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ABSTRACT Quantization is an effective technique to reduce the memory and computational complexity
of CNNs. Recent advances utilize additive powers-of-two to perform non-uniform quantization, which
resembles a normal distribution and shows better performance than uniform quantization. With powers-
of-two quantization, the computational complexity is also largely reduced because the slow multiplication
operations are replaced with lightweight shift operations. However, there are serious problems in the
previously proposed grid formulation for 2-bit quantization. In particular, these powers-of-two schemes
produce zero values, generating significant training error and causing low accuracy. In addition, due to
improper grid formulation, they also fallback to uniform quantization when the quantization level reaches
2-bit. Due to these reasons, on large CNN like ResNet-110, these powers-of-two schemes may not even
train properly. To resolve these issues, we propose a new non-zero grid formulation that enables 2-bit non-
uniform quantization and allow the CNN to be trained successfully in every attempt, even for a large network.
The proposed technique quantizes weight as power-of-two values and projects it close to the mean area
through a simple constant product on the exponential part. This allows our quantization scheme to closely
resemble a non-uniform quantization at 2-bit, enabling successful training at 2-bit quantization, which is not
found in the previous work. The proposed technique achieves 70.57% accuracy on the CIFAR-100 dataset
trained with ResNet-110. This result is 6.24% higher than the additive powers-of-two scheme which only
achieves 64.33% accuracy. Beside achieving higher accuracy, our work also maintains the same memory and
computational efficiency with the original additive powers-of-two scheme.

INDEX TERMS Quantization, deep learning, convolutional neural network, Internet of Things.

I. INTRODUCTION
It is challenging to implement deep learning on mobile and
Internet of Things (IoT) devices, due to the excessivememory
and computational costs [24]. Therefore, various techniques
have been proposed to reduce the deployment cost of CNNs
on constrained devices [3], [10], [11]. Quantization is one of
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the representative techniques that resolve these two aspects
in CNN implementations. In a nutshell, quantization maps
continuous distribution of weight and activation to a discrete
value with a fixed number of bits. Consider that when a 32-bit
floating point (FP) is mapped to an 8-bit discrete value, the
memory size is reduced to 25% of the original [4]. Both [24]
and [4] show that quantization can be useful for small devices
such as IoTwith less memory. However, the lower the bit size,
the lesser the value a model can express, which eventually
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decreases the accuracy. Recently, many researchers have
proposed techniques to perform quantization at the sub-byte
level (e.g., 4-bit and 2-bit) [7], [15], [19], [22], [23] with
the aim of getting an extremely small CNN model that does
not degrade the accuracy too much. There are two types of
quantization on CNN: uniform quantization and non-uniform
quantization. These two quantization techniques projects the
discrete values following the interval between quantization
(resolution), e.g., 4-bit and 2-bit, in a different way. From
previous works [19], [20], it is observed that the weights in
CNN after training are usually in a normal distribution, which
is generally bell-shaped. In other words, the distribution of
weights is concentrated near the peak where the mean area
is zero, and it is ideal that there is also a proper distribution
on the tail of wide range [8]. Therefore, it is important for
a quantization scheme to closely resemble a proper normal
distribution in order to achieve a good accuracy. In particular,
non-uniform quantization assigns more values near the mean
area and expresses them to be very similar to a normal
distributions. Due to this reason, it is generally more accurate
than uniform quantization.

