed’/,
the adjective à³n /fät.B-an ‘speedy’/ and the adverb ¤fµ¶t
/bäf@t.B-@nät ‘speedily’/ are derived from the verbal root f-
µ-n /f-t.B–n/. Once nouns and adjectives are derived, they
can undergo the process of inflection and further derivation
similar to that of non-derived ones. Nouns and adjectives
can be marked for person, gender, objective and possessive
cases, number and definiteness. Furthermore, prepositions,
adverbs and conjunctions may come as prefixes and suffixes.
Generally, the morphological structure of an Amharic word
W takes the form [26]:

[p] ∗ w[s]∗

where p is a prefix morpheme, w is the root or stem ofW , s is
a suffix morpheme, [. . . ] denotes optionality, and ‘*’ denotes
the possibility of multiple occurrence. For example, Ñ†s-
mm¶³hw /jaläs@m@m@nätacäw ‘without their agreement’/
is constructed from the prefixes Î /jä/ and €† /Pälä/, the stem
smm /s@m@m/, and the suffixes ¶t /nät/ and €hw /Päcäw/.
The basic word order of Amharic language is subject-

object-verb (SOV). Verbs agree with their subjects and def-
inite objects in person, number and gender [24]. Figure 1
shows the agreement of a verb with the subject and ob-
ject in the sentence °≈”Çm ŒsÁ±n ˜¤“t /tämariwoc
mäskotun säbärut ‘students broke the window’/. The verbal
stem säbär /‘broke’/ is marked (by the suffix ‘‘u’’) for the
subject tämariwoc /‘students’/ which is third person plural.

Figure 1. Agreement of a verb with its subject and object.

In addition, the verbal stem is marked (by the suffix ‘‘t’’) for
the definite object mäskotun /‘the window’/.

The complexity of grammatical agreements in Amharic
sentences grow significantly with the increase in the num-
ber of words in the sentence due to proliferation of in-
flections. Consider the sentence Œmh“ °≈”Çm
…n×y››± €s◊d� ¤°ÔÝÝ√ €s°nqłhÅl /mäm@h@ru
tämariwoc P@ndaj@sasatu Päsqäd@mo bätädägagami @äst.B-
änq@qoacäwal ‘the teacher has previously warned students
repeatedly to prevent them from making mistakes/. The
verb/action here is €s°nqłhÅl /Päst.B-änq@qoacäwal
‘[the teacher] has warned [students]’/ which inflects the stem
°nqq /t.B-änq@q/ with the prefix €s /Päs/ and the suffixes
† /Po/, €hw /Päcäw/ and €l /Päl/. The morphological and
grammatical features representing agreements in the sentence
are shown in Figure 2.

Pronoun subjects and pronoun objects are omitted unless
they are emphasized [25]. In this case, verbs are still marked
for omitted subjects and objects. Such complex word for-
mation process may result in a single word representing a
sentence constructed from subject, object, verb and other
grammatical functions. Figure 3 shows the components of the
word €l˜¤rıhwm /Pälsäbärkuacäw@m ‘I did not break
them’/ which is a sentence.

B. SEMANTIC ROLE IDENTIFICATION IN AMHARIC
As Amharic verbs agree with their subjects and definite
objects in person, number and gender, verb-agreement indi-
cators are glued or inflected with the verb or other words
in the sentence. Thus, the labeling of semantic roles in an
Amharic sentence requires identifying verb-agreement indi-
cators which are inflected with the words in that sentence.
For example, as shown in Figure 1, the verb säbärut is

33276 VOLUME 11, 2023



B. M. Hailu et al.: Semantic Role Labeling for Amharic Text Using Multiple Embeddings and Deep Neural Network

Figure 2. Agreement of words in a sentence.

Figure 3. Morphological components of a word representing a sentence.

marked for the subject tämariwoc (third person, plural) which
answers the ‘who’ (AGENT) in the semantic role labeling
(SRL) problem. The verb is also marked for the object
mäskotun (third person, masculine, definite) which points
to the recipient of the action and answers the ‘to whom’
(PATIENT/RECIPIENT) in the SRL problem. Accordingly,
the sentence in Figure 1 is represented in PropBank semantic
role label notation as:

[tämariwoc]ARG0 [mäskotun]ARG1 [säbärut]PRED

On the other hand, in Figure 2, the verb Päst.B-
änq@qoacäwal is marked for the subjectmäm@h@ru (third per-
son, masculine, singular) which answers the ‘who’ (AGENT)
of the verb in SRL. It is also marked for the object tämariwoc
(third person, plural) which answers the ‘to whom’ (RECIP-
IENT) of the verb. The word P@ndaj@sasatu (derived from
the verbal stem sasat) binds the verb to the plural object
through the u suffix and answers the ‘why’ (PURPOSE). The
prefix bä in the word bätädägagami represents the prepo-
sition ‘in’ and answers the ‘how’ (MANNER) for the verb.
The prefix Päs in the word Päsqäd@mo (derived from the
verbal stem qäd@m) represents the specific time frame for
the verb and answers the ‘when’ (TEMPORAL) for the verb
@äst.B-änq@qoacäwal in the SRL problem. Thus, the sentence
in Figure 2 is represented in PropBank semantic role label
notation as:

[mäm@h@ru]ARG0 [tämariwoc]ARG1
[P@ndaj@sasatu]ARGM−PRP [Päsqäd@mo]ARGM−TMP
[bätädägagami]ARGM−MNR [Päst.B-änq@qoacäwal]PRED

The syntactic phenomena play a crucial role in the devel-
opment of SRL system for the language. From a syntactic
perspective, the following facts about Amharic are relevant
for SRL.

1) PRO-DROP
Amharic tend to drop the subject andmark it morphologically
on the verb. For example, br±¿n ¤‡ /b@rtukan bälu
‘[they] ate orange’/ is pro-dropped where the pronoun ‘they’

is absent. The explicit rendering of the sentence would be
…¶™ br±¿n ¤‡ /P@näsu b@rtukan bälu ‘they ate orange’/.
This is a significant phenomenon for SRL since one of the
arguments is missing, and therefore, the system has to either
be able to make it explicit or mark a trace with the argu-
ment class as well as identify the morpheme marker on the
predicate.

2) RELATIVE FREE WORD ORDER
Amharic allows for verb-subject-object (VSO), OVS, SVO,
etc. For example, the following sentence can all mean ‘Eyob
ate his dinner’.
¤‰ ‚Ób …•±n /bäla(V) Pijob(S) P@ratun(O)/
…•±n ¤‰ ‚Ób /P@ratun(O) bäla(V) Pijob(S)/
‚Ób …•±n ¤‰ /Pijob(S) P@ratun(O) bäla(V)/
‚Ób ¤‰ …•±n /Pijob(S) bäla(V) P@ratun(O)/

This poses a significant challenge since it has implications
in identifying the arguments and their roles, especially when
the arguments are proper nouns with no explicit grammatical
case marking due to diacritic under-specification especially
in the singular cases.

3) POSSESSIVE CONSTRUCTS
Possessive constructs are especially tricky in Amharic as they
allow for multiple recursive embeddings as well as allowing
for multiple modifiers. These idafa constructs are quite diffi-
cult to parse and thus pose a significant challenge to boundary
detection for the argument spans. For example, Î€†¡Ò
√st aßt Îl¥ l¥ ≠Ô{°ãm /jäPäläqaye mis@t Pägot
jäl@ǧ l@ǧ guadäña täfac/ is literally interpreted as ’my boss’s
wife’s uncle’s grandchild’s friend disappeared’.

III. RELATED WORK
The task of automatic SRL was pioneered by Gildea and
Jurafsky [2]. The system is based on the probability dis-
tribution statistical classifier trained on sentences that were
hand-annotated with semantic roles. The probability esti-
mation then determines how likely a constituent is to fill
each possible role, given the features and the predicate, or a
target word. The system achieved F-Score of 62.9% tested on
FrameNet. Feature-based SRL was also proposed by Akbik
and Li [27] to identify instances that share the most simi-
lar combination of atomic features. Comparative evaluations
demonstrated that the approach significantly outperforms
prior state-of-the-art SRL systems for verbal predicates and
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their roles on both in-domain and out-of-domain data, reach-
ing F1-Score of 89.28% and 79.91%, respectively using the
scoring metric of the CoNLL-2009 shared task. On the other
hand, Zhou andXu [16] developed an end-to-end SRL system
for English using neural embeddings to learn the important
input features, without using any syntactic knowledge and
avoiding human engineered feature templates. Experimental
analysis shows that the model is better at handling longer
sentences than feature-based models, and that latent variables
of themodel can also implicitly capture the syntactic structure
of a sentence. The model achieved an F-score of 81.07%
on CoNLL-2005 shared task and 81.27% on CoNLL-2012
shared task, both outperforming the previous systems based
on parsing results and manual feature engineering.

