
Received 4 March 2023, accepted 26 March 2023, date of publication 29 March 2023, date of current version 3 April 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3263391

Efficient Machine Learning on Edge Computing
Through Data Compression Techniques
NEREA GÓMEZ LARRAKOETXEA 1, JOSEBA ESKUBI ASTOBIZA2, IKER PASTOR LÓPEZ2,
BORJA SANZ URQUIJO 2, JON GARCÍA BARRUETABEÑA 2, AND AGUSTIN ZUBILLAGA REGO2
1Deusto University, Bilbao, 48007 Bizkaia, Spain
2Facultad de Ingenieria, Universidad de Deusto, 48007 Bilbao, Spain

Corresponding author: Nerea Gómez Larrakoetxea (ngomez@deusto.es)

ABSTRACT This paper discusses the increasing amount of data handled by companies and the need to
use Big Data and Data Analytics to extract value from this data. However, due to the large amount of data
collected, challenges related to the computational capacity of machines often arise when performing this
analysis to acquire relevant information for the organization, especially when we are using edge computing.
The paper aims to train machine learning models using compressed data, with two compression techniques
applied to the original data. The results show that models trained with compressed data achieved similar
accuracy to those trainedwith uncompressed data, and different compression techniques were compared. The
research extended a previous study by analyzing the use of autoencoders for compression and reducing both
instances and dimensionality of the dataset. The accuracy rate of the models when trained with compressed
data instead of original data was maintained.

INDEX TERMS Autoencoder, Bayesian network, big data, edge computing, machine learning.

I. INTRODUCTION
Industry 4.0, often known as ‘‘The Fourth Industrial Revo-
lution’’ is transforming how organizations operate with the
aim of transforming it into a smart organization capable
of achieving superior commercial results [1]. Higher levels
of efficiency and productivity, as well as a higher level of
automation, are the main targets of Industry 4.0 [2]. Addi-
tionally, a novel feature of Industry 4.0 is the ability to have
all of the information needed in real time, despite of where
in the plant the process is taking place, allowing for faster
reactions to market demands [3].

Multiple factors may be crucial in determining whether a
machine may fail in the short term, including process time-
frames, voltage or current readings, or humidity or pressure
levels. A forecasting analytics model is able to identify the
common trends that typically lead to machine failures based
on the information gathered from these many data sources.
This enables the development of a numerical model which
can identify these trends prior to the occurrence of faults,

The associate editor coordinating the review of this manuscript and

approving it for publication was Wentao Fan .

allowing for the conduct of preventative maintenance on the
machine without the production being halted as a result of the
failure.

However, what if similar results may be achieved using far
smaller number of instances?

For this purpose, this paper addresses the utility and value
that reduced datasets could offer when used in conjunction
with Machine Learning algorithms: Starting with a huge
data collection that contains numerous instances, the prin-
cipal target is to generate a smaller dataset that retains the
same or almost same accuracy outcomes when Machine
Learning algorithms are applied. This entails creating a
tiny dataset with a sufficient number of representative cases
from the larger set. It should be noted that the compres-
sion is done with the aim that the reduced set will create
Machine Learning models as accurate as those created with
the original set, any other use of the reduced dataset is not
considered.

To obtain a tiny but representative dataset, new approaches
are required to minimize the volume of datasets up to 75%.
However, for the model accuracy of the reduced dataset to
have the same level of precision as the original one is highly

31676
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-7360-0638
https://orcid.org/0000-0003-2039-7773
https://orcid.org/0000-0002-2483-7038
https://orcid.org/0000-0001-6694-7289

N. G. Larrakoetxea et al.: Efficient Machine Learning on Edge Computing Through Data Compression Techniques

improbable. Should the accuracy be lower, the lost accuracy
is considered to be negligible. For this purpose, Bayesian
compression and autoencoders analysis have been employed.
Bayesian Networks were applied to the original data sets
using the Weka software platform’s libraries. Depending on
the reduction rate to be applied to the original data set, the
total number of outputs of the Bayesian network will vary.
On the other hand, as far as autoencoders is concerned, they
are composed of two main elements: an encoder to which
the original dataset will be given to generate a latent vector,
and a decoder, in charge of reconstructing the original data
from the previously obtained latent vector. In this case, as we
are only interested in compression, the decoding part will
not be performed. Both techniques, Bayesian networks and
autoencoders, have been used with compressions of 25%,
50% and 75%. The comparison of accuracy results obtained
through the use of machine learning algorithms between the
original and compressed datasets showed that the main target
of keeping the accuracy rate of the model has been reached
in most cases.

Therefore, this research is aimed at evaluating the accuracy
of Machine Learning models trained using compressed data.
For that, the mentioned two compression techniques have
been developed. The accuracy of the models trained with
compressed data has been compared to those trained with
uncompressed data, where an equivalent accuracy has been
reached.

It should be noted that this document is structured accord-
ing to the following. Section II describes the state of the art
or background. Section III introduces the experimentation
conducted in this research including the proposed method-
ology, validation of the experiments and the results. Finally,
Section IV presents our conclusions. Section V sets our sug-
gestions for future work.

II. BACKGROUND
Several strategies have been developed over the years to both
minimize the number of instances in the models and to lessen
the complexity of the network’s structure. When it came to
both cases, pruning was one of the first approaches that was
implemented: As far back as 1997, Wilson and R. Martinez
proposed three techniques for reducing the training dataset’s
number of instances [4] and in the other hand, LeCun, Denker,
and Solla proposed ‘‘Optimal Brain Damage’’, a novel tech-
nique for shrinking the size of the learning network by grad-
ually deleting weights [5]. Additionally, algorithms employ-
ing Bayesian approaches and weight reduction have been
developed with success [6], [7], [8]. In any instance, since
the array format is ignored when doing Bayesian com-
pression, weight pruning is ineffective at compressing data.
To address this issue, the Compressed Sparse Column (CSC)
format was developed [9]. These studies compressed the
network topologies but not the input data using Bayesian
Compression.

