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ABSTRACT Salient object detection (SOD) is to segment significant regions of images. Noticing that the
saliency maps in existing SOD methods suffer from blurring boundaries owing to insufficient extraction
of boundary features and inadequate fusion between boundary features and salient region features, a dual-
branch network of information mutual optimization (DIMONet) is proposed. The DIMONet has a region
detection branch and a boundary detection branch to extract the corresponding features simultaneously and
is mainly composed of two components. One is the mutual optimization module (MOM) that refines salient
region features and boundary features based on their internal relationship. The other is the fusion module
of multi-receptive fields (FMMF) that integrates multi-layer features with the refined features to distinguish
salient objects better and sharpen their boundaries. With the help of MOMs and FMMFs, noises from the
background in the boundary features are gradually reduced and hence the boundaries of the salient regions
get sharpened. Experiments on five benchmark datasets show that our method is superior to the 18 state-of-

the-art methods.

INDEX TERMS Deep learning, salient object detection, mutual optimization, feature fusion.

I. INTRODUCTION

The purpose of salient object detection (SOD) is to detect
the most fascinating subjects to people in a certain scene.
Nowadays, SOD is widely used as an essential preprocessing
technique in many downstream computer vision tasks, such
as image translation [1], object tracking [2], [3] and semantic
segmentation [4], [5].

In traditional SOD methods [6], [7], [8], [9], [10], [11],
hand-crafted low-level features are widely used. However,
the lack of high-level salient object information makes
these features unsuitable for complex scenarios. Up to now,
convolutional neural networks (CNNs) have accelerated the
development of SOD thanks to their powerful ability to auto-
matically learn high-level features. However, only extract-
ing and fusing multi-layer features, most of the existing
SOD methods [12], [13], [14], [15] are unable to make the
boundaries of objects clean and clear due to the lack of
the exploration of boundary information. In order to sharpen
the boundaries of salient objects, some researchers [16], [17],
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[18], [19] design additional boundary prediction branches
to extract accurate boundary features. But the structures of
region detection branches are more complex than that of
boundary detection branches, which makes their models pay
more attention to the extraction of region features than the
extraction of boundary features. As a result, the boundary
features extracted by their boundary detection branches are
full of noises from the background and therefore interfere
with the detection of salient objects after fused with the
region features, such as EGNet [17] and ITSD [16] in Fig. 1.
Differently, some methods, for example SCRN [18], have
the same structures of the region detection branch and the
boundary detection branch and fuse the region features and
the boundary features based on their internal relationship, and
hence achieve better results than the EGNet and the ITSD.
However, the SCRN does not consider the complementarity
between multi-level features, which makes the salient objects
cannot be accurately separated from the background.

In this paper, we design a dual-branch information
mutual optimization network (DIMONet)to solve the blurring
boundary problem in SOD task. The DIMONet has a salient
region detection branch and a boundary detection branch of
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SCRN

FIGURE 1. Prediction results by the proposed DIMONet, SCRN [18],
EGNet [17] and ITSD [16].

the same structures to focus equally on the boundaries and
the regions. In addition, in order to better refine the region
features and the boundary features, a mutual optimization
module (MOM) is proposed based on the internal relationship
between the salient region and its boundary: the intersection
set of the salient region and its boundary is the boundary,
while their union set is the salient region. Besides, in order
to make the salient region features and the boundary fea-
tures characteristic and representative, a fusion module of
multi-receptive fields (FMMF) is designed to fuse the refined
features in the preceding stage and the original features in
the succeeding stage. The fused features are then sent to a
new MOM to be further refined. By utilizing the MOMs and
the FMMFs to refine region features and boundary features
several times, the noises in the boundary features can be
reduced and the boundaries of the region features become
clear.

In summary, our contributions are as follows:

1) We propose a DIMONet containing a region detection
branch and a boundary detection branch of the same
structures. Unlike previous networks, the DIMONet
treats regions and boundaries equally, so that clean and
accurate boundary features can be extracted.

2) We build a mutual optimization module to optimize the
salient region features and the boundary features based
on the internal relationship: the intersection set of the
salient region and its boundary is the boundary, while
their union set is the salient region. After being refined
several times by the mutual optimization module, the
features of the salient region and the boundary become
clean and recognizable.

3) We design a fusion module of multi-receptive fields to
make the salient region features and boundary features
more representative.

4) Extensive experiments show that our method is supe-
rior to 18 state-of-the-art methods on five well-known
datasets.

