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ABSTRACT The Food and Agriculture Organization of the United Nations suggests increasing the food
supply by 70% to feed the world population by 2050, although approximately one third of all food is wasted
because of plant diseases or disorders. To achieve this goal, researchers have proposed many deep learning
models to help farmers detect diseases in their crops as efficiently as possible to avoid yield declines. These
models are usually trained on personal or public plant disease datasets such as PlantVillage or PlantDoc.
PlantVillage is composed of laboratory images captured under laboratory conditions, with one leaf each
and a uniform background. The models trained on this dataset have very low accuracies when running on
field images with complex backgrounds and multiple leaves per image. To solve this problem, PlantDoc
was built using 2,569 field images downloaded from the Internet and annotated to identify the individual
leaves. However, this dataset includes some laboratory images and the absence of plant pathologists during
the annotation process may have resulted in misclassification. In this study, FieldPlant is suggested as a
dataset that includes 5,170 plant disease images collected directly from plantations. Manual annotation of
individual leaves on each image was performed under the supervision of plant pathologists to ensure process
quality. This resulted in 8,629 individual annotated leaves across the 27 disease classes. We ran various
benchmarks on this dataset to evaluate state-of-the-art classification and object detection models and found
that classification tasks on FieldPlant outperformed those on PlantDoc.

INDEX TERMS Deep learning, field images, laboratory images, plant disease dataset, plant disease detection
and classification.

I. INTRODUCTION
The global population is expected to reach 10 billion peole by
2050. Therefore, food productionmust absorb this population
growth, although the amount of available arable land is lim-
ited [1]. The Food and Agriculture Organization of the United
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Nations (FAO) suggests increasing the food supply by 70%
to feed the future population by 2050 [2], while about one
third of all grown food is wasted because of plant diseases or
disorders [3], [4]. In terms of economic value, plant diseases
alone cost approximately US$ 220 billion annually [4].

Loss of crop yield is a major research concern. Plants die
if their leaves cannot produce chlorophyll via photosynthesis
because of diseases or disorders. Artificial Intelligence (AI)
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has been extensively considered to solve the problem of
crop yield loss, particularly in the areas of Computer Vision
and Machine Learning. Therefore, many deep Convolutional
Neural Networks (CNN) have been proposed by researchers
for plant disease identification and classification; some of the
most popular CNN are highlighted by Adi et al. [5]. The
purpose of these solutions is to provide farmers with a way
to identify diseases that attack plants as soon as possible and
suggest countermeasures to avoid crop losses.

The PlantVillage [2], iBean [6], citrus [7], rice [8], cas-
sava [9], and AI Challenger 2018 datasets [10] are among
the most widely used plant disease datasets, with available
laboratory images. These datasets have been widely used to
train CNN for plant disease identification and classification.
Neural networks trained on these datasets were able to
achieve a high classification accuracy during training.
However, when these systems were tested under real field
conditions, their performance decreased sharply. This is
because in contrast to laboratory images, field images have
complex background features, including other leaves, stems,
fruits, soil, and mulch. Studies have demonstrated that com-
plex backgrounds in field images significantly contribute to
this drop in performance, and that background removal can
enhance disease recognition accuracy [11].

Therefore, plant disease classification systems trained
on laboratory images are not usable in practice owing
to the structural difference between laboratory and field
images [11], [12], [13]. Laboratory images were captured
under controlled lighting and uniform background condi-
tions, with each image containing only one leaf. Field images
typically have several interwoven leaves, stems, branches,
flowers, non-leaf objects, and complex backgrounds, as illus-
trated in Fig. 1. Li et al. [14] highlighted in their study the
need to establish a large dataset of plant diseases in field con-
ditions for plant disease detection. Indeed, researchers need
to test their models on datasets acquired from fields [15] to
provide practical solutions to farmers to address crop losses.

To address this challenge, Singh et al. [4] proposed a
dataset of field images called PlantDoc, a dataset for visual
plant disease detection containing 2,598 data points across
13 plant species and up to 17 classes of diseases. Although
it contains many laboratory images, PlantDoc has been used
in some studies on plant disease detection, but has achieved
very low performance [13]. Because of the lack of extensive
domain expertise, some images in this dataset may be incor-
rectly classified [4]. The major challenge in plant disease
identification from field images is to build a sufficiently
accurate model to identify the plant involved in the image and
the associated disease, which is a complicated task.