Still in 2017 [10], intended to tackle the subject through
a Bayesian perspective. It was first used to prune nodes

instead of individual weights, and it was then used to
calculate the appropriate fixed point precision to encode
the weights, based on the posterior uncertainties of the
priors.

Lin et al. [11] and X. Li et al. [12] conducted subsequent
research on the Optimal Fixed Point and hashing quanti-
zation, respectively, and published their findings. In terms
of the Optimal Fixed Point, they developed a method for
determining the fixed point’s bandwidth using the DCN1

layers. Contrary to equal bit width settings, the experiment
revealed that optimizing bit width in DCNs results in a model
size reduction of more than 20%without sacrificing accuracy
on the CIFAR-10 test [13]. Nonetheless, Wenlin Chen et al.
used a Discrete Cosine Transform (DCT) to convert filter
weights to the frequency domain and a low-cost hash function
to randomly combine frequency parameters into hash buckets
for hashing quantization.

Regarding the compression through autoencoders, after
studying variational autoencoders for unsupervised clustering
through deep generative model [14], Dilokthanakul et al.
observed an over-regularization problem that happens in nor-
mal variational autoencoders. To solve it they propose to
use a minimum information constraint which improves the
unsupervised clustering. In 2021, Fang et al. [15] showed how
to use the latent variable modelling to improve controllabil-
ity without hurting state-of-the-art generation effectiveness.
To do so a pre-trained Transformer-based architecture was
integrated with latent representation vectors creating a con-
ditional variational autoencoders.

Regarding the literature on data compression in a more
general way, that is, without considering the field of Machine
Learning, various studies have been carried out on compres-
sion techniques. Fowler and Yangel [16] presented a lossles
data-compression algorithm, which achieves better reduc-
tion performance than the generic compression algorithms
that are commonly available on modern computer systems.
There are also compression codecs for the compression of
multimedia content such as videos for example [17], [18],
and [19]. There are also techniques developed for the com-
pression of integer sequences, such as the universal code
technique [20], [21].

Following the current state of the art, it is worth noting
that a great deal of research has been carried out on the
compression of all kinds of items: sequences of numbers,
multimedia content, videos, voice, etc. On the contrary and
although there are studies focused on reducing the complexity
of the algorithms, there is none focused on studying the accu-
racy of Machine Learning models created with compressed
sets.

III. DATA COMPRESSION TECHNIQUES
This section will present two different compression tech-
niques that have been used in this paper.

1DCN: Deep Convolutional Network.

VOLUME 11, 2023 31677

N. G. Larrakoetxea et al.: Efficient Machine Learning on Edge Computing Through Data Compression Techniques

A. NAIVE BAYESIAN CLASSIFIER
Classification is the process of associating an item (instance,
data) with a certain class (category). A Bayesian classifier is
a statistical classification algorithm that is based on Bayes’
theorem. Through employing these classifiers, an instance’s
likelihood of belonging to a class can be predicted [22].
For example, a photograph could be classified as landscape,
portrait, or urban. Classification is a mathematical method
that entails assigning a class, c, from a set of classes C to
a given instance defined by a vector of characteristics or
attributes [23]. These classifiers make the premise that an
attribute’s value has no effect on the other attributes’ values
inside a particular class. These classifiers make the premise
that an attribute’s value has no effect on the other attributes’
values inside a particular class. ‘‘Conditional class indepen-
dence’’ is the name given to this hypothesis. Its purpose is
to make the calculations easier [22]. Classifying everything
that is interpreted through the senses is something that comes
naturally to human beings; in essence, it allows us to abstract
the information, transforming it into a form that is more
suitable for decision-making purposes. Classification has a
wide range of applications, including, for example [23]:

• In industry, quality control entails classifying a compo-
nent or finished product as correct or defective.

• Security systems: determine, for example, if a person has
access to a particular location.

• Intelligent vehicles: identifying pedestrians on the road,
classifying items detected via cameras or a variety of
other sensors.

• Spam-filtering email readers: remove spam messages.
• Medical imaging analysis is the process of identifying
malignancies on x-rays.

• Biometric systems are those that associate a picture of a
fingerprint with a specific individual.

As a result, it is critical to develop classifiers, whether in
hardware or software, that can assist in the resolution of such
issues.

The naive Bayesian classifier operates in the following
manner [22]:

1) Assume Z to be a training set of instances, with
each instance labeled with a class. There are K
classes, C1,C2, . . . ,Ck . Every instance is represented
by an n-dimensional vector, X = X1,X2, . . . ,Xn, that
contains the n measured values of the n attributes,
A1,A2, . . . ,An, respectively.

2) In hindsight, the classifier will predict that sample X
belongs to the class with the highest probability, con-
ditioned on X. That is, it is assumed that X will belong
to the class Ci if and only if:

P(Ci|X) > P(Cj|X) for 1 ≤ j ≤ m, j ̸= i.
This way, could be found the class that maximizes
P(Ci|X). The class Ci for which P(Ci|X) is maxi-
mized is called the ‘‘Maximum posteriori hypothesis’’.
By Bayes’ theorem:

P(Ci|X) =
P(X |Ci)P(Ci)

P(X)

3) Because P(X) is constant for all classes, just
P(X |Ci)P(Ci) must be maximized. If the a priori proba-
bilities of the classes, P(Ci), are unknown, it is assumed
that they are equally likely: P(C1) = P(C2) =

. . . = P(Ck), and therefore would be P(X |Ci) max-
imized. Otherwise P(X |Ci)P(Ci) is maximized. Class
a priori probabilities may be estimated by P(Ci) =

freq(Ci,T)/|T |

4) With the goal of predicting the class label of
X ,P(X |Ci)P(Ci), is evaluated for each class Ci.
The algorithm assumes that X belongs to the class
Ci provided and only if it is the class maximizes
P(X |Ci)P(Ci).