Il. RELATED WORK
Hand-crafted features [6], [7], [8], [9], [10], [11] are
widely used in most traditional salient object methods.
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However, these features can only represent some low-level
semantic information, making these traditional methods
unable to correctly segment salient objects in complex scenes.
Recently, due to the fact that CNN has the strong ability that
automatically learns high-level semantic information, many
SOD methods based on CNN are proposed. Specifically,
these methods can be divided into multi-level feature fusion
methods and boundary-aware methods and are explained in
detail below.

A. MULTI-LEVEL FEATURES FUSION METHODS
Some researchers believe that there is complementarity
between multi-level features. Hence, various methods are
proposed to integrate multi-level features in order to segment
salient objects from natural scenes. Chen et al. [20] design a
reverse attention network. By masking the predicted region
in each side output, this network can gradually dig out the
lacking parts of salient objects. Zhuge et al. [21] propose
an integrity cognition network (ICON) to learn integrity
features from micro and macro levels. Zhang et al. [15]
fuse features of each stage in VGG-16 to generate features
of different resolutions, which are then used for saliency
detection. Xiao et al. [22] utilize short and long range
connections to exploit the object context and preserve the
object boundary for effectively integrating multi-scale fea-
tures. Liu et al. [23] design a hierarchical recurrent convo-
lutional neural network (HRCNN) in their deep hierarchical
saliency network (DHSNet) that automatically learn various
global structured saliency cues to refine the saliency map
progressively. Wang et al. [24] propose a stagewise refine-
ment model. They first generate a coarse prediction result
and then integrate local context information by a pyramid
pooling module and a multi-stage refinement mechanism to
refine it. Hou et al. [25] build short connections in a top-
down approach to densely combine multi-level features, and
take the outputs of different layers into account to yield an
ultimate saliency map. Wang et al. [26] design recurrent fully
convolutional networks (RFCNs). By incorporating saliency
prior knowledge and their recurrent architecture, the RFCNs
can automatically recover image details and hence achieve
more accurate results. Deng et al. [27] design a recurrent
residual refinement network. By iterating high-level features
and low-level features many times, this network can pick
up residual information between mid-prediction and ground
truth. Pang et al. [28] combine the features from neighbor-
ing levels to detect multi-scale objects in saliency detection.
Wei et al. [29] design a cross feature module to mitigate the
differences of multi-level features. Chen et al. [30] design a
module for feature intertwining aggregation that fuses low-
level features, high-level features and global features to gen-
erate a saliency map.

However, being a lack of exploration of the boundary infor-
mation, the above methods do not make the object boundaries
clear well.
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B. BOUNDARY-AWARE METHODS

In order to make the boundaries of salient regions clear, some
researchers introduce boundary labels in SOD. Su et al. [31]
integrate multi-level features in the boundary localiza-
tion module to strengthen the ability of the network to
extract boundary features. Based on the logical interre-
lations between saliency maps and their boundary maps,
Wu et al. [18] propose a cross refinement unit to simulta-
neously optimize multi-level features of saliency maps and
boundary maps. Qin et al. [32] design a BASNet containing a
coarse-refine architecture and a hybrid loss for salient object
detection. Zhou et al. [16] design an adaptive contour loss
to induce their network to focus more on hard samples.
Wang et al. [19] propose a salient edge detection module that
provides a powerful tip for their network to improve the object
boundaries. Feng et al. [33] propose a boundary-enhanced
loss and an attentive feedback module for their network to
refine object boundaries. Wei et al. [34] utilize distance trans-
formation to break the saliency map down into region map
and detail map, which makes each pixel in the saliency map be
treated unequally, and then the saliency map, region map and
detail map are used for training. Zhao et al. [17] build an
edge-guided network to extract salient object information and
boundary information at the same time.

However, in most of these methods, the structures of region
detection branch and boundary detection branch are different.
These methods generally pay more attention to the design
of the region detection branch than the boundary detection
branch, which makes their network cannot extract clean
and accurate boundary features well. As a result, noises in
the boundary features interfere with the detection of salient
regions.

Ill. PROPOSED METHOD
A. DIMONEet PIPELINE
In the following, we denote Conv,, as a convolutional layer
with kernel size n x n and y; as an intermediate feature, i € Z.
Many works [24], [35] have shown that using the
ResNet-50 as the backbone yields better results than using
VGG-16. Therefore, we also use ResNet-50 as the backbone
of the DIMONet. There are five features from low-level to
high-level extracted by the ResNet-50. However, the low-
level features are of the small receptive field and the largest
resolution. Therefore, they contain a lot of noise and cost
much computation. Therefore, only the features of the last
four layers L = {L1, Ly, L3, L4} are used. For each L;, extract
the salient region features S; and the boundary features B; by
one 1 x 1 convolutional layer with 64 output channels and
one 3 x 3 convolutional layer in parallel, respectively:

{s,- =A@ a0 M

B; = f2(Ly),

where f1(-) and f>(-) represent operations Conv3(Convy(-))
with different initialization parameters.
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An additional 3 x 3 convolutional layer is applied to S4 and
B4 to obtain the global information S5 and Bs, respectively.
Therefore, two feature sets S = {S1, 52, S3, 54, S5} and B =
{B1, B2, B3, B4, Bs} are obtained and then are processed in
parallel to form the region detection branch and boundary
detection branch. Each branch contains four stages and each
stage is a refinement of the output of the previous stage. In the
first stage, the features S5 and Bs are first mutually optimized
by the MOM M(-) to obtain Ss and Bs, then the feature sizes
of 3’5 and 35 are made consistent with S4 and B4 by the
upsampling operation Up(-), and finally the upsampled Ss and
S4 and the upsampled f95 and By are fused by two different
FMMFs F(-) to obtain S and By, respectively. The remaining
stages are similar to the first stage. The overall process of
DIMONet can be expressed as:

fi = F(S;, UP(SAiH))» i—4.3.2.1, @
B; =TF(B;, Up(Bi+1)),
A 2~ M S., B‘ ) i I pr— 5’
(8, Bj) = {MES’_ EJ; = 3 3)
jv _] ) l‘f ] - E) ) .

In order to guide the network to learn salient object infor-
mation and boundary information more easily and accurately,
a1 x 1 convolution layer is applied to each feature in S and
Bto generate a set of saliency maps S = {31, S, 83, 5'4} and
a set of boundary maps B= {1_5’1 , 1_92, 1_93, 1_94}:

- - i=4,32,1. 4)
B; = Conv(B)),

[ S; = Convi(S;),

Like other U-shaped networks, the decoded feature reso-

lutions in DIMONet gradually increase. As the resolution of

the saliency map S is closest to the original input, a large

amount of detailed information is retained. Therefore, the last

saliency map S is taken as the final salient object mask in the
inference stage.

B. MUTUAL OPTIMIZATION MODULE

The purpose of the region detection branch is to segment
the complete region of targets from backgrounds, while the
boundary detection branch is to detect the boundary of tar-
gets. To achieve effective refinement of features for each
specific task, a MOM, as illustrated in Fig. 2, is used based
on the internal interrelations: B C $ , Where S and B represent
the ground truth saliency map and corresponding boundary
map, respectively.

Specifically, the element-wise multiplication is used to get
the intersection of § and B, and the concatenation is to obtain
the union of § and B. For the salient object features, they
are first concatenated with the boundary features along the
channel axis and then use two 3 x 3 convolution layers to
generate discriminative features of salient objects. Finally,
a residual connection is used for better optimization. For the
boundary features, its process is similar to the salient region
features, but element-wise multiplication is used instead of
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FIGURE 2. The pipeline of DIMONet. The extracted salient region and boundary features from the backbone are denoted
as S; and B;, where i € {1, 2, 3, 4) indexes the feature level. An additional 3 x 3 convolutional layer is applied to S; and
B, to obtain the global information S5 and Bs, respectively. These two kinds of features are processed in parallel to form
the region detection branch and boundary detection branch. In the feature decoder, there are four stages and each stage
is a refinement of the output of the previous stage. In the first stage, we first use the MOM to generate mutually optimized
features 55 and B5 Then these features are upsampled and fused with the corresponding features of the encoder to obtain
S4 and BA, which are sent to the next MOM for further mutual optimization. Finally, a 1 x 1 convolution layer is applied to

each feature S and B to generate a corresponding saliency map S; and a boundary map B;, where i € (1,2, 3, 4}.

concatenation. The whole process of the MOM can be for-
malized as:

Sout = Conv3(Conv3(Cat(Bjn, Sin))) + Sin,

&)
Bout = Convz(Conv3z(Sin ® Bin)) + Bin,

where Sin, Bin and Sout, Bout are the inputs and outputs of the
MOM, Cat(-) stands for concatenation and ® for element-
wise multiplication.

After applying the MOM, the features of the region detec-
tion branch and the boundary detection branch become neat
and recognizable.