Wang et al. [17] used deep learning for developing Chinese
SRL. Prior feature-based Chinese SRL systems have failed
to model the long range dependencies in a sentence. This
work, however, uses bi-directional long short-term memory
(BiLSTM) to capture both bi-directional and long range de-
pendencies in a sentence with minimum feature engineering.
Compared to previous works, the system achieved a signif-
icant improvement with experiments on Chinese PropBank
resulting in an F-1 score of 77.09%. Syntax-aware long
short-term memory (LSTM) was proposed by Qian et al.
[15] to directly model complex tree structure of dependency
relation. The model is based on BiLSTM, and directed con-
nections between dependency related words in BiLSTM are
added in order to model the whole dependency tree. Ex-
perimental results show that the model gives F1 of 79.92%
on Chinese Proposition Bank and improves the F1 score of
ordinary BiLSTM with feature engineered dependency rela-
tion information by 2.06%. On English CoNLL 2005 dataset,
the model yields an improvement of 2.1% in comparison to
BiLSTM model.

Diab et al. [28] developed SRL system for Arabic that ex-
ploits many aspects of the complex morphological features of
the language. The hypothesis was that taking advantage of the
interaction between morphology and syntax could improve
the performance of SRL systems for morphologically rich
languages. Kernelmethodswere used for feature engineering,
and support vector machines algorithm was used to imple-
ment a two step classification approach. The system is trained
and tested using Arabic Propbank, and experiments show
F-score of 82.17%, which significantly improved previously
reported results on the same task and dataset. Regarding the
development of Amharic SRL, memory-based learning was
proposed by Yirga [29] in which each word is tagged with
part-of-speech and the input text is parsed with phrase struc-
ture schema to extract the features that capture the semantic
role of words in a sentence. However, the lack of lexical
resources for the language has made the system to be tested
on only 240 manually annotated simple sentences, and eval-
uation result showed an F-Score of 79.77% with optimized
parameter settings. The errors in both the morphological and
syntactic parsers have also reduced the overall performance
of the SRL system.

The review of related works show that the characteristics of
languages has an impact on the overall performance of SRL
systems. Amharic poses a significant challenge to SRL for
several reasons. Amharic is known to be an under-resourced
language where there are no publicly available annotated
resources required to develop SRL. Furthermore, it is a mor-
phologically complex language making the feature extraction
task required in the feature-based SRL very complex and
prone to errors as it requires morphological and syntactic
parsers [24], [29]. Errors encountered in these parsers can
propagate to the SRL prediction task. Considering the com-
plex characteristics and unavailability of lexical resources for
the language, we employmultiple word embeddings and deep
neural network to develop SRL. The proposed model can
avoid the possible errors in parsing that can possibly prop-
agate to the SRL prediction. The model implicitly learns the
semantic similarity of words, the morphological information
about words and the syntactic structure using concatenation
of multiple word embeddings, character embeddings and
BiLSTM networks, respectively.

IV. THE PROPOSED SYSTEM
The proposed Amharic SRL system uses concatenations of
multiple word embeddings and deep neural network. First, the
raw input sentences in the corpus are preprocessed for data
cleaning and character normalization. After preprocessing,
words are represented by concatenating various types of word
embeddings. Since context-sensitive word representation is
critical for semantic role labeling, a sequence encoding recur-
rent neural network called BiLSTM is applied on the top of
concatenated word embedding. By concatenating the forward
and backward contextual representation of a given word in an
input sentence, context-sensitive representation of the word
is generated which captures long-range dependencies of the
target word in an input sentence from its previous and next
words. The neural architecture also has fully connected layer
before the sequence encoder layer. Finally, at the sequence de-
coding layer, the linear-chain conditional random field (CRF)
machine learning algorithm with Viterbi-decoding algorithm
is used to predict the semantic role of each word in an
input sentence by capturing the dependency among adjacent
semantic role labels. In addition, the model has a dropout
layer on the top of the concatenated word embedding layer to
prevent overfitting problem. It also has another dropout layer
above the contextual word embedding layer.

Mathematically, the entire model contains 18 trainable
weight matrices that transform an input vector from the lower
layer of the deep neural network into an output vector of
the next layer of the network using matrix-vector product.
In order to make the presentation simple, these trainable
weight matrices are indexed with integer numbers starting
from one, and they are denoted by Md ∈ Rod∗id , where
1 ≤ d ≤ 18. In this notation, i1, i2, . . . , i18 represent the
dimension of input vectors from the lower layer of network.
Similarly, o1, o2, . . . , o18 represent the dimension of the out-
put vector at the next layer of the network. In order to show
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Figure 4. System architecture for Amharic SRL.

the sequence of operations that are executed by the proposed
system, its architecture is presented hierarchically at three
levels of abstraction.

• At the fist level of abstraction, the proposed architecture
has five main modules as shown in Figure 4.

• At the second level of abstraction, the Concatenated
Word Embedding and BiLSTM modules are shown in
Figure 5 and Figure 8, respectively.

• At the third level of abstraction, the two sub-modules
of the Concatenated Word Embedding layer (Character-
based Word Embedding and Sentence-based Word Em-
bedding) are presented in Figure 6 and Figure 7,
respectively.

A. PREPROCESSING
In the preprocessing module, each sentence in the corpus is
cleaned by removing non-Amharic characters, double white
spaces between words and all punctuation marks except the
end of an Amharic sentence marker ( ~ ). The text is also
cleaned by separating hyphenated words into two separate
words. For example, the hyphenated word s¶-µ¤b /s@nä-
t.B-@bäb/ is separated into two words by a single white space
separator, namely, s¶ /s@nä/ and µ¤b /t.B-@bäb/. After
cleaning each sentence in a given corpus, each input sentence
in the corpus is tokenized into words by using whitespace as
a word separator. Semantic role labeling is implemented as
a sequence labeling task for a given input sentence which is
a sequence of a finite number words. However, the number
of tokens in each input sentence is different. To address this
problem, each sentence is padded if its length is shorter than
the length of the longest sentence in the corpus.

B. CONCATENATED WORD EMBEDDING
Word embedding is a feature learning method where a word
from the vocabulary is mapped to N dimensional vector.

As shown in Figure 5, we developed the prototype of the
proposed neural SRL system stage by stage.

Since Amharic is a morphologically rich language, at first
stage, we trained and tested the neural-based SRL model by
using only character-based word embedding at the first core
layer of the network model. Since the performance of the
resulting model is promising, a sentence-based word embed-
ding is added to complement the character-based word em-
bedding because character-based word embedding captures
local information of a given word whereas the sentence-based
word embedding captures the global information of a word
in a given input sentence. Thus, at the second stage, the
network model is trained and tested by concatenating the
character-based and sentence-based word embedding types.
The performance of the system is improved when the above
two embeddings are used jointly. This, in turn, motivates
us to add word-based embedding of a word to supplement
the above two-word embedding types by capturing the se-
mantic feature of a word in a given vocabulary. In word-
based word embedding, words with similar meanings have
similar vector representation. Therefore, at the final stage,
the network model is trained and tested using the concate-
nation of word-based, character-based and sentence-based
word embedding types. The concatenated word embedding
layer is not context-sensitive because its components are not
context-sensitive word embeddings. Each of the components
of the concatenated word embedding layer are described in
detail in the following subsections.

