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ABSTRACT In this paper, a new learning-based method is proposed for the early detection of changes of
parameters in power converters. It circumvents the pertinent shortcomings of previousmodel-basedmethods,
such as their need for acquiring switching signals, dependence on the control method, or the need for isolating
a part of the system during monitoring and thus interfering with the system performance or its start-up time.
Additionally, a downside of the learning-based approaches, which is that their performance depends on the
quality of the measurements, is addressed through constructing hybrid models that combine the benefits of
both lines of development. Our approaches are evaluated with several types of features based on wavelet
decomposition and empirical mode decomposition. Using these, an ANN-based classifier is trained for fault
detection. For achieving the final decision on the presence or absence of a fault state, we propose the use
of sequential hypothesis testing. This hybrid approach yields a much higher reliability than instantaneous
ANN-based classification, while allowing for a statistically sound cross-temporal information integration
and providing a controllable error bound for the probability of misclassifications. The proposed method was
evaluated on two data-sets recorded from a buck converter and an arm of a modular multilevel converter.
The results show that, for both systems, the proposed method is capable of reliably recognizing changes of
the system parameters. The potential for practical applications is shown through an implementation on a
low-power-consumption microcontroller.

INDEX TERMS Fault diagnosis, power converters, DC/DC Converter, MMC, machine learning, signal
processing, hybrid models.

I. INTRODUCTION
condition monitoring of power converters in energy systems
is of great importance, considering the wide range of appli-
cations in which they play a critical role, and their long
operational time. While there are many different power con-
verter topologies, these broadly share the same principles of
operation via active and passive elements. Hence, very similar
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condition monitoring methods can, with some modifications,
be applied for different power converters.

The specific condition monitoring technique proposed in
this paper is applied to two different power converter topolo-
gies. The first is a buck converter, a widely employed DC-DC
power converter [1]. The second system is an arm of a of
modular multilevel converter (MMC). These converters have
gained great interest in academia as well as industry shortly
after they were initially proposed [2], due to their modu-
lar design, their scalability, the good quality of the output
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voltage, low switching losses, and the fact that redundancy
can be easily achieved [3].

A. RELATED WORK
The reliability as well as fault detection & isolation (FDI) of
power converters have recently attracted significant research
attention. The most fragile components in these systems are
the semiconductor devices [4] and passive elements, primar-
ily capacitors, but also inductors and resistors [5], [6]. Faults
of semiconductor devices are categorized into short- and
open-circuit faults. Short-circuit (SC) faults require a very
fast response, which is why they are usually handled at the
hardware level [7], [8]. Open-circuit (OC) faults, in contrast,
do not always have an immediate impact on the performance
of the system, especially in large systems. Degradations of
the passive elements are usually very slow and their reli-
able detection is therefore a challenging albeit important
task, as they can cause violation of the output voltage and
power specifications. While most prior research is focused on
semiconductor faults, this work is concerned with applying
data-based methods for early detection of such degradations
of passive elements.

1) PARAMETER CHANGES
The methods for FDI in DC-DC converters can be classified
as hardware-, model- or data-based [9]. Since hardware-
based approaches are not being used for detecting parameter
degradations, they are omitted from this discussion. Model-
based approaches are the most common, with great emphasis
being placed on observers. For linear systems, a Luenberger
observer is often applied, e.g. in [10], where a bank of
two such observers are used to monitor parameter changes.
In [11], a general switched linear state estimator for a wide
range of power converters is presented for FDI of parameter
changes and OC faults as well as sensor faults. An adaptive
observer for estimation of capacitance and inductance of a
Buck converter is proposed in [12].

Although model-based methods for fault diagnosis are
highly developed, they are not always easily applicable to
complex power electronic systems. The main reason is their
dependence on a precise mathematical system model, which
is not easy to derive for large-scale power systems, not least
because of the parameter uncertainty that is significant in
these types of systems.

For these reasons, learning-based (or data-driven) meth-
ods, in which the inference about the current state of the
system relies only on the available measurements, have been
proposed for DC-DC converters. As one recent, notable
example, [13] describes a fault detection approach that is
independent of the converter structure. This is achieved
by monitoring statistical properties of the output signal
and measuring their deviation from the previously learned
range of normal values. This allows for successful detec-
tion, but not isolation of the faults. The authors in [14]
also propose a machine-learning method for detecting large
parameter changes, utilizing wavelet features and training

a classifier based on a deep-belief network for the fault
recognition. Another machine-learning approach for larger
parameter changes was proposed and applied to a superbuck
converter in [15]. Statistical characteristics of the output
voltage signal are used as features after a dimensional-
ity reduction and a special type of artificial neural net-
work (ANN)—the extreme learning machine—is tasked with
the classification of the fault types. In [16], a technique
is presented for reliable isolation of parameter changes in
power converters. The approach applies wavelet-based fea-
tures and a simple ANN classier, and its performance is
shown on a buck converter connected to a local distribution
grid.