B. AUTOENCODER
An autoencoder is a neural network that consists of an
encoder and a decoder. The aim of the encoder is to transform
high-dimensionality data into low-dimensionality data gener-
ating a latent vector, while the aim of the decoder is to get the
latent vector CAE or low-dimensionality data and transform
it to high-dimensionality data. The entire network learns the
identity function Xout = x by optimizing the weights and bias
of each unit [12].

The weight and bias matrixes of the encoder are repre-
sented by W T and b. The encoder and decoder functions are
represented like the ones below [12]:

E(x) : W (x) + b D(x) : W T
+ b′

whereW is weight matrix and b bias matrix.
The differente between x and Xout is identified

as loss function. The most used loss functions are
Mean Absolute Error (MAE) and Mean Square Error
(MSE) [12]. The next equation represents the loss function of
autoencoders:

min(floss : (W T (Wx + b) + b′), x))

Finally, back propagation is the method used in order to train
the weights and reduce the difference between x and Xout .

IV. EXPERIMENTS
To employ the Bayes Theorem and Autoencoders in front
of a huge dataset in order to minimize it without losing
any significant information has been the emphasis of this
research. As a result, this could be a significant advance-
ment for computational challenges that may develop while
processing massive volumes of data, as it would allow for
faster response times. In order to do this, this research is
being carried out with the goal of producingmachine learning
models that are trained with a much smaller quantity of data
than the original one while preserving equal accuracy. As a
result, the model performs just as well even if it was trained
on a much lower amount of data. However, how can those
models be obtained?

Two different ways of obtaining those models have been
analyzed, the experimentation therefore consisting of two

31678 VOLUME 11, 2023

N. G. Larrakoetxea et al.: Efficient Machine Learning on Edge Computing Through Data Compression Techniques

parts: Data instances reduction using Bayesian Networks and
Data Dimensionality reduction using autoencoders.

The hardware used for all of the following experiments
is a computer with an i7 processor, 32 GB RAM and a
RTX 3090 GPU.

A. INSTANCES REDUCTION
In order to obtain a dataset reduction in terms of rows,
Bayesian Networks were applied to the original data sets
using the Weka2 platform’s libraries. The number of outputs
produced by the Bayesian network changes according to the
amount of reduction that will be applied to the original dataset
in the model under consideration.

1) ALGORITHM PERFORMANCE
The following are the steps carefully taken by the algorithm
to conduct Bayesian data compression during this experimen-
tation:

• The original data is gathered and reviewed to ensure that
each instance has a unitary class for prediction. This
check is carried out in order to determine whether or not
the classes can be managed by the Weka libraries.

• In order to compress the data, a Bayesian classifier is
created from the available data. As soon as it is obtained,
the nodes are correctly sorted for the system, which
means that the order chosen is the one that ensures that
from the location of a node in the list to the right, there
is no parent of that node. To store the data, a dictionary
is created.

• The amount of instances to gather is determined by the
compression percentage specified, and from the node
dictionary, the sorted nodes are passed through in the
order in which they were returned by the sorting tech-
nique. The probability value of the state of the node is
acquired, and the values are sorted from lowest to high-
est in descending order.The specified states are added
to the instances and after that, the full instances are
added.These values are returned as a set of instances
from the dictionary that has been constructed. The num-
ber of instances returned will be equal to the compres-
sion % specified.
Figure 1 shows the procedure followed to reduce the
instances of a dataset.

B. DIMENSIONALITY REDUCTION
On the other hand, to obtain a dataset reduction in terms of
columns, the experiment was carried out using an Autoen-
coder. The Autoencoder has two different parts; first an
encoder and second a decoder. To work as expected, the input
size of the encoder and the output size of the decoder must
be exactly the same. Figure 2 shows the structure of an
autoencoder.

2Weka: Waikato Environment for Knowledge Analysis is a free software
licensed which contains a collection of visualization tools and algorithms for
data analysis and predictive modeling.

FIGURE 1. Bayesian compression steps diagram.

FIGURE 2. Autoencoder’s structure.

To develop the algorithm the different layers of the neural
network of the encoder and the decoder must be specify. For
this particular case, one dimensionality convolutional layers
have been used. This means that, it changes the fully con-
nected layers of the autoencoder structure to convolutional
layers [24]. The number of layers added to both parts have
been different considering the size of the latent vector, which
size depends on the reduction rate. For instance, if the aim is
to reduce the dataset by 50%, the number of layers needed
will be different than if the aim is to reduce the dataset by
75%.

In this work, as we are only interested in the compression
part of the autoencoder (encoder) and not in the reconstruc-
tion of the data, the compress data would be the latent vector
in Figure 2, and each gray box represents each convolutional
layer. To reduce the data in each step, a MaxPooling is added
between one convolutional layer and the next.

Following code shows the different configurations for each
reduction, the tuple that is specified for each layer between
brackets shows the output shape.

1) 50% DIMENSIONALITY REDUCTION
Next, the model is shown.