Power-of-two (PoT) [31] is considered one of the most
efficient non-uniform quantization techniques. After apply-
ing PoT [31] quantization, all multiplications can be replaced
by shift operations, which are very efficient on many modern
computer architectures. Zhou et al. proposed a PoT [31]
quantization technique that assigns closer quantization value
to the mean area but ignores the other parts. Li et al. [20]
proposed additive powers-of-two (APoT) to improve the PoT
[31], wherein they constrain all quantization values to the sum
of the PoT [31], which can better adapt to normal distribution.
APoT [20] adopts non-uniform quantization and achieves
good performance at a low-bit width. Since PoT [31] and
APoT [20] store the power-of-two in the grid weight or
activation in advance and use it as a quantization value, there
is no need to perform additional calculations for quantization
projection. Due to this reason, PoT [31] and APoT [20] can
achieve good accuracy and are computational lightweight.
However, in 2-bit quantization, the grid formulation in
APoT [20] treated the -0 and +0 as the same value (zero),
causing it to fallback to a uniform quantization. Due to this
reason, APoT [20] is unable to train successfully at 2-bit
quantization in many cases, when the CNN model is large.
Even if it trains successfully in some attempts, the accuracy
of APoT [20] is severely limited. We observed that the same
problem also occurs in PoT [31] scheme that shares the
similar grid formulation that generates zeros.

To resolve this issue, we attempt to improve the APoT [20]
scheme at 2-bit level. Our contributions are summarized as
follows:

1) A new grid formulation is proposed for APoT [20] at
2-bit level. In particular, our method stores quantization
values in grid as small values instead of zero (-0 or
+0). This allows the distribution of 2-bit quantization
to be non-uniform.With the proposed grid formulation,
it is possible for APoT [20] to train a large CNN

FIGURE 1. These two graphs show distributions of uniform (a) and
non-uniform (b) quantization when projected at 4-bit. For uniform
quantization, the quantization interval is evenly distributed. In contrast,
the interval in non-uniform quantization is small and it is excessively
concentrated on the mean area.

model successfully in every attempt including large
CNN model, which was impossible for the original
APoT [20] scheme.

2) The proposed non-zero grid formulation closely resem-
bles the ideal normal distribution, eventually improving
the accuracy of APoT [20]. The proposed technique
was evaluated on ResNet-32, ResNet-56 and ResNet-
110 and compared against the APoT [20] and other
state-of-the-art quantization scheme. Experimental
results show that our work is able to achieve higher
accuracy compared to existing techniques.

3) A thorough analysis was performed to pin-point the
problems in APoT [20] grid formulation, why it failed
to train successfully at 2-bit quantization, and how
the proposed grid formulation can solve this issue.
Our observations show that the presence of zeros after
the quantization process can produce extremely large
gradient, which greatly reduces the accuracy in CNN.
The proposed grid solved this issue by using non-
zero values, thus achieving a better accuracy. These
observations can be helpful in analyzing other quan-
tization schemes that shows the similar problem at 2-
bit quantization level. The code of our implementation
can be found at https://github.com/as705d/Enhanced-
Quantization.git.

Note that both PoT [31] and APoT [20] show the same
problems at 2-bit quantization. Hence, the non-zero grid
proposed in this paper is applicable to both schemes.

II. RELATED WORK
A. UNIFORM QUANTIZATION
Uniform quantization projects the weights as discrete values
with a constant continuous distribution range [17]; this is
illustrated in Figure 1a. From previous work, [32] and [5]
are trained and tested based on uniform quantization. They
also use different methods to optimize the quantization.
In the case of [5], new parameters are added to the existing
activation function to find the optimal values for each
training, while [32] applies quantization to gradient values
to improve computational efficiency. Jacob et al. [13] and
Wu et al. [26] utilized uniform quantization in their works
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because it is easy to implement, and consumes small memory
and computational efficiency in inference. Kim et al. [16]
optimized the student network using knowledge distillation
techniques for quantization training. Recently, Lee et al. [19]
pointed out the gradient mismatch problem for quantization
in backpropagation process and proposed to solve this
problemwith a gradient scalingmethod. Note that theweights
of the trained CNN model follow a normal distribution with
a mean of 0. On the other hand, the uniform quantization
eventually produces uniform distribution, which clearly fails
to resemble the ideal normal distribution. This does not
achieve good accuracy of the CNN model.