Research concerning FDI for the MMC has predominantly
focused on semiconductor faults [17]. This has, however,
been changing in recent years, with an increasing number of
papers being published on detecting failures of the capacitors
in the submodules (SMs) of the converter. As in the case of the
DC-DC converters, the common approach is to use relations
derived from the physical model of the converter to monitor
the SMcapacitance. In [18], amethod is proposed, which uses
a simple relation between SM voltage and capacitor current.
The capacitor impedance is computed by dividing the root-
mean-square values of the two signals’ second-harmonic-
order components. One drawback of this method is that it
cannot be used if circulating current suppression control is
applied. The same relation between SM voltage and capacitor
current was used in [19], where the error of the capacitance
estimation was minimized by recursive least squares (RLS)
estimation. Another strategy for a robust estimation is pro-
posed in [20], by employing a Kalman filter. The method
proposed in [21] also uses RLS for capacitance estimation,
based on modeling the relation between the capacitance and
SM voltage change during the fundamental period, when the
nearest level modulation control is used. In [22], the authors
achieve good capacitance estimation accuracy by using the
fundamental frequency component of the capacitor voltage
and current.

Another group of recent methods relies on the change in
the switching frequencies of the SM semiconductors caused
by capacitor deterioration. For example, in [23], the authors
model this relation through a polynomial fit, while the authors
in [24] propose training an ANN. Similarly, [25] uses the
sum of the switching signals in a SM as the indicator for
capacitance change. Alternatively, capacitance monitoring is
implemented by explicitly monitoring the charging time of
the capacitor. The strategy in these approaches [26], [27],
is to first isolate each SM and compare the charging time
with a reference SM. A downside of this type of approach
is that it can take several hours to conduct monitoring for a
large MMC.

A data-driven method for detecting capacitance changes in
MMCs is proposed in [28]. There, the SM voltage and the
arm current signals are used to train a one-class-classifier for
detecting changes in capacitance, and T 2 statistics are used
to improve the reliability of the system.
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2) OC AND SC FAULTS
The majority of the earlier data-driven methods for FDI in
power converters were applied to detect OC and SC faults.
One interesting example of such a method is presented
in [29]. Here, combinational or fuzzy logic is applied for
inference based on statistical features, which are extracted
from the recorded signals signals. In the method described
in [30], principal component analysis (PCA) is applied to
monitor Hotelling’s T 2 and Q statistics in order to detect
the occurrences of OC faults. In [31], a quartile analysis
is applied to the capacitor voltages in one arm to detect and
isolate OC faults.

A general drawback of these data-driven techniques
for condition monitoring is that their performance highly
depends on the quality of the measurements and that data
recorded at different operation modes of the system is
needed to achieve robust performance in practical applica-
tions. In recent years, more work was done to overcome
these difficulties by applying advanced machine and deep
learning methods in combination with different features to
train robust classifiers. Bayesian networks in combination
with fast Fourier transform (FFT)-based features are success-
fully applied for detecting and isolating single and double
OC faults in a power inverter in [32]. Recently, convolutional
neural networks (CNNs) have also shown good results in iso-
lating OC faults by using the wavelet transform to extract fea-
tures from themeasured arm and submodule signals [33]. [34]
Reference showed how phase-current signals can be used
with CNNs for FDI of single OC faults in a three-phase
inverter. A very robust classifier based on a 1-dimensional
CNN is designed in [35], using sub-module output voltages
and circulating current as the inputs to the network.

From these recent works, it can be seen that data-driven
methods are showing promising results for the detection and
isolation of semiconductor faults in power electronics. For
the problem of parameter change detection, however, data-
based approaches are still scarce. However, the advantages
of data-driven methods and their performance in power elec-
tronics applications so far provides a strong motivation for
their application in detecting changes of parameters as well,
which is therefore the focus of this work.

B. CONTRIBUTIONS
This paper proposes a novel, learning-based condition mon-
itoring technique for power converters. It relies on signals
recorded from the converter to recognize any significant
changes of the system parameters. The features used for this
purpose are based on signal processing techniques, such as
wavelet decomposition and empirical mode decomposition
(EMD), which are shown to provide highly informative indi-
cators of the current state of the system. This allows training
a relatively simple classifier for system faults, based on deep
neural networks, which offers high performance on its own.
However, despite the good performance of this direct fault
classification, the possibility of false alarms cannot be elim-
inated with sufficient confidence. For this reason, in order to

achieve maximal reliability and validity of the fault detection,
we suggest a novel mechanism for integrating instantaneous
classifier decisions across time in a statistically sound deci-
sion process. This also enables us to provide error bounds
on the mis-classification probability of the system, which is
valuable in choosing system parameters—specifically related
to the speed of decision making—in a task-driven, explain-
able and systematic way.