In this study, we propose FieldPlant1 as a new dataset for
the identification and classification of plant diseases from
field images captured under different lighting conditions. The
5,170 original images captured in plantations were annotated
using the RoboFlow on-line platform [16], to identify the

1https://universe.roboflow.com/plant-disease-detection/fieldplant

individual leaves. Some images had only one leaf to annotate
and others had multiple leaves to annotate, resulting in 8,629
individual leaf annotations across 27 disease classes. This
dataset is intended for researchers to build models that offer
practical solutions to farmers for plant disease identification
and classification under real conditions.

II. RELATED WORK
A. PLANT DISEASE DETECTION DATASETS
Although there are several datasets related to plant diseases,
PlantVillage and PlantDoc remain the two most publicly
available.

1) PlantVillage
PlantVillage [2] is the largest plant disease dataset. The ini-
tial data records for 2016 contained 54,309 images span-
ning 14 crop species including- apple, blueberry, cherry,
corn, grape, orange, peach, bell pepper, potato, raspberry,
soybean, squash, strawberry, and tomato. These expertly
curated images of healthy and infected crop leaves weremade
available through the existing online platform, PlantVillage
(www.plantvillage.org). Diseases affecting these plants are
divided into 17 fungal diseases, four bacterial diseases, two
mold (oomycete) diseases, two viral diseases, and one mite
disease. The dataset contains 38 classes of plant diseases and
one class of background images, as shown in Fig. 2.

This initial data setup was the beginning of an ongoing
crowdsourcing effort to enable computer vision approaches
to solve the problem of yield losses in crop plants owing to
infectious diseases.

From fields with crops infected with the disease, tech-
nicians collected leaves by removing them from the plant
and placing them against a paper sheet that provided a grey
or black background. All the images were captured under
full illumination. Once the images were collected, they were
edited by cropping away much of the background and orien-
tating all leaves such that they tip pointed upward, as shown
in Fig. 3. The images from this dataset are referred to as
laboratory images.

2) PlantDoc
PlantDoc [4] is a dataset of 2,569 images across 13 plant
species (apple, bell pepper, blueberry, cherry, corn, grape,
peach, potato, raspberry, soyabean, squash powder, straw-
berry, and tomato) and 30 classes (diseased and healthy) for
image classification and object detection. The distribution of
images of plant species and diseases is shown in Fig. 4.

PlantDoc contains field plant disease images downloaded
from the internet and annotated to train models for detecting
crop diseases from field condition images, as shown in Fig. 5.
Because the images in the dataset were downloaded from
the internet, they were generally of poor quality, and some
images contained leaves that had not been photographed on
plants and were more akin to laboratory images as shown
in Fig. 6. However, for the annotations of images made
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FIGURE 1. Some plant disease images under laboratory and field conditions [13].

FIGURE 2. Statistics of PlantVillage dataset leaves diseases [2].

FIGURE 3. Apple scab leaf from the PlantVillage dataset.

without the assistance of plant pathologists, it is very likely
that annotation errors slipped into the dataset [4] because
certain plant diseases are very similar in appearance. Finally,

the number of annotated images in different categories is
generally insufficient for training models that are capable of
achieving high accuracy.

B. PLANT DISEASE DETECTION MODELS
In contrast to conventional machine-learning techniques,
deep learning can automatically learn the hierarchical fea-
tures of pathologies. This eliminates the need to separately
design the morphological operations of feature extraction
for future classification. Therefore, we present the recent
research on convolution neural networks for plant disease
detection and classification.

1) PRE-BUILT MODELS
In many cases, the authors used existing state-of-the-art con-
volutional neural networks to address the problem of plant
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FIGURE 4. Statistics of PlantDoc dataset leaves diseases [4].

FIGURE 5. PlantDoc annotated lab strawberry leaves image.

FIGURE 6. PlantDoc annotated field tomato leaves image.

disease identification and classification. When the models
were not completely re-trained because of insufficient data
or missing computational power, transfer learning was used
to maintain the pre-trained weights and reduce computation
time.