B. NON-UNIFORM QUANTIZATION
In contrast to uniform quantization, non-uniform quantization
projects the weights with more values concentrated on the
mean area; [1], [21], [30] this is illustrated in Figure 1b.
In particular, quantization in [1] is performed using a
lookup table, and [21] uses random matrix theory (RMT)
to search for optimal quantization values. In addition, [30]
proposed a vector segmentation scheme for bit operations of
quantization. Yang et al. [29] presents a method to accurately
retrieve discrete-weighted values in quantized neural net-
works using differential methods. Yamamoto et al. [27] uses
Compander technology to reduce the bit width of the input
value. These non-uniform quantization techniques introduce
significant computational overhead because they dynami-
cally explore suitable quantization values during inference
process. Recently, some researchers proposed to represent
the quantization values as power-of-two, which converts the
expensive multiplication operations to a much cheaper shift
operations. PoT [31] and APoT [20] are two representative
examples in this research direction. However, both PoT [31]
and APoT [20] fallback to uniform quantization at 2-bit,
seriously affecting its accuracy.

C. ROUNDING APPROXIMATION FUNCTION
Rounding approximation quantization is a technique that
can be used when conventional quantization is imple-
mented as a simple rounding function. Quantization through
rounding functions is applied during the training process.
This results in gradient vanishing because the gradient for
the rounding function in backpropagation becomes zero.
Therefore, training with a function that approximates the
rounding function during training can compensate for the
accuracy loss when using the rounding function in inference.
Prior works [6], [14] perform quantization based on the
round function. In particular, they approach the gradient
problem that the round function has, and properly adjusts
the quantization interval during training to produce the
optimal gradient. Yang et al. [28] proposed to train a CNN
model by approximating the Sigmoid function as a rounding
function. Gong et al. [7] uses the Tanh function instead of
the Sigmoid function to closely approximate the rounding
function. Kim et al. [15] trains a CNN model by computing

FIGURE 2. Comparing the distribution in 2-bit quantization. The proposed
grid closely resembles a non-uniform quantization.

the distance between the existing value and the quantization
value to create a various rounding approximation. Although
these approaches can provide good results to CNN inference,
it is not applicable to our case because we do not use rounding
functions in quantization.

III. METHOD
A. BACKGROUND
This section briefly discusses the problem of 2-bit quanti-
zation in PoT [31] and APoT [20]. First, before performing
weight quantization, a clipping function is used to keep the
range constant for all layers:

Wnorm =
W − µ

σ
(1)

Ŵ = clip(
Wnorm

α
, −1, 1) (2)

In Eq. 1, W is the floating point weight of the model and is
normalized using the mean (µ) and standard deviation (σ )
of each weight [12]. After that, According to clipping value
(α),Wnorm is fixed within the [−1,1] range for all layers. The
following equations generate a grid that stores the power-of-
two for quantization.

• PoT [31]:

Qw(α, b) = α × g (3)

where g ∈
{
0, 2−i, . . . , 1

}
, 0 ≤ i < 2b − 1

• APoT [20]:

Qw(α, kn) = α ×

{
n−1∑
i=0

gi

}
(4)

where gi ∈

{
0, 1

2i ,
1

2i+n , . . . , 1

2i+(2k−2)n

}
In both equations, α is the clipping value, g denotes the

grid, and b is the bit size. Both PoT [31] and APoT [20]
store quantization values in the grid as a power-of-two, which
can be implemented as a shift operation in the hardware.
In APoT [20], the authors proposed using k = 2 when
calculating parameters kn = b. Therefore, the selected grid
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is quantized by the following equation:

Ii = argmin
i

∣∣∣Ŵ − g
∣∣∣ (5)

W̃ = {g[I0], g[I1], . . . , g[Ii]} (6)

Q(W ) = α × sign(W̃ ) (7)

Eq. (5) selects the nearest quantization values by calcu-
lating the distance between the weight and the grid, where
0 ≤ i < 2b−1, in which i is the number stored in the grid. Eq.
(6) selects the quantization values from the grid following
the order where the quantization interval is closest. Eq. (7)
applies the sign function and multiplies it with α to generate
the final quantization value. Note that b-bit quantization can
represent 2b distinct values. Since the sign function is used in
Eq. (7), the bit size for the weight is smaller by one bit. For
example, if 3-bit is used for weight quantization inAPoT [20],
then the grid generated is