The method is evaluated on different power converters,
with the use case of detecting changes of capacitance and
inductance. We show that the proposed method achieves
reliable multi-class classification for all considered types of
faults, even during changes of the operating point. Also, the
robustness of the approach is evaluated by training the clas-
sifier to recognize small parameter changes and then testing
on data recorded when the parameter changes are larger.

We further show the applicability of the proposed method
to low-resource settings by implementing it on a low-power-
consumption microcontroller.

Hence, the contributions of this paper can be summarized
as follows:

• Proposing highly informative features, which allow
training a simple classifier for state classification.

• Improving the reliability of fault detection through the
application of statistical hypothesis testing.

• Showing the applicability of the proposed method on a
low-power-consumption microcontroller.

The remainder of this paper is organized as follows:
Sections II and III describe the power converters that are
used in the experiments, and the considered feature types.
In Section IV, a brief description of the classifier structure
and training is given, while the cross-temporal integration
method is introduced in SectionV. Experiments are described
in Section VI and their results are discussed in Section VII.
The implementation of the proposed method on a low-power
microcontroller is presented in Section VIII, before providing
conclusions and an outlook on future work in Section IX.

II. POWER CONVERTER TOPOLOGIES
For the analysis, two converter topologies were selected,
covering the most relevant challenges of modern power elec-
tronics. A frequently used and fundamental converter system
is the step-down converter. A modular multilevel converter
(MMC) consisting of three separate voltage-source convert-
ers with their typical non-constant DC-link voltage is chosen
as a more complex and future-oriented test case.

The main components of the step-down converter are
a DC-link capacitor, a self-commutated power electronic
device and a diode. An inductor on the output side is used for
smoothing the current, see Fig. 1. An insulated-gate bipolar
transistor (IGBT) is used as a typical self-commutated power-
electronic device. The IGBT is controlled by a digital control
unit implementing a variable duty cycle d . A diode bridge
connected to the mains voltage feeds the DC-link capaci-
tor. On the output side, several resistors and inductors are
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available. They are selected such that various states of opera-
tion are available. Certain states represent normal operation,
while the other states emulate various degrees of degradation
of components and are considered as fault states. The currents
and voltages are heavily distorted due to the switching opera-
tion and present challenges for measurement and subsequent
identification.

Since our proposed classification approach yielded
extremely high precision on the step-down converter data, the
MMCwas selected as a more challenging system, cf. Fig. 1b.
MMC converters are suggested for and, in a few cases,
already used in modern static synchronous compensator
systems (STATCOM). They improve power quality in trans-
mission and distribution networks. Each sub-module consists
of a four-quadrant converter with its own DC-link electrolytic
capacitor. As typical for such STATCOM applications, they
connect to the grid via a series inductor. A control unit stabi-
lizes each DC-link and controls the magnitude of the current.
MMC converters without proper control would become insta-
ble, consequently, the operating point for each of the three
converters varies continuously—increasing the challenges for
the identification of faults and aging. The modification of
the DC capacitance is implemented by additional smaller
capacitances that are added and removed. Modifications of
the capacitance and modifications of the current magnitude
both influence the variation observed in the DC-link volt-
age, making the separation of the two effects challenging.
Regarding the specific case of capacitors, depending on the
technology, different criteria have been accepted to asses the
end-of-life. For the aluminum electrolytic capacitor, these
are a capacitance reduction by 20% or an increase of the
equivalent series resistance (ESR) by a factor of at least 2.5.
For the multilayer ceramic capacitor, a capacitance reduc-
tion of 10% is regarded as a failure, while for the metal-
ized polypropylene film capacitor, the failure threshold is
at 5% [36].

III. FEATURE EXTRACTION
Appropriate features are important to speed the conver-
gence and enhance the performance of machine-learning-
based fault-diagnosis. Sometimes, using time-domain signals
is sufficient, but in many other cases, e.g. when dealing
with the degradation faults described in this paper, detect-
ing the parameter changes directly from the time series is
difficult.Deep learning techniques may help here, as they
can learn optimal features during the training phase, but
this approach is computationally expensive, typically requires
larger amounts of representative and labeled data, and may
not generalize well.

Therefore, in this work, one focus lies on develop-
ing appropriate signal processing for a feature extraction
well-suited to subsequent deep learning. Two different signal
processing techniques,WD and EMD, are used and compared
for this purpose. As shown below, this allows for robust
detection of parameter changes by using a low-complexity
machine-learning-based classifier.