C. FUSION MODULE OF MULTI-RECEPTIVE FIELDS

The utilization of MOM allows the features of the region
detection branch and the boundary detection branch to
become more discriminative. For better integration of these
refined features generated by the MOM with multi-level fea-
tures, a FMMEF that contains a series of convolution layers
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FIGURE 3. Prediction results by the proposed DIMONet and DIMONet-D.
DIMONet-D means using 3 x 3 convolution to fuse the features of the two
tasks directly.

with different kernel sizes and a squeeze and excitation (SE)
block [36] is used and its structure is shown in Fig. 2. The
FMMF firstly concatenates the refined features X produced by
the former MOM with the corresponding stage features x in
the primitive feature set along the channel axis. Then, a 1 x 1
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convolution is applied for expanding the dimension of chan-
nels by four times, followed by three convolutions with kernel
sizes of 3, 5, and 7 connected in parallel for multi-receptive
fields feature extraction. This can be formulated as

yo = Convy(Cat(x, x)),

y1 = Convs(yo),

y2 = Convs(yo),

y3 = Conv7(yo).

(6)

In practice, the vanilla convolutions are replaced with the
asymmetric convolutions [37] for efficiency. A 1 x 1 con-
volution is used to transform channels to the same number
as the input and a residual connection is used for better
optimization, i.e.,

y4 = Convi(ReLUBN(y; + y2 +¥3))) + x, @)

where BN and ReLLU are the abbreviations of the batch nor-
malization and the ReLLU activation function.

However, the noises also exist in multi-level features.
In order to focus the FMMF on useful features, the SE block,
applied to the input x, is used to calculate an attention vec-
tor v. Then, the attention vector v acts on the intermediate
feature y4 by the element-wise multiplication to obtain the
final result Z. This process can be formalized as:

v=SEx), Z=v® Convi(ysq). ®)

By gradually aggregating from high-level features to low-
level features, the model can learn both the boundary informa-
tion of low-level features and the salient region information
of high-level features.

D. LOSS FUNCTION

The saliency labels and their corresponding boundary labels
are used to train the proposed DIMONet. As in previous
approaches, the binary cross entropy (BCE) loss

LBE = =" Gy ylog(Sk,y) + (1 — Gy plog(l — Sy ).

x’y
©))

is used to calculate the error pixel-wise between the ground
truth and the prediction, where Gy, € {0, 1} represents
the label of pixel (x,y), and Sy, € [0, 1] is the predicted
value at pixel (x,y). Compared to the MSE and Focal loss
functions, the BCE loss costs less calculation and is more
suitable for binary classification tasks, such as salient object
detection, than the MSE and Focal loss functions. In addition,
the ablation study of loss functions also shows that using
BCE loss to supervise our proposed network achieves better
performance than using the MSE or Focal loss. Therefore,
we utilize BCE loss to supervise the DIMONet.

However, BCE loss only focuses on the accuracy of
each pixel and hence using the BCE loss cannot guide the
DIMONet to learn the overall structure of the objects in
the image well. Therefore, in order to make the structures
between the ground truth and the prediction as similar as
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possible, we invoke an additional intersection over Union
(IoU) loss

LIOU — 1 _ .Ix-l=1 ZEV=1 va}'Gva
S ISy +Gey—Sry Gyl
where W and H are the width and height of saliency map G,
respectively.

As mentioned above, there are four saliency maps § =
{51, 52,853,854} and four boundary maps B = {By, B,
1_33, 1_34} generated by the DIMONet. Therefore, we take the
loss £ of saliency maps

(10)

4
L5 = (LPE 4 LY, (11)
i=1
where E?CE and E%OU are the BCE and IoU assigned to the
i-th saliency map, respectively.
The calculation of the loss £Z of boundary maps is similar
to £5. As a result, the aggregate loss of the DIMONet £°@!
is taken as:

£ =5 + 8. (12)

IV. EXPERIMENTS

A. DATASETS

To verify the performance, we first train the DIMONet
on the DUTS-TR [38] and then evaluate on DUTS-TE
[38], PASCAL-S [39], DUT-OMRON [11], HKU-IS [40]
and ECSSD [9]. As the largest public dataset for saliency
detection tasks, DUTS contains 10,553 images for train-
ing and 5,019 images for testing. PASCAL-S is a sub-
set of the PASCAL VOC [41] dataset and consists of
850 images. DUT-OMRON is a challenging dataset con-
taining 5,168 images. HKU-IS contains 4,447 images, most
of which have salient objects more than one. ECSSD has
1,000 images selected from the Internet.

B. EVALUATION METRICS
Four evaluation metrics, mean absolute error (MAE),
F-measure [42], E-measure [43] and S-measure [44], are
adopted to quantitatively evaluate the performance.

Suppose S and G are a saliency map and its ground truth
map. Then, the MAE is calculated as:

1 W H
7 2 2 Sy = Gl (13)

x=1y=1

F-measure is widely used to evaluate the performance of
classification models and is calculated by the weighted har-
monic mean of precision and recall. Define the precision P
and the recall R as:

IS A G| IS A G
P= , R= , (14)
N |Gl
where | - | stands for the number of non-zero binary pixels.
Then, the F-measure is calculated as:
1 2yx PxR
L’ (15)

B2 x P+R
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where B2 is set to 0.3 as suggested in [42]. To be fair, the
average F-measure (F, ) of each method on different datasets
is used to measure the performance of different methods.