Model: ‘‘24to12columns_encoder’’

Layer (type) Output shape Param#
=======================================
conv1d (Conv1D) (None, 24, 2) 8
max_pooling1d
(MaxPooling1D) (None, 12, 2) 0
conv1d_1
(Conv1D) (None, 12, 1) 7

VOLUME 11, 2023 31679

N. G. Larrakoetxea et al.: Efficient Machine Learning on Edge Computing Through Data Compression Techniques

=======================================
Total params: 15
Trainable params: 15
Non-trainable params: 0

Model: ‘‘24to12columns_decoder’’

Layer (type) Output shape Param#
=======================================
conv1d_2
(Conv1D) (None, 12, 2) 8
up_sampling1d
(UpSampling1D) (None, 24, 2) 0
conv1d_3
(Conv1D) (None, 24, 1) 7

=======================================
Total params: 15
Trainable params: 15
Non-trainable params: 0

As we can see on the above code, for the encoder the
input data has the size of 24 columns and it’s passed through
a convolutional 1-dimension layer, then is reduced in size
to 12 columns using max pooling and passed to the last
convolutional layer. On the other hand. the decoder receives
the encoder output and passed it through a convolutional 1-
dimension layer, then the dimensionality is increased up to
24 columns again using the up-sampling layer. Finally, the
reconstructed data is given by the last convolutional layer
which gets data from the previous up sampling layer.

2) 75% DIMENSIONALITY REDUCTION
The model is shown below

Model: ‘‘24to6columns_encoder’’

Layer (type) Output shape Param#
======================================
conv1d (Conv1D) (None, 24, 1) 8
max_pooling1d
(MaxPooling1D) (None, 12, 2) 0
conv1d_1
(Conv1D) (None, 12, 2) 14
max_pooling1d_1
(MaxPooling1D) (None, 6, 2) 7

======================================
Total params: 29
Trainable params: 29
Non-trainable params: 0

Model: ‘‘24to6columns_decoder’’

Layer (type) Output shape Param#
======================================

conv1d_3
(Conv1D) (None, 6, 2) 8
up_sampling1d
(UpSampling1D) (None, 12, 2) 0
conv1d_4
(Conv1D) (None, 12, 2) 14
up_sampling1d_1
(UpSampling1D) (None, 24, 2) 0
conv1d_5
(Conv1D) (None, 24, 1) 7

=======================================
Total params: 29
Trainable params: 29
Non-trainable params: 0

In this case, the initial data is passed through a convolu-
tional 1-dimension layer, then is reduced in size to 12 columns
using max pooling, the same process is repeated passing
the data to the convolutional 1-dimension layer and reduc-
ing the size using max pooling layer to have 6 columns.
Finally, the output data from this layer is passed to the last
convolutional layer. The decoder receives the encoder output
and passed it through a convolutional 1-dimension layer then
the dimensionality is increased up to 12 columns using the up-
sampling layer. The previous process is repeated again with
the same 2 layers to increase dimensionality to 24 columns
and the reconstructed data is given by the last convolutional
layer which gets data from the previous up sampling layer.

3) 90% DIMENSIONALITY REDUCTION
Following is the model.

Model: ‘‘24to2columns_encoder’’

Layer (type) Output shape Param#
=======================================
conv1d
(Conv1D) (None, 24, 2) 8
max_pooling1d
(MaxPooling1D) (None, 12, 2) 0
conv1d_1
(Conv1D) (None, 12, 2) 14
max_pooling1d_1
(MaxPooling 1D) (None, 6, 2) 0
conv1d_2
(Conv1D) (None, 6, 2) 0
max_pooling1d_2
(MaxPooling 1D) (None, 2, 2) 0
conv1d_3
(Conv1D) (None, 6, 2) 0

=======================================
Total params: 43
Trainable params: 43
Non-trainable params: 0

31680 VOLUME 11, 2023

N. G. Larrakoetxea et al.: Efficient Machine Learning on Edge Computing Through Data Compression Techniques

Model: ‘‘24to2columns_decoder’’

Layer (type) Output shape Param#
=======================================
conv1d_4
(Conv1D) (None, 2, 2) 8
up_sampling1d
(UpSampling1D) (None, 6, 2) 0
conv1d_5
(Conv1D) (None, 6, 2) 14
up_sampling1d_1
(UpSampling1D) (None, 12, 2) 0
conv1d_6
(Conv1D) (None, 12, 2) 14
up_sampling1d_2
(UpSampling1D) (None, 24, 2) 0
conv1d_7
(Conv1D) (None, 24, 1) 7

==
Total params: 43
Trainable params: 43
Non-trainable params: 0
__

In this configuration, the 24 column input data is passed
through a convolutional 1-dimension layer and then is
reduced in size to 12 columns using max pooling. After, the
same process is repeated passing the data to the convolutional
1-dimension layer and reducing the size using max pooling
layer to have 6 columns. This data is passed through the
next convolutional layer and the dimension is reduced to
2 columns using max pooling layer one more time. Finally,
the output data from this layer is passed to the last convolu-
tional layer.

In the second part, the decoder receives the encoder out-
put and passed it through a convolutional 1-dimension layer
and then the dimensionality is increased up to 6 columns
using the up-sampling layer. The previous process is repeated
again with the same 2 layers to increase dimensionality
to 12 columns and repeated one last time to increase to
24 columns. Finally, the reconstructed data is given by the
last convolutional layer which gets data from the previous up
sampling layer.

4) ALGORITHM PERFORMANCE
The steps made by the algorithm for dimensionality reduction
during the experimentation are the following:

• The original data is loaded and reviewed to ensure that
there are not outliers that will compromise the learning
of the model. The categorical column of values used for
prediction is separated from the rest of the dataset to
conserve the original values.

• For dimensionality reduction an autoencoder is created,
which will be composed by two separate elements, the

FIGURE 3. Dimensionality reduction steps diagram.

encoder as the input and the decoder as the output of the
model. The model must be fitted by training data taken
from the original one, to do it as optimal as possible the
epochs and the batch size must be specified considering
the training data length.

• The data is passed through the encoder to obtain the
latent vector with dimensionality reduction. Then the
categorical column will be attached to the latent vector
in order to be able to make predictions with the new
reduced data.
Figure 3 shows the procedure followed to reduce the
dimensionality of a dataset.