FIGURE 1. Considered power converter systems.

A. WAVELET DECOMPOSITION
The wavelet transform is one of the most popular techniques
for the time-frequency analysis of non-stationary signals.
It decomposes the signal into a selected number of com-
ponents, where each component corresponds to a specific
frequency range of the original signal. The process is called
wavelet decomposition (WD); it can be achieved through the
Mallat algorithm. For a given signal X (t) with a frequency
range from 0 to fs, the first step in the WD is to filter the
original signal with a pair of complementary high- and low-
pass filters. The parameters of the filters are determined by
the choice of wavelet function [37]. The component obtained
at the output of the low-pass filter is called approximation;
it corresponds to the frequency band [0, fs/2]. Similarly,
the second component, called detail, at the output of the
high pass filter, corresponds to the frequency band [fs/2, fs].
After filtering, both components are down-sampled by a
factor of two and the filtering procedure is repeated on the
low-frequency components to generate a tree-like structure of
coefficients. This yields a new approximation corresponding
to the frequency band [0, fs/4] and a new detail corresponding
to the frequency band [fs/4, fs/2]. Thus, if the decomposition
is done on N levels, one approximation and N detail com-
ponents will be extracted and the final approximation will
correspond to the frequency band [0, fs/(2N )].

B. EMPIRICAL MODE DECOMPOSITION
Empirical mode decomposition is a method for decompos-
ing an input signal into a finite number of intrinsic mode
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TABLE 1. Extracted statistical features.

functions (IMFs). This is achieved through the sifting pro-
cess [38] - an iterative algorithm that involves two steps:
estimation of the upper envelope (UE) and lower envelope
(LE), and data reduction. In the first step, the local maxima
andminima of the signal are identified, and theUE and LE are
constructed as cubic splines, connecting all local maxima and
all local minima, respectively. The mean of the two envelopes
is computed to obtain the so-called mean envelope. In the
second step, themean envelope is subtracted from the original
signal to obtain a residual signal. The residual signal is then
checked for the presence of an IMF. If an IMF is detected,
it is extracted from the residual signal and added to the list of
extracted IMFs. If no IMF is detected, the residual signal is
considered as a trend and added to the final trend component.
By definition, every IMF needs to satisfy two conditions. The
first condition is that the number of extrema and the number
of zero crossings in the whole length of the signal must either
be equal or differ at most by one. The second condition is that,
at any point, the mean value of the UE and LE is zero. Each
extracted IMF represents one oscillation mode of the signal.
After performing the EMD on the signal X (t), the signal can
be represented as:

X (t) =

N∑
n=1

cn(t) + rN (t), (1)

where N is the number of the components, cn is the n-th IMF
and rN is the residual, which represents a constant or a mean
trend.

C. FEATURE EXTRACTION PROCEDURE
The top-level algorithm for feature extraction is the same for
all types of features used in this paper. After selecting the
appropriate signals for fault detection, features are extracted
from each of these. The first step of feature extraction is
always a windowing step, applying a selection window of
fixed length to perform signal segmentation. Starting from
the beginning of the signal, segments are obtained by suc-
cessively moving a rectangular window by one quarter of
its length. The part of the signal corresponding to the i-th

segment is denoted asXi. The length of the selection window
is always set to 2 seconds. The second step is that of actual
feature extraction, which is carried out for each segment in
all signals.

Two types of features are considered in this paper: The first
type, the energy-based features, are always derived based on
the WD. The main intuition for applying this feature choice
comes from the fact that parameter changes in the system
are reflected in the energy of the system voltages and cur-
rents [39]. As the components of a WD correspond to differ-
ent frequency ranges, tracking the energy of each component
allows more precise tracking of the signal changes over-
all. Different components are expected to be more sensitive
to different types of changes, which makes them attractive
features for FDI. This could not be achieved with standard
frequency-based techniques such as FFT or STFT , since
the soft faults produce a negligible change in the spectrum,
outside of the signals base frequency.