{
0, 2−1, 2−2, 1

}
since k = 2 and n =

1. PoT [31] also generates the same grid. However, for 2-bit
quantization, k = 1 and n = 1, so grid [0, 1] is generated, along
with α × [1, -1, -0, +0]. Note that -0 and +0 are assigned the
same value: zero; this implies that PoT [31] and APoT [20]
are equivalent to uniform quantization at the 2-bit level.
This restricts the accuracy of both quantization techniques
becuase the grid does not closely follow a non-uniform
quantization. We have access to two techniques, PoT [31]
and APoT [20], because we approach a 2-bit weight grid.
Thus, uniform quantization expressed in 2-bit can be newly
expressed as non-uniform quantization by the following
method.

B. THE PROPOSED NEW NON-ZERO GRID FORMULATION
A new grid formulation is proposed to allow non-uniform,
PoT weight, 2-bit quantization. The grid we propose is
obtained as follows:

Qw(α,B) = α × g (8)

where g =
[
1, 2−B×Z

]
,B = b − 1,Z > 0. The α is the

clipping value, b is the bit size, and B = b - 1 is satisfied.
Z is a parameter consisting of integers. We can also see that
the largest value in the grid for APoT [20] and PoT [31] (i.e.,
1) is fixed to the clipping value. Therefore, we also use 1 as
the clipping value by default in the proposed equation, and
use power-of-two for the remaining values. In addition, for
2-bit quantization, the grid stores 2B values. So, the value of
1 in the grid becomes the clipping range by multiplying it
with the clipping value, and the value of the second term is
projected as the value nearest 0 through the power-of-two.
For example, when α is 3 and Z is 2, then 3 × [1, 2−1×2]
is generated according to Eq. (8). Therefore, we can see
that quantized values [−3, −0.75, 0.75, 3] are non-uniform
with clipping range −3 to 3. Referring to the illustration in
Figure 2b, we can see that the proposed grid closely resembles
a non-uniform quantization, while the existing PoT [31] and
APoT [20] follow uniform quantization.

TABLE 1. Check the quantization values projected according to the Z
value. In the proposed grid, we can see that the higher Z is, the nearest it
is projected to the peak area. In the grid, 1 is fixed as the clipping value.

C. CONFIGURING PARAMETER Z
In our proposed grid, Z is a configurable parameter. As Z
increases, the PoT term (2−B×Z ) decreases. Referring to
Table 1, we see that when Z is 4, the second term in the
grid is expressed as 2−4, and when Z is 10, we see that it
is expressed as 2−10. This means that as Z increases, the
quantization value becomes much closer to the mean area.
If the quantization value is projected too close to the mean
area, the gap between the two quantization levels becomes
very narrow (see Figure 3). This results in a rigid resolution
problem [20] in which the model cannot properly judge the
image during training because the resolution is increased
but the representation is distorted. Therefore, it is important
to choose an appropriate Z value. In this paper, we can
select various values of Z and find the optimal Z through
experiments.

D. TUNING THE CLIPPING VALUE
When applying quantization to a CNN, the appropriate
Clipping value can help the model train by selecting
quantization values from the optimal range. However, Using a
large Clipping value, it cannot select the optimal quantization
value because the value is selected over a wide range. And
the small Clipping values do not maintain a ideal normal
distribution because they only select quantization values
around the mean area. In addition, the clipping value used
when quantizing each layer is not optimal and can be adjusted
appropriately. Therefore, APoT [20] tunes the clipping value
with the reparameterized clipping function (RCF) to find
the optimal value. RCF calculates new clipping value after
calculating gradient in Backpropagation during training. RCF
proposed by APoT [20] is as follow:

∂L
∂αw

=
∂L
∂Oi

∂Oi
∂Q(W )

∂Q(W )
∂αw

(9)

α̃w = αw − η
∂L
∂αw

(10)