V. APPLICATION SCENARIO
A. EXPERIMENTATION STEPS
To conduct the experiment, a public dataset from Kaggle
was used, which was presented according to the industry
paradigm [25]. This data provides information about a flota-
tion plant, a method used to concentrate iron ore. The objec-
tive is to forecast the percentage of Silica in the final product,
which is iron ore concentrate and its impurity (which is the
% of Silica).

Data was collected every 20 seconds from hardware sen-
sors such as temperature, pH, flow, density and all other
continuous process variables, with no processing of the data
(the dataset shows raw data). Quality indicators such as the
percentage of silica in a sample, the percentage of iron ore
in a sample, and so on are laboratory-based quality measure-
ments. Approximately every 15 minutes, a sample of the iron
ore pulp is taken. Those samples are forwarded to a labora-
tory for examination. Thus, each two hours, the laboratory
provides feedback on the quality analysis; in other words,
every two hours, you receive a lab/quality measurement of the
product stream (iron ore concentrate), which provides insight
into the product’s quality (iron ore pulp concentrate).

Themain goal is to use this data to predict howmuch impu-
rity is in the ore concentrate. As this impurity is measured
every hour, if we can predict how much silica (impurity) is
in the ore concentrate, we can help engineers, giving them
early information to take actions. Hence, they will be able
to take corrective actions in advance (reduce impurity, if it is
the case) and also help the environment (reducing the amount
of ore that goes to tailings as you reduce silica in the ore
concentrate).

VOLUME 11, 2023 31681

N. G. Larrakoetxea et al.: Efficient Machine Learning on Edge Computing Through Data Compression Techniques

FIGURE 4. Proposed arquitecture.

Target is to predict the last column, which is the % of silica
in the iron ore concentrate.

B. ARCHITECTURE
It is highly likely that the variables needed to predict the
impurity in the gold concentrate are not all the collected
variables. In addition, the rest of the variables could be used to
generate other models of interest to the company, so we have
considered an architecture that not only enables to predict
the impurity, but also allows to use the data to create other
different models. It is as follows in Figure 4.
Once the data has been gathered, it is saved in a database

and utilized to build the prediction model. As illustrated in
Figure 4, the architecture has been designed for the following
purposes: On a large-scale computer server, the database’s
data is gathered and Bayesian compression is conducted.
Once the dataset has been reduced, it is sent to the little nodes
spread throughout the plant. As a result, each node, referred
to as a ‘Edge node,’ can develop unique models based on
the data it wants to predict in a far more efficient and timely
manner than if it had all the data in the raw.

VI. EXPERIMENTAL EVALUATION
A. VALIDATION
To validate the compression efficiency, the dataset was sub-
jected to Bayesian compressions using a variety of different
search methods and compression rates:

• Search algorithms: Hill Climbing and Tree Augmented
Network (TAN).

• Compression rates: 25%, 50% y 75%.

a: HILL CLIMBING
Hill-climbing is a local optimization approach. It takes the
steepest ascent/descent direction possible from your current
position and incurs minimal computing cost. As it limits us
from reverting to a previous choice, it is frequently referred
to as an irreversible strategy [26].

b: TREE AUGMENTED NETWORK (TAN)
Tree-Augmented Naive Bayes is a semi-autonomous
Bayesian learning technique. By utilizing a tree structure
in which each attribute is dependent on only the class and

TABLE 1. Results of 25% and 50% compressed.

another attribute, it removes the naive Bayes attribute’s
assumption of independence. Classification is carried out
using a maximum amplitude-weighted tree, which optimizes
the likelihood of the training data [27].

After designing models with compressed data, the accu-
racy of the trained models with compressed data was com-
pared to the accuracy of the trained models with original
data. Numerous models employing a variety of categorization
techniques (Bayesian Network K2 [28], Bayesian Network
TAN [29], J48 decision tree [30], K-Nearest Neighbor [31],
Naive Bayes [32], Random Forest [33] and Simple Logistic
Regression [34]) have been created in order to study the
behavior of each.

B. RESULTS - INSTANCES REDUCTION
The experiment’s results are summarized in Table 1. On the
left there are numerous algorithms for generating various pre-
diction models.The first column shows the accuracy of each
algorithm when trained on raw data models. The experiment
was then divided into the three compressed sets indicated
previously: 25%, 50%, and 75% compression of the raw data,
respectively.

Each of these sets has two distinct models for each algo-
rithm, as each one employs a separate search strategy: Hill
Climber and Tree Augmented Network (TAN). When model
accuracy results are compared, the results from compressed
models are almost identical to those from raw data, but with
up to 75% less size. The difference in accuracy is small, and
in some circumstances, compressed data actually enhances
accuracy. For example, when the Bayesnet TAN method was
used to construct a model with a 25% compression of the data
and the TAN search algorithm, the accuracy of the model was
93.98%, compared to 93.93% when the raw data was used.
On either hand, the model constructed using 75% compressed
data has a precision of 93.14%. This indicates that even after
reducing the amounts of data by 75%, the model’s accuracy
only varied by 0.79%.

Additionally, the Random Forest technique fits very well
with the data reduction. With an accuracy of 99.95% when
using raw data, the accuracy of compressed models is 99.89%
at 25% compression, 99.83% at 50% compression, and
99.46% at 75% compression. The gap between the model

31682 VOLUME 11, 2023

N. G. Larrakoetxea et al.: Efficient Machine Learning on Edge Computing Through Data Compression Techniques

TABLE 2. Results of 75% compressed.

with raw data and the model with 75% compressed data in
this situation is only 0.49%.

Additionally, the J48, KNN, and Bayesnet TAN algorithms
all adapt extremely well to raw data, with 99.41%, 96.85%,
and 93.93% accuracy, respectively.