Hence, after the segmentation of the signal, wavelet fea-
tures are computed by first performing a WD for every Xi
and then calculating the energy of each component of the
WD. Finally, the energy of each component is divided by
the sum of all energies of the extracted components. Using
Daubechies wavelets this decomposition is conducted on
6 levels, yielding one approximation and 6 detail compo-
nents, so the feature vector θWDEi extracted from Xi has 7
components. This wavelet family provides a large flexibility
in choosing the order of the filters and has shown good
performance with fault detection applications [14], [16]. The
second type of feature we consider are statistical features.
These are computed either of the WD components or of the
results of the EMD. The extraction procedure is very similar
to the energy-based features. After the segmentation of the
signal and a decomposition of each segment by means of
eitherWD or EMD, a set of statistical parameters is computed
for each extracted component of the decomposition. The
list of all 13 computed statistical parameters is presented in
Table 1. In the example of the 7-component WD, the feature
vector θWDi corresponding to frame Xi contains 13 statisti-
cal parameters for each of the 7 components, for a total of
91 dimensions. For the EMD, the first 8 IMFs are extracted,
so the subsequent extraction of statistical parameters leads to
a feature vector θEMDi with 104 dimensions.

IV. CLASSIFICATION
We are proposing a new, interpretable and learning-based
approach to detecting and classifying faults from time series
signals, and we evaluate it on the described scenario of
fault detection for power converter systems. The approach is
built upon deep-neural-network (DNN) [40] based classifiers,
which we integrate within a novel hybrid (neural/statistical)
framework that combines the flexibility of deep learning with
the interpretability and guarantees of statistical models. The
constituent DNN component of the proposed system is a
fully connected multi-layer model, trained as a classifier.
The number of neurons in the input layer corresponds to the
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dimension of the feature vector θ , while the number of the
neurons in the output layer is equal to the number of possible
classes K . The activation function of the neurons in all except
for the output layer is a rectified linear unit, while for the
output layer, a softmax activation function needs to be used in
order to obtain outputs that are non-negative and normalized
to sum to 1.

For training density estimators, we use the categorical
cross-entropy as the loss function, hence the output of each
neuron in the output layer corresponds to the estimated prob-
ability p(k = i|θ ) of all converter states i = 1 . . .K , given
the feature vector. Training of this network was carried out
using the Adam optimizer of the TensorFlow framework.
Around 400 feature vectors were extracted from each state of
the system. For training the classifier, 5-fold cross-validation
was applied, with 80% of the data used in training and the
remaining 20% in the evaluation in each of the 5 rounds,
so that every data point ends up being used in training for
4 and in testing for 1 of the cross-validation runs.

V. SEQUENTIAL MULTI-HYPOTHESIS TESTING FOR
DEEP-LEARNING MODELS
The performance of learning-based methods for FDI is highly
dependent on the quality of themeasurements. In the presence
of noise or unexpected changes of the operating conditions,
extracted features can become unreliable. For these reasons,
even when plenty of data is available for training, it is almost
impossible to obtain a classifier that will guarantee 100%
accuracy. In practice, this can then lead to intermittent errors,
like false alarms, causing unnecessary expense.

In order to arrive at a highly reliable decision process, our
proposed, new framework embeds the deep-learning model
into a hybrid, probabilistic architecture. It only commits
to a classification decision after integrating the probability
density information, which the DNN delivers, across time.
This cross-temporal information integration is carried out by
Bayesian sequential density estimation, and it is followed by
a subsequent hypothesis test, which is achieved by applying
an M-ary sequential probability ratio test (MSPRT) [41].

Given M possible hypotheses and the feature vectors for
the last N time points, the MSPRT obtains the posterior
probabilities for each of the possible hypotheses as

p(Hj|θ1, θ2, . . . , θN ) =
πj

∏N
n=1 p(θn|Hj)∑M−1

k=0 πk
∏N

n=1 p(θn|Hk )
, (2)

where πj and p(θn|Hj) are the prior probability and the con-
ditional probability of the current observation given hypoth-
esis Hj, respectively. In our application, each hypothesis
corresponds to one of the possible states of the system,
while the observation likelihood p(θn|Hj) should be computed
by the classifier. However, this is not immediately the case
when the DNN is applied, since the neurons of the output
layer instead give the posterior probability p(Hj|θn). Hence,
a modification of Equation (2) is necessary, achieved by

applying Bayes’ rule:

p(Hj|θ1, θ2, . . . , θN ) =

πj
∏N

n=1
p(Hj|θn)p(θn)

πj∑K−1
k=0 πk

∏N
n=1

p(Hk |θn)p(θn)
πk

=

∏N
n=1 p(θn)

∏N
n=1 p(Hj|θn)∑K−1

k=0
∏N

n=1 p(θn)
∏N

n=1 p(Hk |θn)

=

∏N
n=1 p(Hj|θn)∑K−1

k=0
∏N

n=1 p(Hk |θn)
(3)

where p(θn) is the prior probability of the observation θn.
By the definition of theMSPRT, the decision for selecting a

currently active hypothesisHactive is determined at the earliest
time point Nc that fulfills the following conditions

Nc = first N ≥ 1 such that

p(Hk |θ1, θ2, . . . , θN ) >
1

1 + Ak
, for some class k (4)

where Ak defines the decision threshold for selecting hypoth-
esis Hk as an active hypothesis. In general, this parameter
should be chosen separately for each hypothesis and its values
should always be positive and less than 1. In this way, the
inequality p(Hj|θ1, θ2, . . . , θN ) > 1/(1 + Aj) can be fulfilled
by at most one value of j. It should also be noted that for
the case of two classes, the MSPRT is equivalent to Wald’s
test [42].