E-measure is an approach to measuring the similarity of
two maps. Denote the mean values of S and G as g and pg.
Then, define the biases

Ms =S8 —us, Mg=G~—pug, (16)
the alignment matrix
2Mg o M,
MA §° 76 (17)

= Ms oMs + Mg o Mg’
where o is the Hadamard product, and the enhanced align-
ment matrix

M" = fM™), (18)
with f(x) = (1 + x)2 /4. Therefore, the E-measure is calcu-
lated as:

1 W H
AT > > M, (19)

x=1y=1

The mean E-measure (E) among all the thresholds that bina-
rize the predicted map for each method is recorded.
S-measure is an approach to measuring the structural simi-
larity of the predicted map and the ground-truth map. Suppose
S, G, 05,06 and ogg are the mean, standard deviations of
covariance of S and G and the covariance between them.
Then, the structural similarity index measure (ssim) can be
calculated as:
28 x G
(5)2 + G2 Usg + 0'(2; Gso'G'

20506 0sG

ssim = (20)
By recursively dividing each of the predicted maps and
ground-truth maps into four blocks until the total number of
blocks is 7' and assigning a different weight w; to each block,
the region-aware structural similarity can be calculated as:

T
Sy =D wi x ssim(r). 1)

t=1

After that, we denote Spg and o are the mean and stan-
dard deviations of the probability values of the foreground
region of S. Similarly, S BG and o are the mean and standard
deviations of the probability values of the background region
of S. Then, object-aware structural similarity in foreground
Or¢g and background Opg can be calculated as:

Orc = —= > s
(SFe)* + 1+ 2Xorc (22)
28BG
OB =

(S86)* + 1+ 2Xopg’
where ) is a balance factor.

Therefore, the object-aware structural similarity S, is cal-
culated as:

So = nOrG + (1 — W)OpG, (23)

where  is the ratio of foreground area in G to image area.
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Finally, the S-measure (S,,) is formulate as:

Sm =0.55,+0.5S,. (24)

C. IMPLEMENTATION DETAILS

Our DIMONet is implemented under the PyTorch frame-
work [45]. All training and testing experiments are conducted
with a single NVIDIA RTX 2080Ti GPU. A pre-trained
ResNet-50 is utilized to initialize the parameters of the back-
bone of the DIMONet, and the parameters of the rest of the
network are randomly initialized. The maximum learning rate
is set to 5 x 107> for the ResNet-50 backbone and 5 x 10~*
for the rest of the network. Like the previous practice [34],
warm-up and linear decay strategies are adopted to accelerate
the convergence of the network. The size of the input image
is set to 352 x 352 for training and testing. Horizontal flip,
random crop and multi-scale input images are used for data
augmentation. We use the Adam optimizer with a momentum
of 0.9 and a weight decay of 5 x 10~* for end-to-end train-
ing. The batchsize is set to 32 and the maximum epoch is
set to 50.

D. PERFORMANCE COMPARISON

We compare with 18 state-of-the-art SOD methods, including
PiCANet [46], AFNet [33], BANet [31], EGNet [17], SCRN
[18], PoolNet [47], CPD [48], BASNet [32], GateNet [49],
U2Net [50], DFI [51], GCPANet [30], ITSD [16], DNA [52],
PurNet [53], CTDNet [54], EDN [55] and SHNet [56] to
verify the effectiveness of our method. The saliency maps
published by the authors of the above methods are used
and evaluated using the same validation code for a fair
comparison.

1) QUANTITATIVE COMPARISON

Multiple evaluation indicators are used to measure our
method and the above state-of-the-art methods. From Fig. 4
and Fig. 5, we can see that the Fjg curves and PR curves of
our method are higher and smoother than others. Besides,
Table 1 gives more detailed comparisons of the MAE, F, 85
E and S,, on five datasets. It is observed that our method
achieves better performance on most metric scores. As for the
other boundary-aware methods, such as EGNet, SCRN and
ITSDNet, the DIMONet achieves 1.76% and 0.73% average
percentage gains in terms of F, s and E.Inaword, the results of
MAE show that the saliency map generated by the DIMONet
is more similar to the ground truth than others. At the same
time, the performances of F, g, Ey and Sy, indicate that the
DIMONet can more accurately divide the salient objects from
context.