1) WORD-BASED EMBEDDING
Word embedding layer is the first core layer of neural-based
SRL models. This layer of the model can be formed from a
pre-trained word embedding layer using unannotated corpus
by applying existing neural word embedding algorithms such
as word2vec [30], fastText [31] and GloVe [32]. However,
the proposed model did not use a pre-trained neural word
embedding algorithm to create the word-based embedding
component of the concatenated word embedding layer. As a
result of this, the word-based embedding component of the
proposed network model is initialized randomly and trained
with other layers of the network using the objective function
of the network at its sequence decoding layer instead of using
the objective function of the existing neural word embedding
algorithms. The word-based embedding component of the
proposed network model is computed at two steps. At the first
step, a vocabulary of words is created by extracting a list of
unique words from a list of Amharic sentences in a corpus.
In the vocabulary, words are sorted and indexed with integer
numbers starting from zero. The index number 0 is reserved
for the padding of a given sentence. The index number 1 is
also reserved for words that are not in the word vocabulary
and considered as an unknown word. At the second step,
the 1st trainable weight matrix of the network model called
word-based embedding matrix is created for the vector rep-
resentation of each word in a given vocabulary. This matrix
is denoted by M1 ∈ Ro1∗i1 , where i1 is the dimension of a
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Figure 5. Concatenated word embedding layer.

one-hot encoding vector of a word which is the same as the
number of words in the vocabulary, and o1 is a hyperparame-
ter that represents the dimension of a word-based embedding
vector. This implies that the k th column vector of this matrix,
mk1 ∈ Ro1 , corresponds to the word-based embedding of
the word at the k th index in the word vocabulary. Thus,
the one-hot-encoding vector representation of the k th word
in the word vocabulary, wk ∈ Ro1 , is transformed into its
word-based embedding vector Ekword by using matrix-vector
product operation as shown below.

Ekword = mk1 = M1wk , for 1 ≤ k ≤ i1 (1)

This implies that when each word in an input sentence
is processed by SRL system, the word-based embedding of
the word is retrieved from this matrix by lookup table using
the index of the word in a given vocabulary [30], [31], [32].
Different words which have the same meaning have similar
word embedding vector representation. With the word-based
embedding we can be able to capture the semantic simi-
larity of words, such as Œ¾¹ /mäkina ‘car’/ and °]¼r¿”
/täškärkari ‘vehicle’/, and words which are written using
different shapes (characters) but are the same, such as ˜w

and Pw /säw ‘man’/.

2) CHARACTER-BASED WORD EMBEDDING
Since Amharic language is a morphologically rich language,
character-basedword embedding is the core component of the
concatenated word embedding layer of the proposed model.
As shown in Figure 6, character-based embedding of a word
is created from a sequence of its character embeddings by
applying a bidirectional recurrent neural network on top of
character embedding layer [33], [34]. The character embed-
ding layer and BiLSTM layer on the top of this layer are the
two main components of the character-based word embed-
ding layer as described below.

a: CHARACTER EMBEDDING
At the character embedding layer of the proposed network
model, an embedding vector is created for each character

of a given word. Similar to word embedding, character em-
bedding is learned by training the layer with other layers
of the network using the objective function of the network
at its sequence decoding layer instead of using the objec-
tive function of the existing neural embedding algorithms
[30], [31], [32]. This layer is created in two stages. At the
first stage, a vocabulary of characters is created by extracting
a list of unique Geez characters and Arabic numerals from a
word vocabulary. Similar to word vocabulary, all characters in
the character vocabulary are sorted and indexed with integer
numbers starting from zero. The index number 0 is reserved
for the padding of a given word because each word contains
different number of characters. At the next stage, the 2nd

trainable weight matrix of the network model called character
embedding matrix is created to generate the vector represen-
tation of each character in a given character vocabulary. This
matrix is denoted by M2 ∈ Ro2∗i2 , where i2 is the dimension
of a one-hot encoding vector of a character which is the same
as the number of characters in the character vocabulary and
o2 is a hyperparameter that represents the dimension of the
character embedding vector. The jth column vector of this
matrix, M j

2 ∈ Ro2 , corresponds to the embedding of the
character at the jth index in the character vocabulary. The
one-hot-encoding vector representation of the jth character,
cj ∈ Ro2 , is transformed into its character embedding vector
E jchar by using a matrix-vector product operation as shown
in Eq. 2. When each character in a word is processed by SRL
system, the character embedding of each character is retrieved
from the character embedding matrixM j

2 ∈ Ro2∗i2 by lookup
table using the index of the character as a search key as shown
in Figure 6. The character embedding layer in Eq. 2 is used
as input to BiLSTM layer to generate character-based word
embedding as shown in the following subsection.

E jchar = mj2 = M2cj, for 1 ≤ j ≤ i2 (2)

b: BiLSTM ON TOP OF CHARACTER EMBEDDING
To generate the character-based word embedding of a given
word from its character embeddings, BiLSTM recurrent
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Figure 6. Character-based word embedding.

network is applied on the top the character embedding layer.
The ith word wi in an input sentence is encoded into a single
vector from a sequence of its character embeddings using
Eq. 3.

hi = BiLSTM (wi)

= BiLSTM (E1
char ,E

2
char , . . . ,E

t
2, . . . ,E

n
2 ) (3)

where n is the number of characters in the ith word, wi =

(E1
char ,E

2
char , . . . ,E

t
2, . . . ,E

n
2 ) is the representation of the

ith word in terms of its character embeddings using Eq. 2.
To generate the hidden vector of the ith word hi, the BiLSTM
layer uses the 3rd - 6th trainable weight matrices of the net-
workmodel [34]. These matrices are denoted byM f

3 ∈ Ro3∗i3 ,
M f

4 ∈ Ro4∗i4 , Mb
5 ∈ Ro5∗i5 , and Mb

6 ∈ Ro6∗i6 . The matrices
M f

3 and M f
4 represent the hidden-to-hidden and input-to-

hidden matrices of the forward LSTM layer, respectively.
Similarly, the matrices Mb

5 and Mb
6 represent the hidden-to-

hidden and input-to-hidden matrices of the backward LSTM
layer, respectively. For these matrices, the dimension of the
input vector is the same as the dimension of the character
embedding vector, while the dimension of the output vector

is the same as the number of the hidden units of the LSTM
layer. As shown in Eq. 3, if n is the total number of characters
in a given word, the hidden vector of a target character at
time t in a given word is generated using Eq. 4 and Eq. 5.
Finally, if T is the number of words in an input sentence, the
character-based embedding vector of the ith word in an input
sentence is generated from the concatenation of the hidden
vectors of the first and last characters of the word as shown
in Eq. 6. Note that the dimension of the hidden vector hi is
the sum of the number of hidden units of the forward LSTM
and backward LSTM.

hft = M f
3h

f
t−1 +M f

4 xt , for 1 ≤ t ≤ n (4)

hbt = Mb
5 h

b
t+1 +Mb

6 xt , for 1 ≤ t ≤ n (5)

E ichar = hi = hf1 ⊕ hbn, for 1 ≤ i ≤ T (6)

where xt ∈ mt2, h0 = 0, and hn+1 = 0. In this regard,
the character-based embedding for the character ¼ /kä/ in
the sentence ¼¤Ô¹ €¤¤ ¼†nÔn Œ± /käbädäna Päbäbä
käländän mät.B-u ‘Kebede and Abebe came from London’/ is
treated differently. The character ¼ /kä/ in the words ¼¤Ô¹
€¤¤ /käbädäna Päbäbä ‘Kebede and Abebe’/ reflects an

VOLUME 11, 2023 33281



B. M. Hailu et al.: Semantic Role Labeling for Amharic Text Using Multiple Embeddings and Deep Neural Network

Figure 7. Sentence-based embedding from subword-based word embedding.

agent (ARG1), while the character ¼ /kä/ in the word ¼†nÔn
/käländän ‘from London’/ reflects the direction (ARGM-
DIR) the agents came from.

3) SENTENCE-BASED WORD EMBEDDING
The sentence-based word embedding component of the
concatenated word embedding layer is learned from the em-
bedding of all words in an input sentence by applying a
bidirectional recurrent neural network layer on the top of pre-
trained subword-based word embedding layer as shown in
Figure 7. This representation extracts the global information
of a word by capturing the morpho-synatctic features of the
word in the input sentence [35], [36], [37], [38]. Hence,
the three components of the sentence-based word embed-
ding layer are subword embedding, subword-based word
embedding and BiLSTM on the top of subword-based word
embedding.

a: SUBWORD EMBEDDING
The subword embedding layer is pre-trained in three steps.
At the first step, a vocabulary of subwords is created by
extracting a list of unique subwords from a word vocabulary.
All the subwords in the subword vocabulary are sorted and
indexed with integer numbers starting from zero. At the
second step, the 7th trainable weight matrix of the model
called subword embedding matrix is created and initialized

randomly. This matrix is denoted by M7 ∈ Ro7∗i7 , where i7
is the dimension of a one-hot encoding vector of a subword
which is the same as the number of subwords in the subword
vocabulary, and o7 is a hyperparameter that represents the
dimension of a vector of a given subword. The r th column
vector of thismatrix,mr7 ∈ Ro7 , corresponds to the embedding
of the r th subword in the subword vocabulary. The one-hot-
encoding vector representation of the r th subword, subr ∈

Ri7 , is transformed into its subword embedding vector Ersub
by using matrix-vector product as shown in Eq. 7.