An important property of the MSPRT is that if A0 = A1 =

. . .AM−1 = A, the total probability ϵ of an incorrect decision
is limited to

ϵ ≤
A

1 + A
. (5)

Based on this guarantee (which of course is predicated on
the correctness of the underlying probability estimates), the
value A can be selected depending on the desired upper bound
of ϵ.

VI. EXPERIMENTS
For both selected converter types, the general procedure of
experiments is the same. During the experiments, normal
system conditions and fault conditions (with various degrees
of difference) are set by a variation of selected system com-
ponents. The selected set of voltages and currents is recorded
continuously. To analyze the recordings, one or twomost suit-
able signals—depending on the system under test—are used
for the feature computation, which is performed inMATLAB.
When all system parameters are at their nominal values, the
system is considered to be in the normal state. When the
value of one or more parameters is significantly changed,
the system is considered to be in a fault state. Because the
degradation of the parameters is, in general, a slow process,
it was emulated by adding additional capacitance and induc-
tance starting from very low modifications and ending with
more noticeable changes.
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A. DIAGNOSING BUCK CONVERTERS
A buck converter with the nominal parameters as given in
Table 2 and the modifications of these parameters as given
in Table 3 was set up (Fig. 1a).

With regard to practical applications, the variation of the
load resistance does not mark fault states but is realistic
irrespective of the system conditions, when typical, irregular,
load changes occur during operation. A variation of capaci-
tance or inductance, in contrast, is considered a fault. Voltages
and currents were measured as given in Fig. 1a. As shown in
Table 2, there are three nominal values of inductance. Hence,
three variants of normal states were recorded, which only dif-
fer by the value of the nominal inductance. For each of these
normal states, one or two additional components were added
in order to change parameters for the emulation of faults.
Combining the two values for additional capacitance and
inductance, four different fault scenarios with one additional
component were recorded for each of the nominal induc-
tance values. Additionally, one scenario per normal state was
recorded with two simultaneously added components (one
additional capacitor and one additional inductor), leading
to more pronounced parameter and behavioral deviations.
During each experiment, the load resistance was irregularly
changed between the four values given in Table 2 to represent
extraneous load variations. For each experiment, the signals
IIGBT , IR, UD, and U1 were recorded. The duration of each
recording was set to 16 seconds; the duty cycle d was kept
constant at 50 %, leading to worst-case current oscillation.

B. MMC EXPERIMENTS
For the MMC system shown in Fig. 1b, DC capacitance was
varied to emulate the fault condition of capacitor degrada-
tion. It was realized by capacitors switched in parallel to the
sub-module capacitors, implementing relative capacitance
changes of 2%, 3%, 5%, or 7%. One set of the recordings
covers the addition of capacitors to the capacitor CM1. The
same procedure was repeated when adding capacitors to the
capacitor CM2. For each of these scenarios, constant load and
load variation were tested. In case of constant load operation,
the effective arm current was kept constant. Load variation
was emulated by an irregular variation of the effective arm
current within the recording time interval. This variation of
the current also affects the sub-module capacitor voltage,
specifically by influencing the magnitude of its oscillation.

Consequently, load variation has a similar effect as
increasing or decreasing the capacitance. Hence, these
measurements test the robustness of the proposed FDI
scheme, as discussed in Section VII. The duration of each
recording is 120 seconds.

VII. RESULTS
One of themost important advantages of the proposedmethod
is its ability to achieve a highly reliable detection of the
system state through a combination of signal processing for
feature extraction, deep learning for instantaneous probability
estimation and an overall Bayesian decision-making, without

TABLE 2. Nominal parameter values.

TABLE 3. Additional parameter values.

the need for extensive recordings. In the following, we first
analyze and compare performance of the approach with dif-
ferent feature sets. Finally, the effects of applying an MSPRT
for final decision making are demonstrated.

A. BUCK CONVERTER RESULTS
The output voltage signal was used for extracting features for
FDI of the buck converter. WD-based energy features were
employed for multi-class fault classification. The obtained
results for the casewhen Lnom = 20mH are shown in Table 4.
In all cases, a two-layer DNN with 15 neurons in the first

and 10 neurons in the second layer is used for classification.
The obtained accuracy is quite satisfactory. There are occa-
sional errors between pairs of states with similar parameters,
but they only occur in a few percent of the samples. This
shows that the considered features are suitable to represent
the characteristics of the different states of the system, letting
a simple DNN structure obtain good initial classification
results.