In terms of compression, the method that loses the most
accuracy is the KNN with a compression ratio of 25% on the
raw data. Nevertheless, in this example, the Bayesnet TAN
improves its accuracy by 0.05%when using compressed data.

One could argue that the loss is likewise negligible in these
circumstances, given that the loss for the Bayesnet TAN and
J48 methods is 0.13 and 0.72 for data compressed at 50% and
0.79 and 1.61 for data compressed at 75%, respectively.

Even while the remaining algorithms (Bayesnet K2, Naive
Bayes, Simple Logistic) do not achieve such high accuracy
with raw data (73.66%, 52%, 59.36%), the accuracy loss with
compressed data is likewise negligible, with a maximum loss
of 1.37% when compressed to 75% using Bayesnet K2.

When Bayesian compression is performed, the Hill Climb-
ing or Tree Augmented network search algorithm is used for
this purpose. The kind of search algorithm that produces the
best results while compressing is determined by the compres-
sion percentage utilized.When it comes to 25% compression,
the TAN is the search method that, in 85% of circumstances,
compresses the data in a more representative manner than
other algorithms. Nevertheless, when the compression ratio
is 75%, the Hill Climber algorithm performs better in 85%
of cases. If raw data is compressed to 50%, it is not always
obvious which algorithm to employ, as Hill Climber produces
better results in 57% of cases while TAN produces better
results in 43% of cases.

C. RESULTS - DIMENSIONALITY REDUCTION
Dimensionality Reduction’s experiment results are shown in
Table 3. As in the case of instances reduction, on the left side
we have as a reference the accuracy of each algorithm with
the raw data. In this case, the experiment was then divided
into three compressed sets: 50%, 75% and 90%.

As shown in Table 3, the results are not as promising as
those obtained with the reduction of instances 1 2.

Not only does the Naive Bayes algorithm not lose accuracy
when compressed to 75%, it even improves accuracy by
0.98%.When the compression is 50%, the accuracy improves
by 1.39%. After Naive Bayes, the algorithm that loses the

TABLE 3. Results of 50%, 75% and 90% compressed.

least with a compression of 75% is the simple Logistic
(1.79%), followed by KNN (13,75%).

The algorithms that best adapt to 50% compression are
KNN, Naive Bayes and Simple Logistic. The KNN algorithm
with 50% compression has a loss of only 1.75% accuracy. The
Naive Bayes algorithm even improves the accuracy by 1.39%
with the data compressed to 50%. Finally, Simple Logistic
only have a loss of 1,61%.

As far as the 90% compression is concerned, it can be seen
that the loss is not negligible, but to reduce the data set by
90% is quite acceptable.

VII. CONCLUSION
As described at the beginning of the paper, the objective and
novelty of the article was to obtain and compare different
compression techniques for datasets to be used to create
Machine Learning models. In order to achieve the objective,
we applied Bayesian compression and Autoencoders to the
raw datasets to generate tiny edge computing models. As a
result, as demonstrated, we may develop models that can be
implemented in nodes with limited computational capacity
due to the reduced size of the dataset, while still producing
comparable results to the original dataset. Additionally, it was
discovered that in some situations, the compressed data set
produced more accurate findings than the original dataset
when specific machine learning algorithms were applied to
it.

It must be highlighted that when Bayesnet with the TAN
search algorithm is applied to reduce intances or Naive
Bayes is used with autoencoder’s compressed data (50%),
even a small amount of compression is performed in the
case of Bayesnet, such as 25%, the model’s accuracy can
even improve (0,05% accuracy improvement for the Bayesnet
compressed data and 1,39% for data compressed with autoen-
coder).

In the case of Bayesian compression and the use of
Bayesnet algorithm, while other algorithms may lose some
accuracy when dealing with compressed data, this loss can be
regarded insignificant in this case, even when compression is
set to 75%.

On the other hand, when using the autoencoder for com-
pression, it has been concluded that it works verywell for very
specific cases. That is when using the up sampling layer for
decoder reconstruction, in order to reduce the dimensionality
to the 50%. But it gave bad results when adding zero padding

VOLUME 11, 2023 31683

N. G. Larrakoetxea et al.: Efficient Machine Learning on Edge Computing Through Data Compression Techniques

layers for reconstruction because it adds multiple zeros to the
output distorting the result, not letting the granularity as good
as Bayesian compression.

In addition, the methodology proposed in this paper allows
the datasets to be compressed into the desired percentage,
achieving an ad-hoc methodology for each use case.

As future work, we really believe it would be interesting
to combine both techniques on the same dataset in order
to reduce both the number of instances and the number of
dimensions, or at least to find a different technique that
combines both reductions.

In analyzing a compression process, it is essential to con-
sider both energy efficiency and time efficiency to identify
areas for improvement. Energy efficiency is a key factor in
reducing costs and achieving environmental sustainability,
while time efficiency is important for maximizing productiv-
ity and minimizing downtime. By analyzing both aspects,
it is possible to detect potential bottlenecks in the compres-
sion process and find opportunities to optimize performance.
A thorough analysis of energy and time efficiency in the com-
pression process can be crucial in achieving a more efficient
and cost-effective process in the future.

REFERENCES
[1] V. Gopalkrishnan, D. Steier, H. Lewis, and J. Guszcza, ‘‘Big data, big

business: Bridging the gap,’’ in Proc. 1st Int. Workshop Big Data, Streams
Heterogeneous Source Mining, Algorithms, Syst., Program. Models Appl.,
2012, pp. 7–11.

[2] L. Thames and D. Schaefer, ‘‘Software-defined cloud manufacturing for
Industry 4.0,’’ Proc. CIRP, vol. 52, pp. 12–17, Jan. 2016.