Ersub = mr7 = M7Subr , for 1 ≤ r ≤ i7 (7)

When each subword in a given word is processed by SRL
system, the subword embedding of each subword is retrieved
from the subword embedding matrix M7 ∈ Ro7∗i7 by lookup
table using the index of the subword as a search key as shown
in Figure 7. At the third step, the subword embedding matrix
is trained using the training objective function of the existing
neural embedding architecture called fastText [31].

b: SUBWORD-BASED WORD EMBEDDING
If the number of subwords of an ith word is q, the
subword-based embedding of the ith word is computed from
the average of its subword embedding vectors using Eq. 8.

E isub = Average(E1
sub,E

2
sub, . . . ,E

j
sub, . . . ,E

q
sub) (8)

33282 VOLUME 11, 2023



B. M. Hailu et al.: Semantic Role Labeling for Amharic Text Using Multiple Embeddings and Deep Neural Network

Since this representation captures the morphological struc-
ture of a word through character n-grams, it is appropriate
for a morphologically rich language like Amharic. The pre-
trained subword-based word embedding layer is used as input
to BiLSTM layer to generate sentence-based word embed-
ding as shown in the following subsection.

c: BiLSTM ON TOP OF THE SUBWORD-BASED EMBEDDING
BiLSTM layer is applied on the top the subword-based word
embedding layer to encode a sentence into a single vector
from a sequence of subword-based embeddings of words in
an input sentence as shown in Eq. 9.

hs = BiLSTM (S)

= BiLSTM (E1
sub,E

2
sub, . . . ,E

t
sub, . . . ,E

T
sub) (9)

where, T is the total number of words in an input sentence,
and S = (E1

sub,E
2
sub, . . . ,E

t
sub, . . . ,E

T
sub) is the represen-

tation of an input sentence in terms of its subword-based
word embeddings. To generate the hidden vector hs, the
8th - 11th trainable weight matrices of the network model
are created and trained by the BiLSTM layer. These matrices
are denoted by M f

8 ∈ Ro8∗i8 , M f
9 ∈ Ro9∗i9 , Mb

10 ∈ Ro10∗i10

and Mb
11 ∈ Ro11∗i11 . The matrices M f

8 and M f
9 represent the

hidden-to-hidden and input-to-hiddenmatrices of the forward
LSTM layer, respectively. Similarly, the matrices Mb

10 and
Mb

11 represent the hidden-to-hidden and input-to-hidden ma-
trices of the backward LSTM layer, respectively. For these
matrices, the dimension of the input vector is the same as
the dimension of the subword-based word embedding vector,
while the dimension of the output vector is the same as the
number of the hidden units of the LSTM layer.

Since T is the total number of words in a given sentence,
the hidden vector of a target word at time t in a sequence of
words of a given sentence is generated by the above matrices
using Eq. 10 and Eq. 11. Finally, the sentence-based word
embedding vector E tsen of the t th word in an input sentence
is generated from the concatenation of the hidden vectors of
the first and last words of the t th word Eq. 12. The dimension
of this embedding vector is the sum of the number of hidden
units of the forward LSTM and backward LSTM.

hft = M f
8h

f
t−1 +M f

9 xt , for 1 ≤ t ≤ T (10)

hbt = Mb
10h

b
t+1 +Mb

11xt , for 1 ≤ t ≤ T (11)

E tsen = hs = hf1 ⊕ hbt (12)

where xt ∈ E tsub, h0 = 0, and hT+1 = 0. With this
sentence-based embedding of a word, since we are leaning
a representation of an input sentence from a sequence of
its words using BiLSTM layer, the character n /n/ in the
sentence ¼¤Ô¹ €¤¤ ¼†nÔn Œ± /käbädäna Päbäbä
käländän mät.B-u ‘Kebede and Abebe came from London’/,
which could have been a patient modifier (ARG1) or object
marker in other word sequences, such as‚Ób €¤¤n Œ³w

/Pijob Päbäbän mätaw ‘Eyob beat Abebe’/, is recognizing
¼†nÔn /käländän ‘from London’/ as the direction the agents

¼¤Ô¹ €¤¤ /käbädäna Päbäbä ‘Kebede and Abebe’/ came
from. Finally, the concatenated word embedding of the t th

target word in an input sentence is formed from E tword , E
t
char

and E tsen using Eq. 13. Since the concatenated embedding
layer has character-based and subword-based word embed-
ding components, it helps to deal with the out-of-vocabulary
problem which is a common problem for data driven natural
language processing applications.

wtconcat = E tword ⊕ E tchar ⊕ E tsen (13)

C. CONTEXTUAL WORD EMBEDDING
The concatenatedword embedding at the first core layer is not
context sensitive. However, for higher label NLP applications
like SRL, contextual word embedding is a crucial component.
As a result of this, a context-sensitive embedding of a target
word in an input sentence is generated at the second core layer
of the network model. This is accomplished by applying BiL-
STM sequence encoding layer on the top the concatenated
word embedding layer as shown in Figure 8. The contextual
embedding of a target word in an input sentence is created
by concatenating the left context hidden vector from forward
LSTM layer and the right context hidden vector from back-
ward LSTM layer.

To accomplish this, the 12th - 15th trainable weight matri-
ces of the model are created and trained. These matrices are
denoted by M f

12 ∈ Ro12∗i12 , M f
13 ∈ Ro13∗i13 , Mb

14 ∈ Ro14∗i14

and Mb
15 ∈ Ro15∗i15 . The matrices M f

12 and M f
13 represent

the hidden-to-hidden and input-to-hidden matrices of the
forward LSTM layer, respectively. Similarly, the matrices
Mb

14 and Mb
15 represent the hidden-to-hidden and input-to-

hidden matrices of the backward LSTM layer, respectively.
For these matrices, the dimension of the input vector is the
same as the dimension of the concatenated word embedding
layer, while the dimension of the output vector is the same
as the number of the hidden units of the LSTM layer. If T is
the total number of words in a given sentence, the forward
and backward context-sensitive representation of the target
word at the t th location in an input sentence is generated by
the above matrices using Eq. 14 and Eq. 15. By concatenat-
ing the two unidirectional context-sensitive hidden vectors,
the directional context-sensitive embedding of the t th target
word in an input sentence, E tconx , is generated as shown in
eq.(16).

hft = M f
12h

f
t−1 +M f

13xt , for 1 ≤ t ≤ T (14)

hbt = Mb
14h

b
t+1 +Mb

15xt , for 1 ≤ t ≤ T (15)

E tconxt = ht = hft ⊕ hbt (16)

where xt ∈ E tconcat , h0 = 0, and hT+1 = 0. The
context-sensitive representation extracts the left and right
contexts of the target word in an input sentence. This em-
bedding can be used to identify the boundary of an argument,
and argument boundary detection is very crucial for the per-
formance of the SRL. For example, in the Amharic sentences
˜w ká ¶w /säw k@fu näw ‘Man is bad’/ and ká ˜w ¶w
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Figure 8. Context-sensitive embedding layer using BiLSTM.

/k@fu säw näw ‘He is a bad man’/, the semantic role label
of the word ˜w /säw ‘man’/ depends on the availability of
an argument to the right of it (boundary of the argument).
The verb ¶w /näw/ in the second sentence is inflected for
subject …™ /P@su ‘He’/. The semantic role label of this word
is an AGENT in the first sentence and THEME in the second
sentence as shown below.