B. MMC RESULTS
In the case of the MMC, the arm current and the sub-module
voltage output were used for feature extraction. Since the
energy-based features did not show sufficient performance
in preliminary experiments with this system, EMD- and
WD-based statistical features were chosen instead. These
features are extracted from the current and the voltage signal
and then concatenated and fed into the DNN-based classifier.
For both types of features, and in all tests in this subsection,
the same DNNwas used—a two-layer DNN, with 60 neurons
in the first and 20 neurons in the second layer. To evaluate its
capability of distinguishing all possible system states, first,
a DNNwas trained formulti-class classification of the normal
and all fault states. As shown in the upper part of Table 5,
when the arm current is constant, the classifier can make
a clear distinction between different values of capacitance.
Yet, it is also clear that the classifier cannot always separate
the normal state and the state with the smallest capacitance
change of 2%. The accuracy for each of these states is still
above 90%, while for the other two cases, it is close to 100%.
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TABLE 4. Confusion matrix for classification of buck converter states. Column annotations show the parameter change w.r.t. the nominal
inductance/capacitance in %. Each cell shows the probability (in %) of recognizing the state denoted in the cell’s column, when the true state is the one
denoted in the corresponding row.

TABLE 5. Confusion matrices for state classification of the MMC. Column
annotations show the parameter change w.r.t. the nominal capacitance in
%. Each cell shows the probability of recognizing the state denoted in the
column, when the true state is denoted in the corresponding row.

The results for multi-class classification under changing load
currents are shown in the lower part of Table 5.
As can be seen, both types of features are in principle

appropriate for the task, but theWD-based features are clearly
preferable. Understanding the exact reasons that allow for
the better performance of WD-based features would require
a more in-depth, theoretical study, which is outside the scope
of this paper.

Since it is not possible to gather data that could reflect
each possible change of capacitance, an important capability
of data-based fault detection techniques is their potential
for generalization. In order to assess this capability of the
proposed approach, a DNN—with the same architecture as
in the previous case—was trained as a binary classifier to

TABLE 6. Detecting changes of capacitance of the MMC above 2% w/
DNN trained to detect 2%. Column annotations show the parameter
change w.r.t. nominal capacitance in %.

recognize the difference between a normal and a fault state by
using the data from normal operation and only representing
fault states by data in which there is a capacitance change
of exactly 2%. This classifier is then evaluated on data from
those recordings, in which there is a 3%, 5%, and 7% change
of capacitance. Results of this generalization experiment are
shown in Table 6.
When the arm current is constant, and when WD-based

statistical features are employed, the recognition rate is above
98% for all three fault states, which shows that there is a good
separability between the normal and all of the fault conditions
in the proposed feature space. For the data-set with the chang-
ing arm current, accuracy noticeably decreases, as shown in
the lower part of Table 6. For the EMD based features the
accuracy varies from 80% to 85%, whereas the WD-based
features again show a better performance, with an accuracy
around 90%. In the next subsection, we will show how these
results can still be used as a basis for reliable detection. For
this purpose, we will employ the proposed hybrid model,
which allows for cross-temporal information integration on
the basis of the learned DNN models.

C. HYBRID DIAGNOSTICS
For multi-class classification, the posterior probabilities of
the system being in a certain state, as given at the output of the
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FIGURE 2. Posterior probabilities in multi-class classification for the dataset with
changing currents, using EMD-based features, with (red) and w/o (blue) sequential
hypothesis testing.

trained DNN, are used to compute the most probable system
state with the help of the MSPRT. For these computations,
we use 10 previous segments Xi, which corresponds to the
last 20 seconds of measurement data. The value of A in
Equation (5) is chosen to be 0.001. This limits the maximal
value of the total probability of an incorrect decision to ϵ ≤

0.01%, when assuming that the DNN yields correct probabil-
ity estimates. The results for the test data were evaluated with
a small grace period, onwards from 10 segments after there
was a change in the state of the system.

Adopting this approach, the accuracy of fault detec-
tion improves to 100% for all test cases considered in
Tables 4 and 5, so that fully reliable classification, error-free
on all test data, is obtained with the suggested method.

Fig. 2 also illustrates this advantage in reliability, brought
by the suggested use of an MSPRT, through a visualiza-
tion of the class posterior probabilities without and with
the cross-temporal information integration that the MSPRT
affords. As can be seen, while the instantaneous likelihoods
look rather noisy and contain many high values for those
classes that may easily be confused with the given setup,
the likelihoods after MSPRT are consistent across time, and
tend to be either 1.0 in the correct class, or 0.0 for the
incorrect class. The correctness of the MSPRT decisions
is 100% in all considered cases, so that the likelihoods of
1.0 always indicate the correct class in our experiments,
save for the lag time that we allow for changing system
states.