[3] H. Lasi, P. Fettke, H. G. Kemper, T. Feld, and M. Hoffmann, ‘‘Industry
4.0,’’ Bus. Inf. Syst. Eng., vol. 6, no. 4, pp. 239–242, 2014.

[4] D. R. Wilson and T. R. Martinez, ‘‘Instance pruning techniques,’’ in Proc.
ICML, 1997, pp. 400–411.

[5] Y. LeCun, J. Denker, and S. Solla, ‘‘Optimal brain damage,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 2, 1989, pp. 1–8.

[6] E. Nalisnick, A. Anandkumar, and P. Smyth, ‘‘A scale mixture perspective
of multiplicative noise in neural networks,’’ 2015, arXiv:1506.03208.

[7] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, ‘‘Weight
uncertainty in neural network,’’ in Proc. Int. Conf. Mach. Learn., 2015,
pp. 1613–1622.

[8] D. Molchanov, A. Ashukha, and D. Vetrov, ‘‘Variational dropout spar-
sifies deep neural networks,’’ in Proc. Int. Conf. Mach. Learn., 2017,
pp. 2498–2507.

[9] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, andW. J. Dally,
‘‘EIE: Efficient inference engine on compressed deep neural network,’’
in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit., Jun. 2016,
vol. 44, no. 3, pp. 243–254.

[10] C. Louizos, K. Ullrich, and M. Welling, ‘‘Bayesian compression for deep
learning,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 30, 2017, pp. 1–11.

[11] D. Lin, S. Talathi, and S. Annapureddy, ‘‘Fixed point quantization of
deep convolutional networks,’’ in Proc. Int. Conf. Mach. Learn., 2016,
pp. 2849–2858.

[12] X. Li, T. Zhang, X. Zhao, and Z. Yi, ‘‘Guided autoencoder for dimensional-
ity reduction of pedestrian features,’’ Int. J. Speech Technol., vol. 50, no. 12,
pp. 4557–4567, Dec. 2020.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ Commun. ACM, vol. 60, no. 2,
pp. 84–90, Jun. 2012.

[14] N. Dilokthanakul, P. A. M. Mediano, M. Garnelo, M. C. H. Lee,
H. Salimbeni, K. Arulkumaran, and M. Shanahan, ‘‘Deep unsuper-
vised clustering with Gaussian mixture variational autoencoders,’’ 2016,
arXiv:1611.02648.

[15] L. Fang, T. Zeng, C. Liu, L. Bo, W. Dong, and C. Chen, ‘‘Transformer-
based conditional variational autoencoder for controllable story genera-
tion,’’ 2021, arXiv:2101.00828.

[16] J. E. Fowler and R. Yagel, ‘‘Lossless compression of volume data,’’ inProc.
Symp. Volume Visualizat., 1994, pp. 43–50.

[17] V. V. Pirozhenko and V. D. Grigoriev, ‘‘Video stream processing and com-
pression with codec choice ability,’’ in Proc. IEEE Conf. Russian Young
Researchers Electr. Electron. Eng. (EIConRus), Jan. 2020, pp. 455–457.

[18] U. Sarwar, ‘‘Real time multiple codecs switching architecture for video
conferencing,’’ Ph.D. dissertation, Univ. Sains Malaysia, 2008.

[19] I. H. Putro, ‘‘Performance of various codecs related to jitter buffer variation
in VoIP using SIP,’’ J. Teknik Elektro, vol. 8, no. 2, pp. 103–108, Apr. 2010.

[20] L. Allison, A. S. Konagurthu, and D. F. Schmidt, ‘‘On universal codes for
integers: Wallace tree, Elias omega and beyond,’’ in Proc. Data Compress.
Conf. (DCC), Mar. 2021, pp. 313–322.

[21] P. Fenwick, ‘‘Universal codes,’’ in Lossless Compression Handbook. 2003,
pp. 55–78.

[22] K. M. Leung, ‘‘Naive Bayesian classifier,’’ Polytech. Univ. Dept. Comput.
Sci./Finance Risk Eng., vol. 2007, pp. 123–156, Nov. 2007.

[23] L. Sucar, ‘‘Clasificadores bayesianos: De datos a conceptos,’’ in Proc.
Eur. Conf. Mach. Learn. Princ. Pract. Knowl. Discov. Databases, 2008,
pp. 1–18.

[24] Y. Zhang. (2018). A Better Autoencoder for Image: Convolutional
Autoencoder. Accessed: Mar. 23, 2017. [Online]. Available:
http://users.cecs.anu.edu.au/Tom.Gedeon/conf/ABCs2018/paper/
ABCs2018_paper_58

[25] Quality Prediction in aMining Process. Accessed: Sep. 30, 2010. [Online].
Available: https://www.kaggle.com/edumagalhaes/quality-prediction-in-
a-mining- process

[26] T. J. Rezek, R. G. R. Camacho, N. M. Filho, and E. J. Limacher, ‘‘Design
of a hydrokinetic turbine diffuser based on optimization and computational
fluid dynamics,’’ Appl. Ocean Res., vol. 107, Feb. 2021, Art. no. 102484.

[27] F. Zheng and G. I. Webb, ‘‘Tree augmented Naïve Bayes,’’
Tech. Rep., 2010.

[28] B. Lerner and R. Malka, ‘‘Investigation of the K2 algorithm in learning
Bayesian network classifiers,’’ Appl. Artif. Intell., vol. 25, no. 1, pp. 74–96,
Jan. 2011.

[29] N. Friedman, D. Geiger, and M. Goldszmidt, ‘‘Bayesian network classi-
fiers,’’Mach. Learn., vol. 29, no. 2, pp. 131–163, Nov. 1997.