Eq. (9) calculates gradient of clipping value (αw) for each
layer, where L is a loss value, Oi is an output value for
each layer, and Q(W) is a quantized weight. And, Eq. (10)
updates the new clipping value (α̃w). Initially, for each layer,
select Clipping value from a range that is usually not large.
Therefore, the model can select quantization values from
the optimal range. However, the clipping value tuned with a
RCF in 2-bit level is not optimal. A small value is already
selected from the first epoch (see Figure 4) where each layer
is projected as a quantization value in a fluctuating range
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FIGURE 3. The rigid resolution problem [20]: comparing the distances of
the two quantization values in the mean area, we see that (b) is much
closer than (a). Note that the small blue circles represent the quantization
value.

rather than a smooth one. A small clipping range restricts
the tuning process because there could be other unexplored
values during the quantization step, resulting in a non-optimal
range. In contrast, our proposed grid does not select a small
Clipping value and can select an optimal quantization value
by selecting a stable range from different layer.

E. THE PROBLEM OF THE PRESENCE OF ZEROS
The existing PoT techniques [20], [31] generate quantized
values that may contain a signed zero (+0 and −0). The
presence of zero in quantized weights can significantly
affect the training process. For instance, 1 × 1 convolution
is widely used in various CNN models (e.g., ResNet [9],
GoogleNet [25]). The quantization of the weight may
generate 0, which is multiplied with the input during the
1×1 convolution process. This can affect the training results,
because all the output is computed as 0, which is more serious
for low-bit quantization (e.g., 2-bit). For example, in 4-bit
quantization, 2 out of 24 values are zeros after quantization,
and the probability is 12.5%. For 3-bit quantization, this

FIGURE 4. Training ResNet-32 and ResNet-56: (a) 2-bit APoT [20] chooses
small and fluctuating clipping values; (b) our grid chooses clipping values
with a larger range, and does not fluctuate across different layers.

becomes 2 out of 23, and the probability is 25%, which is
still acceptable. However, when we look at 2-bit quantization
proposed in APoT [20], it is 2 out of 22 (a 50% probability).
When many zeros are generated in the 1 × 1 output, the
next layer will also be affected, and the model is likely to
be trained in the wrong direction. Referring to Figure 5,
more than 50% of the distributions in ResNet-32 and ResNet-
56 after applying 2-bit APoT [20] quantization are zeros.
This problem is also further revealed in Backpropagation’s
Clipping value selection. The third term ( ∂Q(W )

∂αw
) in Eq. (9)

is defined in APoT [20], and the gradient is calculated from
each output value and the loss value. However, if the output
value contains many zeros, the calculation of the gradient is
greatly affected. Figure 6 shows the gradients of the quantized
weights for each layer’s output value. For APoT [20], we can
clearly see some extremely large gradients generated due to
division by zero. However, our method uses different non-
zero values in 2-bit quantization instead of signed zeros, thus
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FIGURE 5. The distributions of 0 at 1 × 1 weight with at size [1], [1], [16],
[32] on ResNet models (e.g., ResNet-32, -56), when trained with mini
batches. Note that [output channel, input channel, weight, weight].

avoiding the problem of division by zero; this allows the
model to train normally.

F. TRAINING PROCESS
Algorithm 1 shows the application of 2-bit non-uniform
quantization during training using the PoT system. Note that
our method applies only to weights during training. First,
In forward, the normalized weight obtained by the mean
(µ) and standard (σ ) deviation of weights is clipped in a
certain range (lines 3 and 4). We then use our method to
obtain quantization the values. Since our method is used in
2-bit, it is fixed to the grid with two values. In addition,
the distance from the mean area varies depending on Z,
and the grid can be set by selecting the appropriate Z
(line 5). The closest distance can be expressed as an index
by calculating the distance between grid and weight (line 6).
The index is expressed as 0 and 1. Finally, a quantization
value may be selected from the grid for each index, and
a final quantization value may be selected through a sign
function (line 7 and 8). This calculated quantization value
is multiply with Input (line 9 and 10), also the quantization
value calculated using ourmethod is also composed of power-