2) QUALITATIVE COMPARISON

For the qualitative comparison of the DIMONet, some
saliency maps generated by our method and other meth-
ods are visualized in Fig. 6. We observe that the
DIMONet can accurately segment salient objects with clear
boundaries from various complex scenes, including small
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FIGURE 4. Comparison of the proposed method with 18 state-of-the-art methods in terms of F-measure curves over different thresholds on five
datasets.
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FIGURE 5. Comparison of the proposed method with 18 state-of-the-art methods in terms of PR curves over different thresholds on five datasets.

objects (1stand 2nd rows), object reflection (3rd row), objects
with complex boundaries (4th and 5th rows) and objects with
low contrast (6th row). Compared with other counterparts,
our method can generate saliency maps with higher consis-
tency and clearer boundaries, and is more suitable for various
complex scenes.
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3) BOUNDARY COMPARISON

In order to verify the superiority of our method in salient
object boundary detection, we conduct the quantitative and
qualitative comparisons with EGNet, ITSD, PoolNet and
SCRN. From Table 2, we can see that our method achieves
the best performance. Specially, compared with other four
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TABLE 1. Performance comparison with 18 state-of-the-art methods over five datasets. “-” means the results cannot be obtained. The best two results

are shown in red and

, respectively. “1” denotes that higher is better, and “|” denotes that lower is better.

Methods GFLOPs | Param ECSSD PASCAL-S HKU-IS DUT-OMRON DUTS-TE

) Fs1 MAE] FE] Snl[Fsl MAE| Ef Swml|[Fsl MAE] ET Snl[Fs] MAE] ET Swml|[Fsl MAE|] FET Sni
PiCANet g 59.79 47.22 886 .046 913 913 792 074 .832 848 .870 043 936 .905 17 .065 .841 826 759 051 862 .860
AFNetig 14.39 26.81 908 .042 918 913 738 071 .853 .849 888 .036 942 .905 738 .057 .853 .826 793 .046 879 .867
BANetig 41.62 45.35 923 035 928 915 823 069 .852 850 900 032 950 .909 746 .059 .860 835 815 040 892 .870
EGNet;g 294.91 111.66 | .920 .037 927 925 817 073 .848 .852 .901 .031 950 917 755 .867 .841 815 .039 .891 .886
SCRNig 15.08 25.23 918 .038 926 927 826 064 .857 896 034 949 916 746 .056 .863 837 .809 040 888 .885
PoolNet; 9 108.18 69.56 915 .039 924 921 815 074 .848 849 899 032 949 915 747 .056 .863 836 .809 .040 889 .883
CPD1g 17.75 47.85 917 .037 925 918 820 .070 .849 848 891 .034 944 .905 747 .056 .866 825 .805 043 887 .869
BASNetjg 240.71 87.06 880 .037 921 916 71 075 .846 838 .895 032 946 .909 756 .056 .869 836 791 048 884 .865
GateNetaq 136.22 128.63 | 916 .040 924 920 819 067 .851 858 .899 .033 949 915 746 .055 .862 838 .807 040 889 .885
U2Netag 71.19 44.01 892 .033 924 921 770 073 .842 845 .896 031 948 914 761 .054 871 839 792 045 886 873
DFl2o 26.96 29.63 920 .038 924 920 .830 064 .855 .860 .901 .031 951 919 752 .055 .865 -840 814 039 892 .887
GCPANet2q 65.72 67.06 919 .035 920 827 .847 864 .898 031 949 .920 748 .056 .860 839 817 038 891 .890
ITSDNet2g 23.82 26.08 895 .035 927 925 785 071 .850 .859 .899 .031 952 917 756 .061 .863 -840 .804 041 895 .884
DNA2; - - 906 .042 919 914 831 .081 .837 835 905 035 933 .905 748 .063 .828 818 .806 046 853 .860
PurNeta; 48.44 3553 895 .038 927 918 770 074 .849 .833 .896 .031 949 915 747 052 838 792 .041 894 .877
CTDNeta2 6.13 11.83 .033 925 925 -840 .061 .861 856 910 027 921 765 .052 .870 .850 035 .907 .890
EDNa22 17.17 42.85 924 033 925 .061 .856 .905 951 .052 .870
SHNeta2 54.79 38.96 929 .033 930 848 .059 .870 859 916 027 955 785 .052 .889 857 035 .909
Ours 926 930 928 827 .857 867 027 955 925 760 .052 .870 846 .845 .035 .909 .895

b

B aRENE

N .