[säw]ARG0 [k@fu]ARG1 [näw]PRED
[k@fu säw]ARG1 [näw]PRED
Moreover, the BiLSTM network can capture long-range

dependencies which is crucial task in the SRL task for a
predicate’s argument detection. For example, in the Amharic
sentence …™ t¹nt ¤Œ¾¹ €ÔÝ �° /P@su t@nan@t
bämäkina Pädägamotä ‘He died in a car accident yesterday’/,
the phrasal argument t¹nt /t@nan@t ‘yesterday’/ expresses
the temporal context (WHEN) of the verbal predicate �°

/motä ‘[he] died’/.
[P@su]ARG1 [t@nan@t]ARG−TMP
[bämäkina Pädäga]ARG−MNR [motä]PRED

D. FULLY CONNECTED LAYER
To complement the BiLSTM layer which generates
context-sensitive representation of words in the input

sentence, a fully connected layer is added on the top of
BiLSTM layer. This is done to capture any dependency
present among input sentences in the dataset. This layer
transforms the context-sensitive representation of words in
an input sentence into their higher-level representation by
learning more complex features present in the input sentences
of a training corpus. At this layer, the 16th trainable weight
matrix, M f

16 ∈ Ro16∗i16 , of the model is created and trained.
We have accounted for the morphological, syntactic and se-
mantic features with the concatenated word embeddings and
the BiLSTM layer, but the Fully Connected Layer component
can learn dependencies present between the semantic roles,
themselves. For example, consider the sentence …™ ¼∆st

◊n ¤s‰ °Â†Ô /P@su käsos@t qän bähala täwälädä ‘he
was born three days later’/ where ¤˘‰ /bähuala ‘later’/ is
misspelled as ¤s‰ /bähala/. The semantic role of the word
sequence ¼∆st ◊n /käsos@t qän ‘[from] three days’/, which
could have been a temporal argument (ARGM-TMP) for the
verb-predicate °Â†Ô /täwälädä ‘[he] was born’/, seems to
depend on the semantic role of the word ¤s‰ /bähala/,
as shown below.

[P@su]ARG1 [käsos@t qän]ARG−DIR
[bähala]ARGM−MNR [täwälädä]PRED
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Here, the Fully Connected Layer is learning the depen-
dency between the semantic roles ARGM-DIR and ARGM-
MNR from the dataset. However, if we correct the spelling
error, the semantic role for word sequence ¼∆st ◊n /käsos@t
qän/ along with the word ¤˘‰ /bähuala/ maintains its
temporal nature in the sentence P@su käsos@t qän bähala
täwälädä, as shown below.

[P@su]ARG1 [käsos@t qän bähuala]ARGM−TMP
[täwälädä]PRED

E. SEQUENCE DECODING LAYER
A very simple sequence labeling method is to use the hidden
vector hc of the current wordwc in an input sentence to predict
its label Lc without considering the semantic role label of the
previous word Lc−1. However, this method has limitation be-
cause there is a strong dependency across the output semantic
role labels. For example, in IOB sequence labeling format,
I-ARG0 label must come after another I-ARG0 label or B-
ARG0 label. Moreover, B-ARG1 label must not come after
I-ARG1 label or another B-ARG1 label. When semantic role
labels are predicted for each word in an input sequence, it is
essential to decode the labels jointly by considering the cor-
relations between neighboring labels. There are two methods
to assign the semantic role label of the next word based on
the semantic role of its previous word in an input sentence.
The first method is to predict a distribution of semantic role
labels for each time step and using beam decoding to find
correct sequence of semantic role labels. Maximum entropy
classifier and Maximum entropy Markov model fall in this
category [39], [40]. The second method considers the entire
sequence instead of individual positions in the input sentence.
Conditional Random Field (CRF) belongs to this category.
As a result of this, the proposed model uses a linear-chain
version of CRF at the sequence decoding layer. The Sequence
Decoding Layer is connected directly with Fully Connected
Layer which, in turn, is connected to BiLSTM layer. Thus, the
CRF uses past input features from a LSTM layer indirectly.

Before applying sequence decoding operation, the network
model should be trained by using the objective function of
the linear-chain CRF algorithm. To accomplish this, the 17th

trainable state emission score matrix M17 ∈ Ro17∗i17 and the
18th trainable state transmission score matrix M18 ∈ Ro18∗i18
are created, where i17 is the dimension of the input vector
which is the same as the number of hidden units of a fully
connected layer, while o17 is the dimension of the output
vector which is the same as the number of semantic role labels
in the PropBank corpus. Since matrixM18 is a square matrix,
the dimensions i18 and o18 are the same. These matrices
have probabilistic interpretation, and the state emission score
matrix M17 is used to compute the conditional probability
distribution of the current word over the set of semantic
role labels given the current word. The state transmission
matrix M18 is used to compute the conditional probability
distribution of the current word over the set of semantic role
labels given the semantic role of the previous word. These
two matrices are position independent across time.

Mathematically, let Y = {y1, y2, . . . , yk} be the set of
semantic role labels and V = {v1, v2, . . . , vm} be the set of
words in a given vocabulary. Let W = {w1, . . . ,wc, . . . ,wn}
be a sequence of n words in an input sequence and L =

{L1, . . . ,Lc, . . . ,Ln} be a sequence of predicted semantic role
labels corresponding to a word sequence W where wc ∈ V
and Lc ∈ Y . For a given sequence of words W , let E =

{e1, . . . , ec, . . . , en} be a sequence of state emission score
vectors where ec = {e(c,1), e(c,2), . . . , e(c,k)} is a vector of
state emission scores corresponding to the current word wc.
The state emission matrix M17 assigns emission score to
each possible semantic role labels for the current word wc
by transforming the vector representation of the current word
wc from the fully connected layer to sequence decoding layer
of the network. Moreover, for a given sequence of labels L,
let T = {t1, . . . , tn} be a sequence of state transition score
vectors, where tc = {t(c,1), t(c,2), . . . , t(c,k)} is a vector of
state transmission scores corresponding the current word wc.
This implies that the state transmission matrix M18 assign
transition score to each possible semantic role labels for the
current word wc by transforming the vector representation
of the previous semantic role label Lc−1 at the sequence
decoding layer of the network into the vector representation
of the current semantic role label Lc at the sequence decoding
layer of the network when the input sequence is scanned from
left to right.

For an input sentence, we can consider E and T as score
matrices with size nxk and kxk , respectively. Hence, Ei,j
represents the score of the jth semantic role label for the ith

word in an input sentence W . Similarly, Ti,j represents the
score of a transition from the ith semantic role label yi of
the previous word wc−1 to the jth semantic role label yj of the
current word wc. Using matrix E and matrix T , the objective
function of the entire network is derived by computing the
score value of the sequence of predicted role labels L for a
given sequence of wordsW as follows.

Score(W ,L) = S(W ,L)

=

n∑
c=1

T(Lc−1,Lc) +

n∑
c=1

E(Wc,Lc) (17)

where Lc−1 ∈ {y1, y2, y3, . . . , yk}, Lc ∈ {y1, y2, y3, . . . , yk}
and Wc ∈ {v1, v2, v3, . . . , vk} for 1 ≤ c ≤ n. Note that Ti,j
represents the score of a transition from label yi to label yj
and E(i,j) represents the score of the jth label yj of the ith word
wi in an input sentence. Note that, y0 is the starting label of
the sequence L. Let A be the set of all possible sequence of
semantic role labels called a path. Since n is the length of a
sequence and there are k possible number of semantic roles
labels, the total number of possible sequences or paths is kn.
Using a softmax function, the conditional probability of a spe-
cific sequence of semantic role labels L ∈ A given a specific
word sequence W is computed using Eq. 18. By applying
log function on both sides of Eq. 18, the log-probability of
the best tag sequence is computed using Eq. 19. During the
training phase of the network model, the objective function in
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Eq. 19 is optimized. During the testing phase of the network,
the Viterbi sequence decoding algorithm is used to predict the
sequence of semantic role labels L∗ or a path that maximized
the score function as in Eq. 20. When the value of k and n are
large, it is not practical to compute the score of all the possible
number of paths one by one. To address this problem, the label
of the current word depends only on the label of the previous
word instead of depending on the labels of the previous two
or more words. In other words, the model uses only bigram
relation among output labels. As a result of this, Eq. 19 and
Eq. 20 are computed using dynamic programming method
instead of computing all the kn number of possible paths.