Algorithm 1 Forward and Backward Algorithm With the
Proposed Method
Forward:
1: The bit-width for weight is applied one bit lower.
2: Input data: x, Floating Point Weight: W, bit: b,

learning rate: η
3: Weight Normalized:Wnorm =

W−µ
σ

4: Weight clipping: Ŵ = clip(Wnorm
α

, −1, 1)
5: Non-zero grid(Ours): Qw(α,B) = α × g where g =[

1, 2−B×Z
]
,B = b− 1,Z > 0

6: Select nearest quantization value index: Idxi =

min
∣∣∣Ŵ − g

∣∣∣
idx

where
(
0 ≤ i < 2b−1

)
7: Select quantization value from grid: W̃ =

{g[Idx0], g[Idx1], . . . , g[Idxi]}
8: Final quantization value: Q(W ) = α × sign(W̃ )
9: Convolution: Conv(x,Q(W )) = x ∗ Q(W )
10: Output: F(Conv(x,Q(W ))) where F = Relu activation

function
Backward:
11: Compute gradient using STE: ∂L

∂W =
∂L

∂Q(W )
∂Q(W )

∂Ŵ
∂Ŵ
∂W

12: Compute gradient of clipping value: ∂L
∂αw

=

∂L
∂Oi

∂Oi
∂Q(W )

∂Q(W )
∂αw

13: Update the weight parameter:Wnew = W − η ∂L
∂W

14: Update the clipping value: α̃w = αw − η ∂L
∂αw

of-two, so fast computation speed can be achieved. Backward
updates the weight and clipping value through gradient every
training (line 13 and 14). In particular, since loss is affected
by quantization weights and clipping values, gradients can
be calculated with each other (line 11 and 12). Here, weight
propagates the gradient (e.g., ∂Q(W )

∂Ŵ
= 1) using the Straight-

Through-Estimator (STE) [2] because the gradient for the
function that converts it to the quantization value is zero.
Gradient calculations for the clipping value are described in
Section III-D.

IV. EXPERIMENTS
A. EXPERIMENT DETAILS
The proposed idea was experimentally verified with the
CIFAR-100, and CIFAR-10 [18] datasets on four CNN
models: ResNet-20, ResNet-32, ResNet-56 and ResNet-
110 [9]. We trained the models with 2-bit quantization by
applying the proposed grid to the weight. Quantization of
the activation function followed the method in [20]. If the
quantization bit size is 2 then b for the weight is set to 1.
On the other hand, the sign function in Eq. (7) applies only to
weights, so quantization b for activation function is applied
as is. In addition, parameter Z in Eq. (8) was configured at
Z = 1, 2, 4, 10, 20 in order to observe its effect on training
accuracy. The clipping value was set to weight = 3.0 and
activation = 8.0, following [20]. CIFAR-100 was trained over
300 epochs using ResNet-32, ResNet-56, and ResNet-110;
CIFAR-10 was trained over 300 epochs using ResNet-20 [9].

32056 VOLUME 11, 2023



Y. M. Kim et al.: Non-Zero Grid for Accurate 2-Bit Additive Power-of-Two CNN Quantization

FIGURE 6. Gradient graphs of quantized weights for APoT [20] and the
proposed method when Z = 2 in ResNet-32 and ResNet-56. (Note that the
y-axis is ∂Oi

∂Q(W ) ).

TABLE 2. Performance comparison: CIFAR-100.

We set the batch size to 128 and the learning rate to 4e-2,
with weight decay set to 1e-4 for both 32-bit and 2-bit. The
proposed method is compared with APoT [20], EWGS [19],
DAQ [15], LSQ [6] and QKD [16].

TABLE 3. Performance comparison: CIFAR-10.

TABLE 4. Performance of ResNet-110 trained on CIFAR-100.