GateNet GCPANet

Q
e
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FIGURE 6. Qualitative comparison of the proposed method with existing state-of-the-art SOD methods under several challenging contexts.

methods, our method gains average improvements of 23.3%,
29.8% and 22.2% in terms of F 8, MAE, and E, respectively.
In addition, in Fig. 7, our method is able to extract clear
and accurate boundaries in the case of different kinds of
salient objects (the first two rows). Besides, PoolNet, EGNet,
ITSD and SCRN are disturbed by the background when
the salient objects are small or the background is complex
(the third and fourth rows), making the extracted boundaries
inaccurate, incomplete or unclear. Differently, our method
can extract the boundaries of salient objects accurately. Even
when the salient objects have complex boundaries (the last
two rows), our method can still extract them correctly and
clearly.

E. ABLATION STUDY

In this section, a series of experiments are conducted to
analyze the proposed modules, MOM and FMMF, and net-
work architecture. The MAE, F, 8 E_m and §,, are used as the
evaluation metrics.
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TABLE 2. Quantitative comparisons of boundary maps generated by our
method and other four state-of-the-art methods on DUTS-TE and ECSSD.
The best result is marked in bold.

Methods DUTS-TE ECSSD

Fg1 MAE] FET1 Swl[Fsl MAE|] FET Swnl
EGNet 217 087 460 569 | 229 097 472 565
ITSD 332 037 726 632 | 349 043 708 641
PoolNet | .147 176 381 482 | 167 175 396 491
SCRN 424 031 669 635 | 458 035 708 622
Ours 519 024 867 769 | .569  .022 886 809

1) THE EFFECTIVENESS OF THE MOM AND FMMF

To verify the effectiveness of the MOM and FMME,
these modules are gradually joined into a network with a
basic encoder and a basic decoder. The basic encoder is
a ResNet-50, and the basic decoder consists of multiple
3 x 3 convolution layers and 1 x 1 convolution layers. Like
other U-shaped networks, the multi-level features extracted
by the encoder are firstly processed by concatenation along
the channel axis, and then 3 x 3 convolution layers for feature

46127



IEEEACC@SS Z. Chen et al.: Dual-Branch Network of Information Mutual Optimization for Salient Object Detection

HE-E
HBle
AR

:
d |52

Ours PoolNet EGNet ITSD SCRN

FIGURE 7. Visualization of boundary maps generated by the proposed method and other four state-of-the-art methods. Our method is able to generate
clear and complete boundary maps of salient objects.

TABLE 3. Ablation study of the proposed modules on five datasets. The best result is marked in bold.

Methods ECSSD PASCAL-S HKU-IS DUT-OMRON DUTS-TE
‘ Fs1 MAE|] FET Snl|Fsl MAE] FET Suwi[Fsl MAE| ET Sul ][ Fgl MAE] FE] Swl|Fsl MAE|] ET Snl
Base 878 038 927 905 | 817 066 843 830 | 892 031 949 900 | .735 061 854 810 | 810 040 891 85/
Base + MOM 906 035 924 915 | 830 063 856 846 | 915 029 952 913 | 759 057 860 .825 | .830  .038 906 .878
Base + FMMF 904 035 924 916 | 824 061 851 850 | .903 028 952 916 | .757 055 867 .83 | 819 037 903 .88l
Base + MOM+FMMF | 926  .034 930 928 | .827  .060  .857 .867 | .911 027 955 925 | 760 052 870 846 | 845 035 909  .895

TABLE 4. Ablation study of the proposed network on five datasets. The best result is marked in bold.

Methods ECSSD PASCAL-S HKU-IS DUT-OMRON DUTS-TE

Fg1 MAE|] Ef Suwl|Fs] MAE| FET Snml|[Fgl MAE] ET Snf|Fg] MAE| ET Snml|[Fgl MAE] ET Snl
SB 887 035 924 920 | 801 063 846 848 | 899 030 948 916 | .741 059 857 826 | 813 04T 898 878
DB 912 036 924 917 | 813 064 855 846 | .901 028 952 919 | 752 057 861 831 | .825 038 902 883
w/o HS 910 033 925 924 | 812 062 855 858 | .902 028 953 921 | 753 055 862 837 | .823 038 903 888
DIMONet | .926  .034 930 928 | 827  .060 .857 867 | 911 027 955 925 | 760 052 870 846 | 845 035 909  .895

integration and finally 1 x 1 convolution layers for generating improve the performance of the model in comparison to

saliency maps. We gradually displace the 3 x 3 convolu- the basic model. When all modules are involved, the best
tion layers with MOM and FMMEF. The results are shown performances are obtained, which demonstrates the necessity
in Table 3. It can be seen that involving each module can and effectiveness of each module.
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TABLE 5. Ablation study of the loss functions on five datasets. The best result is marked in bold.