P(L|W ) =
eS(W ,L)∑

L̂∈A ∈ eS(W ,L̂)
(18)

log[P(L|W )] = eS(W ,L)
− log[

∑
L̂∈A ∈ eS(W ,L̂)] (19)

L∗
= argmaxL̂∈A[S

(W ,L̂)] (20)

V. EXPERIMENT
A. DATASET COLLECTION
To increase the generalizing ability of the model for a generic
data, we collectedAmharic text from different data sources on
the web such as the Amharic Bible, Addis Zemen Gazette,
The Ethiopian Reporter Newspaper, Ethiopian Federal Ne-
garit Gazette, and Amharic-English machine translation cor-
pus, Amharic Part-of-speech tagging corpus, Amharic spell
corrector corpus, and list of Ethiopic names in the GitHub.
The collected corpus is encoded in UTF. From the collected
text, 10,000 sentences were selected which follow the ba-
sic Amharic subject-object-verb (SOV) word-order and they
have a single verb predicate. The maximum number of tokens
in each sentence is 32 (31 words and the ‘ ~ ’ character that
indicates the end of an Amharic sentence). All sentences in
the corpus are annotated semantically in IOB tagging schema
and stored in a tab-separated text file. This is done by labeling
each word of a given sentence with one of the predefined
ProBank semantic role labels. The total number of predefined
PropBank semantic roles considered is 23 including the pred-
icate tag PRED and padding tag PAD.

A word dictionary is created by extracting 526,370 unique
words. In addition to the unique words that are contained in
10,000 sentences (which amount to 20,562), the dictionary
also includes unique words from other sources to address
the out-of-vocabulary problem when the model has to label
a sentence which contains words that are not part of the
training sentences. A character dictionary is also created. This
dictionary contains 365 unique Amharic characters and other
characters that can be used in Amharic sentences. Most of the
Amharic characters are included in this dictionary to avoid
out-of-vocabulary problem because the embedding of out-
of-vocabulary word is computed from the embedding of its
characters. From the entire dataset, 80% is used as training
data and 20% is used as testing data.

The number of samples in ARG3 and ARG4 classes in the
entire dataset is extremely low in comparison to other classes.

Table 2. The entire dataset without IOB format.

Unlike the case of English, there are no sufficient cases for
ARG3 and ARG4 semantic role labels in Amharic sentences
due to the intrinsic and unique characteristics of the language.
These two labels form minority classes causing the training
data to be unbalanced. For non-sequential traditional machine
learning classifiers, an intrinsic class imbalance problem can
be minimized by increasing the number of samples in the
minority class using random up-sampling method by fixing
the number of samples in the majority class. However, it is
not applicable to make random up-sampling method for se-
mantic role label which is a special type of sequence label.
When a sample sentence constructed from words with rarely
occurring semantic role labels is up-sampled using random
up-sampling method, other words with frequently occurring
semantic role labels are also up-sampled instead of remaining
constant. Since the task of the proposed end-to-end semantic
role labeling system is treated as predicate-argument-role
triplets unlike traditional machine learning classifiers, it is
impossible to address the imbalance data problem using ran-
dom up-sampling method. Moreover, the primary purpose of
semantic role labeler is to correctly predict the majority class
instead of minority classes. Since ARG3 and ARG4 semantic
role labels occur rarely, we can consider them as outliers
or noise. Hence, we created a new dataset (consisting 9,987
sentences), which is a relatively balanced dataset, by remov-
ing the two outlier classes and their corresponding sentences
from the original unbalanced dataset (consisting 10,000 sen-
tences). Similar to the case of the entire dataset, we used 80%
for training and 20% for testing in the relatively balanced
dataset. Tables 2 and 3 show the statistics of the entire dataset
and relatively balanced dataset without IOB format. Simi-
larly, we created IOB-based datasets for the entire dataset and
the relatively balanced dataset as presented in Tables 4 and 5.
Thus, experiments were carried out with the following four
datasets:

• The entire dataset without IOB format
• The relatively balanced dataset without IOB format
• The entire dataset with IOB format
• The relatively balanced dataset with IOB format.
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Table 3. The relatively balanced dataset without IOB format.

Table 4. The entire dataset with IOB format.

B. PARAMETER SETTING AND MODEL BUILDING
We trained many types of models by setting different val-
ues for different hyper-parameters of the model. We have
used the Keras API with Tensforflow as the backend to
implement the components of the model. In all models, the
CRF objective function in Keras is used as the loss func-
tion [41]. This objective function is optimized with a variant
of the Adam’s stochastic gradient decent algorithm called
Adamax optimizer by setting the learning rate to 0.001 and
the constant (epsilon) is set to ϵ = 1e − 7 for numerical
stability. To avoid exploding gradients problem, the norm
of gradients is clipped with a threshold of 1.0. All models
were trained for 50 iterations (epochs) with mini-batches
of size 4. However, the subword-based word embedding is
pre-trained separately for 10 iterations. During training, the
loss of the model was monitored at each iteration by setting
the early stopping parameter to 5 as its patience. After doing
an extensive experiment, the hyper-parameter settings of the
best neural network model are summarized in Table 6. The

Table 5. The relatively balanced dataset with IOB format.

values of the parameters are determined by evaluating their
joint impact on the performance of the entire model. In the
following subsections, a detailed description is given about
the setting of each of the 18 trainable weight matrices of
the network model that transforms the vector representation
of a word at one layer of the network into its new vector
representation at the next layer of the network.

C. SETTING PARAMETERS OF THE CONCATENATED WORD
EMBEDDING LAYER
As described above, the Concatenated Word Embedding
Layer contains the concatenation of three types of word
embeddings, namely Word-based word embedding layer,
Character-based word embedding layer and Sentence-based
word embedding layer. The parameter setting of the trainable
matrices associated to these embeddings are given in the
following subsections.

1) SETTING PARAMETER OF WORD-BASED EMBEDDING
MATRIX
The trainable word-based embedding matrix M1 ∈ Ro1∗i1 is
created and initialized randomly by an ‘‘Embedding layer’’
of Keras. This API takes the dimension of the word-based
embedding vector o1, the number of unique words in the
vocabulary i1 and the maximum number of words in an input
sentence as its input hyper-parameters. The matrix is set to
M1 ∈ R5∗526372 where:

• The number of unique words in the vocabulary is set to
be 526,372.

• The maximum number of words in a sentence is set to
be 32.

• The dimension of the word-based embedding vector is
set to be 5.

When the dimension of the word-based embedding vector is
more than 5, it is found that the similarity between words
in vocabulary increases. This, in turn, results in model over-
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Table 6. A summary of the hyper-parameter and training parameter settings of the best model.

fitting problem by losing the discriminating power of the
embedding.

2) SETTING PARAMETERS OF CHARACTER
EMBEDDING MATRIX
The trainable character embedding weight matrix M2 ∈

Ro2∗i2 is also created and initialized randomly by an ‘‘Em-
bedding layer’’ of Keras API. This API takes the dimension
of the character embedding vector o2, the number of unique
characters in the character vocabulary i2 and the maximum
number of characters in a word as its input parameters. This
implies that the trainable character embedding matrix is set
to M2 ∈ R20∗367 by setting the parameters of the Embedding
Layer of Keras as follows.

• The number of unique characters in the character dictio-
nary is set to 367.

• The maximum number of characters in a word is set 15.
• The dimension of the character embedding vector is set
to 20. When the dimension of the embedding vector
increases above 20, it is found that the similarity between
words increases. This, in turn, result in model overfitting
problem.

3) SETTING PARAMETERS OF CHARACTER-BASED WORD
EMBEDDING MATRIX
The character-based word embedding of a word is created
and initialized by using BiLSTM layer of Keras on top of
character embedding layer. The number of hidden units of this
layer is set to 128 and its activation function is set to tanh. This
implies that for forward LSTM layer, the trainable hidden-
to-hidden matrix is set to M f

3 ∈ R128∗128 and the trainable
input-to-hidden matrix is set to M f

4 ∈ R128∗20. Similarly, for
the backward LSTM, the trainable hidden-to-hidden matrix
is set to Mb

5 ∈ R128∗128 and the trainable input-to-hidden

matrix is set to Mb
6 ∈ R128∗20. When the number of hidden

units is 128, all the possible morphological information of a
word in a sentence can be captured by holding the discrimina-
tion power of the representations. Experimentally, it is found
that a small number of hidden units resulted in overlapping
representations. Moreover, increasing the number of hidden
units above 128 resulted in poor representation by losing
the discrimination power of the representations. Hence, the
dimension of the character-based word embedding is 256
(128+128) by concatenating the hidden vectors of forward
LSTM and backward LSTM. Empirical results show that
tanh function performs well in comparison to other activation
functions.