FIGURE 7. We compare the loss and Top-1 validation accuracy in
ResNet-32 and ResNet-56. Our method confirmed that the calculated loss
and accuracy are lower than in the existing method.

B. EXPERIMENTAL RESULTS
1) CIFAR-10 AND CIFAR-100
Table 2 compares the performance of 2-bit quantization using
the proposed technique and APoT [20] and EWGS [19]. For
ResNet-32 andResNet-56 [9], we can see thatZ= 2([1, 2−2])
showed the best performance, achieving accuracies 0.72%
and 0.81% higher than APoT [20], respectively. Moreover,
Z = 1([1, 2−1]) and Z = 4([1, 2−4]) also showed performance
increases of at least 0.23% and 0.44% on ResNet-32 and
0.58% and 0.69% on ResNet-56, respectively, above that of
APoT [20]. This shows that we can improve performance
with an appropriate Z value. In addition, EWGS [19] is trained
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FIGURE 8. The distribution of weight quantization values according to
various Z at 12th layer of ResNet model. Note that all the ResNet models
used in our experiment (ResNet-20, -32, -56 and -110) show the same
distribution. We can see that the quantization value becomes very close
to the mean area when Z is 10.

with uniform quantization, so it is less accurate than the
proposed method, non-uniform quantization. However, as Z
increased (e.g., 10, 20), it gradually got closer to the mean
area and the accuracy gradually decreased. Table 3 shows the
performance on CIFAR-10 [18] with ResNet-20 [9] where
similar performance was observed.

Table 4 shows the results of ResNet-110 trained on the
CIFAR-100 dataset. The proposedmethod with Z= 4 is 0.4%
more accurate than EWGS [19]. Note that out of the 30 trials
of APoT [20] 2-bit quantization, only seven were successful;
the failed trials showed extremely low accuracy (1%).
When the training was successful, the proposed technique
consistently outperformed APoT [20] by more than 5%. The
accuracy achieved by the proposed technique (70.57%) is also
very close to the original FP version (72.09%).

Besides accuracy, the number of fixed point operations
(FixOPS) was calculated to estimate efficiency during
inference. Following APoT [20], FixOPS was calculated as
m×n
64 (where m is the number of bits in the weight, and n is

the number of bits in the activation). Our proposed technique
maintained the same FixOPS as APoT [20] but with higher
accuracy. This allows us to apply a CNN to constrained
devices that have limited computational capabilities.

2) SELECTION THE OPTIMAL Z
The reduced representation of images due to quantization
affects training, but it can be optimized by properly adjusting

FIGURE 9. APoT on ResNet-110 shows that loss explodes during training,
keeping the Top-1 validation accuracy at 1%. This prevents normal
training.

the distribution of weights. In our method, values of Z can
represent different resolutions. Here we raise one question.
How do we find the optimal Z? According to section III-C,
in our method, the quantization value gets very close to the
mean area as Z increases. In particular, In order to follow a
non-uniform quantization with an ideal normal distribution,
it is possible to achieve good performance by projecting
the quantization values to be distributed at an appropriate
distance from the mean area. We try to analyze various
Z values in order to set the optimal Z in model training.
In Figure 8, we applied various Z values to the ResNet
models (e.g., ResNet-20, -32, -56 and -110) and expressed
them graphically. The clipping value searches a wide range
according to the RCF, and the distance from the mean area
can be known according to Z. We found that when Z = 1, the
projected quantization value is far from the peak, which does
not follow the ideal normal distribution. In addition, it can be
seen that as Z increases, it is very close to the peak, so it can
cause the rigid resolution problem. In particular, two weight
values that are very close to peak can produce very small
results in convolution multiplication operations (e.g., x ∗

Q(W )). Therefore, the gradient explodes in backpropagation,
affecting training, and thus decreasing accuracy. Through our
experiments on the selected datasets (CIFAR-10 and CIFAR-
100), we found that Z = 2 or Z = 4 gave the best accuracy.
For other datasets, a different optimal value for Z can be
determined through experiments. If the two quantization
values are projected not too close and not far from the mean
area, the expressiveness of the model can be improved, which
explains why Z = 2 or Z = 4 achieved better accuracy than Z
= 1 or Z = 10. In particular, in ResNet-20, ResNet-32 and
ResNet-56, when Z = 2 was set, the performance was high,
and in ResNet-110, Z = 4 had the best performance. This
allows us to select optimal Z value that are not large and small
with an ideal normal distribution for each model.
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TABLE 5. Synergy with EWGS [19] on CIFAR-100.