Loss functions) ECSSD PASCAL-S HKU-IS DUT-OMRON DUTS-TE
F3T MAE| ET Swl[Fsl MAE] FET Swl|Fsgl MAE] ET Snml | Fgl MAE] ET Snl1[Fgl MAE] ET Swml
Focal 901 047 909 903 | .805 073 839 840 | 885 04T 932 916 | 741 69 849 821 | 816 046 832 883
MSE 881 065 898 916 | 788 081 833 826 | .848 049 927 907 | 729 072 830 810 | .79 050 875 856
BCE 909 039 914 915 | 812 062 843 861 | .900 030 937 914 | 749 059 858 838 | .830 039 895 877
Focal + IoU 913 038 922 916 | .820 069 854 849 | .902 037 944 926 | 753 063 860 831 | .833 039 900 893
MSE + IoU 902 043 916 930 | 818 070 844 856 | .889 036 937 919 | 741 062 850 834 | .823 044 889 892
BCE + IoU 926 034 930 928 | .827 .60 .857 .867 | 911 027 955 925 | .760 052 870 846 | .845 035 909 895

TABLE 6. Ablation study of the effect of the MOM number on five datasets. The best result is marked in bold.

Number ECSSD PASCAL-S HKU-IS DUT-OMRON DUTS-TE
Fs3] MAE| E] OSml | Fs1 MAE] E] Smi | Fsl MAE] FE1 Sml | Fsgl MAE| E] OSml | F5] MAE] E] Sml
N = 906 037 925 916 | 820 063 851 851 | 904 030 951 916 | .755 057 867 835 | .820 038 902 879
N=2 | 910 036 926 920 | .822 062 853 855 | .906 028 951 918 | .756 056 868  .839 | .830 036 905  .884
N=3 | 919 034 928 926 | .825 060 857  .863 | .910 027 953 922 | 759 053 870 844 | .839 036 908 891
N=4 | 926 034 930 928 | .827 060 857 867 | 911 027 955 925 | .760 052 870 846 | 845 035 909 895

In addition, experiments are conducted to verify the effect
of the MOM number and the results are shown in Table 6.
Compared with the last second row in Table 3, some eval-
uation indicators decrease when the features of the salient
regions and the boundaries are refined once by the MOM.
The reason is that the first refined features are high-level
features. For the high-level features of the boundaries, they
only highlight the around of salient objects and hence mislead
the model after mutually being refined by the MOM with the
region features. As the times of optimization increase, differ-
ent level features of the boundaries are utilized to refine the
region features, and hence the model can effectively detect the
salient objects and all evaluation indicators improve. When
the number of the MOM is four, our method achieves the best
results.

2) THE EFFECTIVENESS OF THE PROPOSED NETWORK

A quantitative analysis of the proposed network and differ-
ent architectures is made to verify the effectiveness of the
proposed network architecture, and the results are shown in
Table 4, where SB refers to the single-branch network only
containing the region detection branch, DB refers to the dual-
branch network without mutual optimization, and HS refers
to hierarchical supervision. It is shown that the performance
of region detection can be enhanced by adding a boundary
detection branch. In addition, the network with hierarchical
supervision performs obviously better.

3) THE EFFECTIVENESS OF THE LOSS FUNCTIONS

In order to verify the superiority of the loss functions we
used, several experiments are designed. Under the same train-
ing strategy, different loss functions are used to supervise
our proposed network. The results are shown in Table 5.
It can be seen that using the BCE loss function to supervise
the network achieves better performance than the MSE and
Focal loss functions, which is consistent with the fact that
the BCE loss functions are commonly used to train salient
object detection networks. In addition, all four evaluation
indicators significantly increase when the IoU loss function is
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integrated into different loss functions. This demonstrates the
effectiveness of IoU loss. Further, when the BCE and IoU loss
functions are used for supervision, the best performance is
achieved.

V. CONCLUSION

In order to sharpen the blurring boundaries of salient objects
in existing SOD methods, in this paper, we introduce the
DIMONet. Unlike previous networks, the DIMONet has a
salient region detection branch and a boundary detection
branch of the same structures to focus equally on the bound-
aries and the regions. Besides, in order to refine the features of
the two branches, the mutual optimization module is designed
to mutually optimize the features based on the intrinsic
relationship between them. Next, to make the features of
the two branches more representative, the fusion module of
multi-receptive fields is designed to fuse the features refined
by the mutual optimization module and the multi-level fea-
tures. With multiple optimizations of the mutual optimization
modules and the fusion modules of multi-receptive fields
from high-level features to low-level features, the features
extracted from the boundary detection branch become clean
and hence the salient maps of the salient region detection
branch obtain clear boundaries. The results of experiments
on five benchmark datasets show that our method is superior
to the 18 state-of-the-art methods and is more suitable for
various complex scenes.
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