4) SETTING PARAMETERS OF THE SUBWORD WORD
EMBEDDING MATRIX
The trainable subword-based word embedding matrix, M7 ∈

Ro7∗i7 , is created and trained using Gensim’s fastText embed-
ding API. This API takes the dimension of the subword-based
embedding vector o7, the number of unique character
n-grams in subword dictionary i7, the size of the local window
of the target word, the minimum frequency of a word to be in-
cluded in the character n-gram dictionary, the minimum value
of n to construct character n-gram subwords from a given
word, the maximum value of n to create character n-gram
subwords from a given word as its input parameters [40].
The subword-based word embedding matrix is set to M7 ∈

R5∗70072 by setting the input parameters of the fastText word
embedding algorithm as follows.

• The dimension of the subword-based embedding vector
is set to 5.

• The number of unique character n-grams in the subword
dictionary is set to 70072.
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• The size of the local context window of the target word
is set to 3 (3 words on the left and 3 words on the right
of target word).

• The minimum frequency of a word to be included in the
character n-gram dictionary is set to 1.

• The minimum value of n to construct character n-grams
(subwords) from a given word is set to 1.

• The maximum value of n to create character n-grams
(subwords) from given word is set to 6.

As the size of the local context window increases above 3,
fastText word embedding algorithm suffers because the mor-
phological features of a word cannot be captured when the
size of the local context window increases. As a result of
this, the model works well when the window size is set to 3.
The subword-based word embedding matrix,M7 ∈ R5∗70072,
is trained alone and it is frozen when all the remaining train-
able weight matrices of the networkmodel are updated jointly
during the training phase of the entire model. Note that the
subword-based word embedding of a given word is computed
from the average of its subword embeddings.

5) SETTING PARAMETERS OF SENTENCE-BASED WORD
EMBEDDING MATRIX
The sentence-based embedding of a word in an input sentence
is computed from the embedding of its pre-trained subword-
based embedding using BiLSTM layer of Keras. The number
of hidden units of this layer is set to 32 and its activa-
tion function is set to tanh. Similar to the character-based
word embedding, the morphological features of a word have
already been captured by subword-based word embedding
using fastText word embedding. As a result of this, a small
number of hidden units (32) performs well by avoiding the
model overfitting problem. This implies that for the forward
LSTM layer, the trainable hidden-to-hidden matrix is set to
M f

8 ∈ R32∗32 and the trainable input-to-hidden matrix is set
to M f

9 ∈ R32∗5. Similarly, for the backward LSTM layer, the
trainable hidden-to-hidden matrix is set to Mb

10 ∈ R32∗32 and
the trainable input-to-hidden matrix is set to Mb

11 ∈ R5∗32.
As a result of this, the dimension of the sentence-based word
embedding is set to 64 (32+32) by concatenating the forward
and backward hidden vectors.

6) SETTING CONCATENATED WORD EMBEDDING LAYER
The output of the word-based, character-based and
sentence-based word embeddings of a given word in an input
sentence are concatenated using the concatenate layer of
Keras. The dimension of the concatenated vector is set to
325 which is the sum of the dimensions of the word-based
word embedding (5), character-based word embedding (256)
and sentence-based word embedding (64).

D. SETTING PARAMETERS OF THE CONTEXTUAL
EMBEDDING LAYER
The context-sensitive representation of each word in an in-
put sentence is trained by passing the concatenated word

embedding into BiLSTM layer of Keras. The number of
hidden units of this layer is set to 32 to capture bidirec-
tional and long-range context of a target word. The num-
ber of hidden units of this layer is small because of three
reasons. First, the morphological information of a word has
been already captured by character-based word embedding
and subword-based word embedding. Second, the seman-
tic similarity among words has been already considered by
word-based word embedding. Third, the morphological and
syntactic interaction of a word has been already counted by
sentence-based embedding. As a result of this, it is found
that increasing the number of hidden units above 32 would
result in model overfitting. Thus, for the forward context
LSTM layer, the trainable hidden-to-hidden matrix is set
to M f

12 ∈ R32∗32 and the trainable input-to-hidden ma-
trix is set to M f

13 ∈ R32∗325. Similarly, for the backward
context LSTM layer, the trainable hidden-to-hidden matrix
is set to Mb

14 ∈ R32∗32 and the trainable input-to-hidden
matrix is set to Mb

15 ∈ R32∗325. Hence, the dimension of
the contextual word embedding vector (output vector) is
64 (32+32).

E. SETTING PARAMETERS OF FULLY CONNECTED AND
SEQUENCE DECODING LAYERS
In order to prevent the overfitting problem of the model,
a variant of dropout layer is added on top of concatenated
word embedding layer before passing this embedding into
the BiLSTM layer. This is accomplished by implementing the
dropout layer and setting the keep probability to 0.8. A reg-
ular dropout layer is also used on top of context-sensitive
representation layer before passing this representation into
the fully connected layer. This dropout layer is implemented
using a Droput layer of Keras by setting the keep probability
to 0.8. Note that the two dropout layers have no trainable
parameter. To capture any dependency present among input
sentences in the dataset, a fully connected layer is added on
the top of context-sensitive layer. This layer transforms the
context-sensitive representation of words in an input sentence
into their higher-level representations. The number of hidden
units of this layer is set to 64 by maintaining the dimension
of its context-sensitive input vector. This layer also maintains
the linearity of the input vector by using linear activation
function. For this layer, the 16th trainable weight matrix
M f

16 ∈ R64∗64 of the proposed model is created and initialized
using the Dense Layer of the Keras API. To incorporate the
dependency among semantic role levels, sequence decoding
layer is added on top of fully connected layer as a sequence
decoder layer. The number of units in this layer is 23 (the
number of semantic roles in in IOB schema). At this layer,
the state transition trainable matrix is set toM f

17 ∈ R23∗64 and
the state emission trainable matrix is set to M f

18 ∈ R23∗23.
Both matrices are initialized randomly. This layer is imple-
mented using the liner-chain CRF from Keras-contrib which
is a repository for Keras contributed modules with additional
layers, activations, loss functions and optimizers.
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F. RESULTS AND DISCUSSION
In the standard evaluation criteria of a semantic role labeling
system, the label of each phrasal argument of a verb (pred-
icate) must be assigned to each word in an input sentence
using IOB sequence labeling format. Based on this evaluation
criteria, accuracy, precision, recall, and F-score are the major
metrics that can be used to evaluate SRL systems. We devel-
oped the prototype of the proposed neural SRL system for
Amharic language incrementally phase by phase by setting
the parameters of the network model.

At the first phase, we assume that the character-based
embedding of a word is the main word embedding type to
develop the neural SRL system for Amharic language be-
cause Amharic is a morphologically rich language. To test
our assumption, we compared the three types of word em-
bedding methods, namely, character-based word embedding,
subword-based word embedding and word-based word em-
bedding. As shown in Table 7, character-based word em-
bedding ranks first, subword-based word embedding ranks
second and word-based word embedding ranks third. This re-
sult demonstrates that formorphologically rich languages like
Amharic language, character-based embedding is appropriate
to capture the morphological information of each word in a
given sentence.

At the second phase, we assumed that themorpho-syntactic
information of a word in an input sentence can be used as a
supplementary information for character-based embedding of
a word which captures only the morphological information
of a word. In other words, the local information of the word
which is captured by the character-based word embedding is
complemented by the global information of the word which is
captured by sentence-based word embedding. Ourmainmoti-
vation to augment character-based embedding with morpho-
syntactic sentence-based embedding is that morpho-syntactic
information is a necessary input for well know feature-based
and hybrid SRL systems for other languages. In hybrid sys-
tems, the morpho-syntactic information augments the auto-
matically extracted features. Basically, there are three options
to generate the sentence-based embedding of a word. The
first option is using character-based word embedding as an
input for BiLSTM recurrent network as a sequence encoder.
The second option is using the subword-based word em-
bedding as input for BiLSTM. The third option is using
word-based word embedding as input for BiLSTM. We as-
sume that the subword-based word embedding is appropriate
to generate a sentence-level word embedding instead of the
character-based word embedding because the performance
of character-based word embedding and subword-based
word embedding is almost similar as indicated in the first
phase of the experiment. Thus, if the character-based word
embedding is used to generate sentence-based word em-
bedding, the concatenation character-based word embed-
ding and the sentence-based word embedding derived from
character-based word embedding is redundant. Moreover,
we assume that the subword-based word embedding is ap-
propriate to generate a sentence-level word embedding in

comparison to the word-based word embedding because
subword-based word embedding is appropriate for morpho-
logically rich languages like Amharic as we proved in the
first phase of the experiment. To test our assumption ex-
perimentally, three types of word embedding types are cre-
ated by the concatenation of two types of word embedding
types. The experimental result shows that the concatenation
of character-level word embedding and sentence level word
embedding (derived from subword-based word embedding)
ranks first as shown in Table 7. The experimental result
confirms our assumption. Thus, the sentence-based word
embedding can capture themorpho-syntactic information of a
word from a sequence of its subword-basedword embeddings
using BiLSTM recurrent network.