To take advantage of existing neural networks trained
on large datasets, stepwise transfer learning was used by
Ahmad et al. [12] on pre-trained neural networks to avoid
negative transfer learning. They used MobileNetV2 [17]

pre-trained weights to build the model and achieved 99% and
99.69% accuracy on the Pepper and PlantVillage datasets,
respectively.

Elfatimi et al. [18] presented a deep learning approach for
classifying bean leaf diseases. The model was trained using
MobileNetV2 [17] architecture under controlled conditions
to obtain faster training times, higher accuracy, and easier
retraining. To achieve these goals, the authors attempted
different hyper parameters and optimization methods. The
model achieved an accuracy of 97% for 1296 field images
taken from the iBean dataset [6].

The YOLO [19] neural network has been one of the great-
est achievements in object detection in the field of Artificial
Intelligence. The study [20] used YoloV3 [21] ] and achieved
an accuracy of 79.19% in the detection and classification of
six rice leaf diseases: blast, bacterial leaf blight, brown spot,
narrow brown spot, bacterial leaf streak, and rice ragged stunt
virus disease. The experiment was conducted by using 6,330
self-collected images.

2) AUTHORS-BUILT MODELS
Often, specific constraints such as preprocessing steps, net-
work architecture, or dataset structure have led the authors to
suggest specific models for plant disease detection.

Khattak et al. [22] proposed a 2-layers CNN model that
extracts complementary discriminative features from citrus
fruits and leaves by integrating multiple layers. The model
differentiated healthy fruits and leaves from fruits or leaves
with common citrus diseases, such as black spots, canker,
scab, greening, andmelanose, with a test accuracy of 94.55%.
The dataset used in this study contained only 213 images
from the PlantVillage [2] and Citrus [7] datasets.

The unwanted background and noise of the input image
can have a significant negative impact on the model accu-
racy. To overcome this problem, the study in [23] used
U2-Net by first producing a mask of the region of inter-
est from the original image. Then, a bitwise operation was
applied to the original image and mask produced by U2-
Net. The EfficientNetV2 [24] model was used for cardamom
plant disease detection, achieving a detection accuracy
of 98.26%.

To reduce the number of parameters of the model,
Amin et al. [25] used two pre-trained convolutional neural
networks, EfficientNetB0 and DenseNet121, to extract deep
features from corn plant images. The extracted deep features
from each CNN were then fused using the concatenation
technique to produce a more complex feature set, from which
the model could learn the dataset better, achieving a classi-
fication accuracy of 98.56% on a subset of the PlantVillage
dataset.

To reduce the neural network training time, Hassan and
Maji [26] suggested a reduction in the model parameters
based on the inception layer, residual connection, and depth-
wise separable convolution. The accuracies obtained for the
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PlantVillage, rice [8] and cassava [9] datasets were 99.39%,
99.66%, and 76.59%, respectively.

Zhou et al. [27] proposed a hybrid deep learningmodel that
combines the advantages of deep residual networks and dense
networks to reduce the number of training process parameters
and improve calculation accuracy. The experimental results
show that this model can achieve a top-1 average identifi-
cation accuracy of 95% on the tomato test dataset in the AI
Challenger 2018 dataset [10].

Wang et al. [13] suggested a dual-stream hierarchical
bilear-pooling model for the multi-task classification of
plant diseases. The authors used fine-grained image recog-
nition methods to extract discriminative fine-grained fea-
tures, thereby enhancing the representation capability of the
model. The PlantDoc dataset [4] was used for the experiment,
and after optimizing multi-task learning using homoscedastic
uncertainty, the plant and disease accuracies obtained were
84.71% and 75.06%, respectively.

3) PRACTICAL SOLUTIONS FOR PLANT DISEASE DETECTION
Based on deep learning models, two main mobile apps for
plant disease detection have emerged in the community: Plan-
tix and PlantVillage Nuru.

Plantix [28] is a smartphone application trained to identify
a large range of plant diseases. Users snap a cropped image
using their phone, which sends the image to the server to
perform an analysis using its on-line deep learning model.
The results are reported back to the phone with suggestions
for suitable countermeasures. Although the image dataset
and the deep learning model of Plantix are not available,
Goncharov et al. [29] conducted a study showing that the
model could identify plants with an accuracy of 87%. How-
ever, only 10% of the diseased images had the correct disease
at the top of their suggestions. Plantix also requires an internet
connection to use image analysis features. This can be a
limitation for farmers working in remote areas where internet
access might not be available.