Sequential hypothesis testing is then applied to the clas-
sifier that was trained only on changes of 2% and applied
to mismatched cases of larger errors (3%, 5%, and 7%), for
testing the robustness of the approach.

Using the MSPRT and following the above approach for
evaluation, the classification accuracy is again improved to
100%, for all of the test cases shown in Table 6.
Although the precision of direct classification is below

90%, the decision of the MSPRT changes only after there is
an actual change of the system state. The detection does come
with a certain latency—however, for the detection of such

small parameter changes, a latency in the order of seconds
is not an issue.

VIII. ARDUINO IMPLEMENTATION
The developed FDI scheme was implemented and tested
on the Arduino 33 BLE SENSE board. WD-based statis-
tical features, as described in Section III, were employed;
a pre-trained DNN was used for probability estimation and
the sequential hypothesis testing on the last 10 samples was
included as well. For implementing the WD, the library [43]
was used. On the Arduino platform, a DNN framework is now
available thanks to the TensorFlow Lite support for micro-
controllers [44], which allows a two-step conversion from the
standard TensorFlow model format to the one convenient for
microcontrollers. Because of the quantization applied during
the conversion process, a change of the performance of the
model used for the Arduino application can be expected.
To quantify this effect, the DNN used for obtaining the results
in Table 5 with the wavelet-based statistical features was
selected for a performance comparison. The segments of the
signals used in the previous section were sent to the Arduino
via USB serial interface, then the features were extracted
and the fault probabilities were computed on the Arduino,
after which new segments of data were sent. The final results
obtained in this way are presented in Table 7.

As can be seen, there is a generally mild change in the
instantaneous classification performance. For example, the
detection accuracy of the normal state is reduced from 94.4%
to 94.2%, and the capacitance change of 7% is now mis-
classified as the normal state with a higher likelihood of
5.1% rather than 3.1%. However, when hypothesis testing is
applied, all results remain at 100%, so that the changes can be
compensated fully through the proposed approach of cross-
temporal integration.

Another measure of performance is the CPU time required,
considering the feature extraction, DNN evaluation and
hypothesis testing. In our tests, the average CPU time for
one data segment of two seconds, measured on the Arduino,
was about 500 ms. This comes as a consequence of the
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TABLE 7. Confusion matrices for state classification of the MMC on the
Arduino, compared with original results. Column annotations show the
parameter change w.r.t. the nominal capacitance in %. Each cell shows
the probability (in %) of recognizing the state denoted in the cell’s
column, when the true state is denoted in the row.

computation of a large number of statistical features for each
signal, whereas DNN inference and hypothesis testing are
not so time consuming. However, this does not have to be
a drawback for the intended purpose of the described FDI
scheme, which is to periodically check the current state of
the system. As discussed in Sec. VII-C, the detection delay
is always smaller than 10 segments, which corresponds to
20 seconds of recordings. Together with the computational
time for each segment, the maximal detection delay is around
25 seconds. Thus, the proposed method is efficient enough to
work on such a low-power device, which allows for a wide
range of practical applications.

IX. CONCLUSION
This paper presents a novel condition-monitoring technique
for parameter change detection in power converters. It relies
on two types of signal-processing-based input features in con-
junction with a hybrid classifier, consisting of a DNN-based
posterior density estimator and a statistical model-based
cross-temporal integration. The latter allows for controlling
the total probability of classification errors.

Testing the proposed combination of features and classifier
with data gathered in different scenarios for two types of
power converters achieves high classification accuracy even
with small parameter changes, and in different states of oper-
ation. The best performance was obtained using WD-based
features. Additionally, it was shown that the approach can
robustly detect changes that are unseen in the training phase.
Additionally, the advantages of adding hypothesis testing on
top of the classifier was shown for both systems. Finally,
the computational efficiency and possible application of the
proposed method is shown by providing a reference imple-
mentation on an Arduino 33 BLE SENSE board.

Future work will focus on applying the proposedmethod to
other types of common faults occurring in power converters
such as detecting and isolating OC faults using learning-
basedmethods. Another challenge is developing an integrated
fault detection system capable of monitoring a wide range of

different faults, even of types unseen during training of the
system. This case would call for an adaptation of the proposed
approach to the domain of outlier detection, again, with the
promise of high reliability due to the combined strengths
of deep learning, cross-temporal information integration and
subsequent hypothesis testing.
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