Finally, at the third phase, we assume that the seman-
tic similarity among words in a given lexicon can be also
used to complement the concatenation of character-level
and sentence-level word embedding types because different
words with identical meanings have similar word represen-
tations. As a result of this, word-based embedding is added
to complement both the concatenation of character-based
and sentence-based word embedding types. Thus, when the
model is trained and tested using the concatenation of the
three types of word embedding types, the performance of
the model improved as shown in Table 7. This result shows
that by capturing the semantic similarity among words in a
given lexicon, the word-based embedding also contributes for
the performance of the system jointly with character-based
and sentence-based embedding types. Generally, experimen-
tal results show that the concatenation of character-based and
word-based and sentence-based word embedding types give
better performance by capturing the morphological, semantic
and morpho-syntactic information about each word in given
Amharic sentence, respectively. Test results also show that
experiments with the relatively balanced dataset provides
slightly better performance than the use of the entire dataset.
This is attributed to lack of trainability of the system with
ARG3 and ARG4 labels which have very few samples for
training.

The precision, recall and F-score of the semantic role labels
of all phrasal arguments of predicates (verbs) tested with
in the test datasets of the entire dataset and the relatively
balanced dataset without IOB labeling formats are presented
in Tables 8 and 9, respectively. In Table 8, the performance
of semantic role labels (classes) with low number of samples
(ARG3 and ARG4) is low, with precision, recall and F-score
results being 0. This is because the the number of samples
for these labels in the training data, as presented in Table 2,
is very low (5 and 9), which makes it difficult for the deep
learning system to learn from examples. Since the number
of these labels are still low in the test data (1 and 3), they
have little significance on the overall system performance.
On the other hand, the PREDICATE label has a very high
rate of accuracy as it has a very high number of examples
required for training deep learning systems. Moreover, the
huge performance is probably due to the position of the
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Table 7. Overall performance of the proposed model.

Table 8. Performance of the system for each label using the entire
dataset without IOB format.

Table 9. Performance of the system for each label using the relatively
balanced dataset without IOB format.

predicate in the subject-object-verb (SOV) word-order fol-
lowed by Amharic sentences. Most of the time, the predicate
(verb) in an input sentence is located at the last position of the
sentence. As a result, identifying the location of a predicate
in an input sentence is relatively easy for the proposed SRL
model.

We also carried out similar experiments with the IOB-
based formats of the entire dataset and the relatively balanced

dataset. The precision, recall and F-score of the semantic role
labels of all phrasal arguments of predicates (verbs) in the test
data of the entire dataset and the relatively balanced dataset
with IOB labeling formats are presented in Tables 10 and 11,
respectively. In Table 10, the performance of the sys-
tem for semantic role labels with low number of samples
(B-ARG3, B-Arg4, I-ARG3 and I-ARG4) is low whereas the
performance for labels with high number of samples (e.g.
PREDICATE) is high, similar to the case of non-IOB labeling
formats. The system slightly improves the performance for
each label when the labels with low samples are excluded
from the dataset, as presented in Table 11. Generally, for
both IOB and non-IOB labeling formats, test results show
that the system performs well for labels having sufficient
number of samples in the training data whereas it performs
badly for labels with few samples. This is an expected result
considering the amount of data required for deep learning
systems.

The confusion matrix of the model with the concatenation
of the three-word embedding methods is also presented in
Figure 9. The diagonal and off-diagonal values represent
the percentage of truly classified and misclassified instances
of a given true semantic role label, respectively. Generally,
there is a tendency that the system yields better accuracy for
labels that have higher number of samples in the training data
whereas misclassifications (confusions) are higher for labels
whose number of samples are low. However, the linguistic
characteristics associated with the labels has also impact on
the overall performance. As observed in the diagonal values,
an improvement in accuracy is obtained for most labels when
experiments are carried out with relatively balanced dataset
for both IOB and non-IOB formats. This is probably due to
the fact that labels with insufficient samples are excluded in
the dataset, leading the model to generalize better.

The learning curves of the model with three concatenated
word embedding types are presented in Figure 10. The error
value (loss) of the model is sufficiently decreasing on the
training data to a point of stability where the gap between
the final training and validation losses is minimal. The val-
idation loss shows steady movements around the training
loss with minimal gap. This implies that both the training
and validation data are representative to each other. In other
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Figure 9. Confusion matrix for various tests; Top left: the entire dataset without IOB format, Top right: the relatively balanced dataset
without IOB format, Middle: the entire dataset with IOB format, Bottom: the relatively balanced dataset without IOB format. The last
column in each of the confusion matrices indicates the frequency of labels in test data.
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Figure 10. The learning curve of the model for training (blue color) and validation (red color) with the non-IoB dataset; Top left: Training and validation
loss for the entire dataset, Top right: Training and validation loss for the relatively balanced dataset, Bottom left: Training and validation accuracy for the
entire dataset, Bottom right: Training and validation accuracy for the relatively balanced dataset.

words, the training data provides sufficient information to
learn the problem and the validation data also provides suf-
ficient information to evaluate the generalizing ability of the
model. It is also observed that the training accuracy of the
model is growing over time. This implies that the model is
learning as it gets more experience. The validation accuracy
of the model does not dip below the training accuracy. This
implies that the model is a good-fit. Moreover, the training
accuracy of the model grows rapidly at the beginning, and
gradually grows over time before it reaches a plateau, which
indicates that the model still requires more data to learn.
When the outlier labels (ARG3 and ARG4) are removed,

the gap between training and validation loss curves increases
by marginal value. Similarly, the gap between training and
validation accuracy curves increases by marginal value.

To our best knowledge, there is only one previous
work [29] on Amharic SRL developed using memory-based
learning. The system was tested with 240 manually anno-
tated simple sentences, and the result showed an accuracy of
89.29% and F-Score of 79.77%. Although results could not
be directly compared due to variations in the size and type
of test data, our system performed better with an accuracy
of 94.96% and F-Score of 81.20% tested with the entire
dataset.
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Table 10. Performance of the system for each label using the entire
dataset without IOB format.

Table 11. Performance of the system for each label using the relatively
balanced dataset without IOB format.

VI. CONCLUSION AND FUTURE WORK
A neural-based semantic role labeling system is devel-
oped taking into account the morphological complexity of
Amharic and unavailability of lexical resources for the lan-
guage. The model uses the concatenation of character-based,
sentence-based and word-based embedding types to capture
the morphological, morpho-syntactic and semantic features
of a given word in an input sentence, respectively. The

word embedding layer, which is the concatenation of the
three-word embedding types, is a context-insensitive repre-
sentation. Since a context-sensitive representation of a given
word in an input sentence is necessary for the sequential
semantic role labeling task, the context-insensitive concate-
nated word embedding is transformed into context-sensitive
word representation. This is accomplished by capturing the
bi-directional and long-range dependencies of each word in a
sentence using BiLSTM recurrent network. Finally, a condi-
tional random field with viterbi sequence decoding algorithm
generates a sequence of semantic role labels for a given
sequence of words in an input sentence. The system has
achieved an accuracy of 94.96% and F-score of 81.2% on
test data. The experimental result shows that without using
manually designed features of words in an input sentence,
it is possible to develop SRL system for Amharic language
by extracting morphological, syntactic and semantic features
of words automatically. Character embeddings are the most
important word embedding type for Amharic language, and
the sentence-based embedding, which is is achieved by pass-
ing a sequence of subword-based embeddings in an input
sentence into a BiLSTM recurrent network, is the second
most important word embedding type for the language.

This work gives the first insight for the possibility of
developing semantic role labeling system for Amharic text
using deep learning algorithm. However, it has targeted sim-
ple Amharic sentences. In addition, the choice of the word
embeddings used is constrained to the limited computational
resources that were available to us. The size of the corpus
is also small in comparison to high-resource languages like
English and Chinese, and lacks balanced class distribution.
Thus, future work is directed at improving the quality of the
corpus (by increasing the corpus size and balancing the class
distribution), and experimenting with other contextualized
neural word embedding methods such as ELMo and BERT
in a higher capacity computational environment.
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