TABLE 6. Synergy with EWGS [19] on CIFAR-10.

3) ANALYSIS OF TRAINING LOSS AND
VALIDATION ACCURACY
This section analyzes the training loss and the Top-1
validation accuracy in each model (i.e., ResNet-32, ResNet-
56 and ResNet-110), which is derived from the output of the
training result after feedforward. In Section III-E, we showed
that 1× 1 convolution with zero may derive incorrect results
in model training; the problem becomes more serious with
deeper layers. From Figure 7, we confirmed that our method
applied to ResNet-32 and ResNet-56 calculated a lower
loss and higher validation accuracy than APoT [20], but
the difference is not significant. However, the situation is
different with ResNet-110, where the loss in APoT [20]
exploded after a few iterations (e.g., Figure 9). We confirm
that for ResNet-110, the loss has an accuracy of 1% per epoch
when it explodes. In addition, these loss values seriously
affects calculation of the gradient in backpropagation, and
also results in an incorrect clipping value in Eq. (9). That
explains why APoT [20] 2-bit quantization (see Table 4)
failed to train correctly. Even for some cases where the model
can be trained normally, it introduces a significant accuracy
loss (64.33%). In contrast, our method allows the calculation
to be derived correctly by removing zero from the grid, thus
achieving significantly better accuracy (70.57%).

4) DISCUSSION
Quantization in deep learning models improves performance
using various optimizationmethods. In particular, ourmethod
improves performance by quantizing only weights. There-
fore, in this section, we would like to discuss that our method
is not independent and can be combined with other quanti-
zation methods to create synergies. We applied our method
only to weights in forward propagation, so other methods
can be applied in the activation function or backpropagation
process. For example, in most backpropagation process, the
STE [2] method is usually used for quantization methods

[6], [14], [30]. On the other hand, the EWGS [19] method
optimizes by adjusting the gradient in backpropagation to
improve performance over STE [2]. Therefore, EWGS [19]
is not affected by uniform quantization or non-uniform
quantization in forward propagation, and only optimizes
with varying gradient, so accuracy improvements can be
made. Table 5, 6 shows the results of applying our method
to STE and EWGS [19]. First, existing EWGS [19] uses
uniform quantization in forward propagation and shows that
it achieves higher accuracy than when using STE [2] in
each model. In addition, we conducted a test by applying
EWGS [19] to the Z value that achieved the highest accuracy
of our proposed method. When we applied our method to
EWGS [19], we can see that the performance was improved
compared to that of STE [2]. It is also better than the
accuracy of only using EWGS [19]. Note that we only
optimized performance for backpropagation, so FixOPS will
not change. Therefore, we can see that our method has a
synergistic with other method.

V. CONCLUSION
The PoT [31] and APoT [20] technique performs 2-bit quan-
tization in a uniform manner that is not optimal. Moreover,
the existing 2-bit APoT [20] quantization could generate
many zeros in 1 × 1 convolution output, degrading training
accuracy. The proposed new non-zero grid formulation turns
2-bit APoT [20] into non-uniform quantization, which closely
resembles a normal distribution. It also represents the zeros
with small quantized values, completely avoiding explosion
in the gradient calculation. We conduct experiments on
various Z and show that the optimal Z can be found based
on the experimental results, and the proposed new grid can
achieve higher accuracy than APoT [20]. This technique is
also applicable to PoT [31] as it shares the same problems
as in APoT [20]. In future, we expect to extend the proposed
technique to other 2-bit quantization schemes.
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