[30] N. Bhargava, G. Sharma, R. Bhargava, and M. Mathuria, ‘‘Decision tree
analysis on J48 algorithm for data mining,’’ Proc. Int. J. Adv. Res. Comput.
Sci. Softw. Eng., vol. 3, no. 6, 2013.

[31] L. Kozma, ‘‘K nearest neighbors algorithm (KNN),’’ Helsinki Univ. Tech-
nol., vol. 32, Feb. 2008.

[32] G. Kaur and E. N. Oberai, ‘‘A review article on Naïve Bayes classifier
with various smoothing techniques,’’ Int. J. Comput. Sci. Mobile Comput.,
vol. 3, no. 10, pp. 864–868, 2014.

[33] A. Cutler, D. R. Cutler, and J. R. Stevens, ‘‘Random forests,’’ in Ensemble
machine learning. Berlin, Germany: Springer, 2012, pp. 157–175.

[34] T. G. Nick and K. M. Campbell, ‘‘Logistic regression,’’ in Topics in
Biostatistics. 2007, pp. 273–301.

NEREA GÓMEZ LARRAKOETXEA received the
degree in computer engineering and the master’s
degree in automation, electronics, and industrial
control from Deusto University, in 2016 and 2017,
respectively.

Since 2015, she has been involved in research
projects with DeustoTech, where she started as an
Intern. During this time, she has been working on
big data projects, applying artificial intelligence
techniques to large datasets. She is currently work-

ing on a doctoral thesis of industrial nature and framed within the new
paradigm of Industry 4.0, with edge computing being her principal research
area.

31684 VOLUME 11, 2023

N. G. Larrakoetxea et al.: Efficient Machine Learning on Edge Computing Through Data Compression Techniques

JOSEBA ESKUBI ASTOBIZA received the degree
in computer engineering and the Master of Com-
puter Engineering degree from the University of
Deusto, in 2018 and 2020, respectively.

In 2015, he received a Junior Researcher Schol-
arship for which he became part of Deusto eVida
in 2018. During this period, he developed IOS
applications that served to offer support and help
in the education of people with Down Syndrome
through games, classified as serious games. Dur-

ing the master’s study, he was a part of the Vidrala I+D department in a
project in collaboration with DeustoTech related to artificial intelligence
applied to the world of industry. In addition, he worked for a short period
of time in a consultancy and advised a start-up in relation to data analysis.

IKER PASTOR LÓPEZ received the degree
in computer engineering, in 2007, the master’s
degree in information security, in 2010, and the
Ph.D. degree (cum laude) in computer science,
in 2013. He participated in the Program in Big
Data and Business Intelligence, in 2016.

He is with Deusto University and focuses its
scientific interests on the areas of big data analyt-
ics, opinion mining, and computer vision. He is
the author of several scientific articles reviewed

by peers in conferences and indexed journals. He has participated in the
gestation, scientific development, and technical development of numerous
competitive projects and contracts with companies, the latter with several
successful cases of knowledge transfer actions. In addition, he is a member
of the Scientific Committee of several congresses, such as CISIS, SOCO,
and ICEUTE. He is a Reviewer of many journals, included in the JCR as the
magazine of Engineering and Industry–DYNA.

BORJA SANZ URQUIJO received the Ph.D.
degree (cum laude) in information systems on
malware detection in android mobile devices,
in 2012.

He has been a Researcher with the DeustoTech-
Computing Research Unit, since 2008, where he
was the Head Researcher, from 2015 to 2018.
He is currently a Lecturer with the Faculty of
Engineering, University of Deusto. His primary
research interests include machine learning, big

data, knowledge discovery, and information retrieval. He is working on
fairness, ethics, accountability, and the impact of artificial intelligence in
society. He has a long track record leading national and international projects
in the research areas previously mentioned. He has worked closely with
different social agents, enterprises, and other research centers. He has been a
researcher in more than 50, between H2020, national and private projects and
a project manager in several of them. He has published several book chapters
and more than 60 articles in specialized national and international impact
journals, such as Logic Journal of IGPL, Electronic Commerce Research and
Applications, and Expert Systems with Applications.

JON GARCÍA BARRUETABEÑA has begun the
research activity with the University of Mon-
dragon, where he developed his doctoral research
in the dynamic behavior of complex materials,
both from the analytical, numerical, and exper-
imental points of view. From 2011 to 2013,
he signed a contract with Ikerlan Ik4, where he
worked on large research projects and contracts
with companies mainly in the noise and vibration
area. In 2013, he was offered a permanent position

with the University of Deusto to launch the Applied Mechanics Research
Group and to promote research and teaching activity in the field of automa-
tion. He was the principal researcher of the Applied Mechanics Research
Group for two years. He is accredited by ANECA as a Private University
Doctoral Professor in 2013 and the Hired Doctoral Professor of mechanical
engineering, in 2013, and has two six-year research periods, from 2008 to
2013 and from 2015 to 2020 tranche respectively, as well as a six-year
transfer period, from 2013 to 2018 tranche.

AGUSTIN ZUBILLAGA REGO received the
degree in computer engineering, the degree in
political science and public administration, and
the Ph.D. degree (cum laude) in computer and
telecommunications engineering, in 2015, in arti-
ficial intelligence applied in the political science
field.

He was a Researcher with DeustoTech,
from 2009 to 2016, promoting and participating
in several technological research projects at both

national and international levels. Later, he led the Digital Economy Labora-
tory, Orkestra-Basque Competitiveness Institute, achieving a profound track
in the digital economy as well as innovation and transformation at the SME
level for policymakers and business leaders. In 2022, he has started to lead
Bilbao Office, Vicomtech-Applied Technology Research Center, Basque
Country. He is a lecturer in four universities in the north of Spain and advises
several governments on digital policies.

VOLUME 11, 2023 31685