PlantVillage Nuru [30] is another smartphone app for
plant disease detection that was developed under the PlantVil-
lage [4] Project. It uses a single-shot multibox detector (SSD)
with MobileNet to detect and classify plant diseases [31].
PlantVillage Nuru requests that the user submit six plant
leaves for better classification and can run without an Internet
connection. SSD detectors localize the diseased areas using
bounding boxes. However, various studies [32], [33] have
reported that the accuracy of SSD detectors for plant dis-
ease detection is low. Mrisho et al. [34] showed that Nuru’s
accuracy for symptom recognition when using six leaves
(74-88%, depending on the condition) was similar to that of
experts, 1.5 times higher than agricultural extension agents
and two times higher than that of farmers.

A literature review of CNN used for plant disease identifi-
cation and classification is presented in Table 1.

III. THE FieldPlant DATASET
We released FieldPlant, a plant disease dataset of
5,170 annotated field leaf images collected from the
Cameroon plantations. The dataset focuses on various dis-
eases in three tropical cultures: corn, cassava, and tomato.
To the best of our knowledge, this is the first publicly avail-
able dataset for plant disease detection that uses annotated
cassava images. This dataset can be used to train efficient
models for plant disease detection using field images and
object-detection models.

The research mainly focused on diseases appearing on
leaves even though it included some non-leaf disease classes
such as Cassava root rot (78 images) and Corn charcoal
(8 images).

A. DATASET CROPS AND DISEASES
The distribution of Fieldplant images diseases is shown
in Fig. 7.

1) CASSAVA
Cassava is a root vegetable that is widely consumed in many
countries worldwide. It is extensively cultivated as an annual
crop in tropical and subtropical regions because of its edible
starchy tuberous root, which is a major source of carbohy-
drates. Cassava is the third-largest source of food carbohy-
drates in the tropics after rice and maize. Cassava is a major
staple food in the developing world, providing a basic diet for
over half a billion people [35].

The different diseases represented in the dataset for cas-
sava crops are as follow: Cassava Bacterial Disease, Cassava
Brown Leaf Spot, Cassava Healthy, Cassava Mosaic and
Cassava Root Rot.

2) CORN
Corn has become a staple food in many parts of the world,
with the total production of corn surpassing those of wheat
and rice. Corn is cultivated worldwide, and more corn is
produced each year than, any other grain. In 2021, total world
production was 1.2 billion tonnes [36].

The different diseases represented in the dataset for corn
crops are: Corn Leaf Blight, Corn Brown Spots, Corn Gray
Leaf Spot, Corn Charcoal, Corn Chlorotic Leaf Spot, Corn
Healthy, Corn Insects Damages, Corn Mildew, Corn Purple
Discoloration, Corn Rust leaf, Corn Smut, Corn Streak, Corn
Stripe, Corn Violet Decoloration, Corn Yellow Spots and
Corn Yellowing.

3) TOMATO
Numerous varieties of tomatozq are grown in temperate cli-
mates worldwide, with greenhouses allowing their produc-
tion throughout all seasons of the year. Cameroon is the
world’s tenth largest tomato producer, with an estimated
annual production of 1,279,853 tons [37].
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TABLE 1. Summary of plant disease detection models.

The different diseases represented in the dataset for cas-
sava crops are: Tomato Bacterial Wilt, Tomato Blight Leaf,
Tomato Brown Spots, Tomato Healthy, Tomato Leaf Mosaic
Virus, Tomato Leaf Yellow Virus.

B. DATA COLLECTION WORKFLOW
Fig. 8 shows the workflow used for the FieldPlant dataset
set up.

Crop disease images were collected from Zones 3 and 5
of the five agro-ecological zones in Cameroon (Fig. 9).
Images were collected under the supervision of plant pathol-
ogists at different periods of the year and stages of plant
growth. The aim of this procedure was to capture the most
diseases possible, given that we do not have the same crop
diseases in different agro-ecological zones and that they often
occur at different periods of the year. Images were captured
using smartphones with 4608 × 3456 (4:3) pixel-resolution

cameras. This was done to benefit from the flexibility and
autofocus. Leaf images were captured directly from plants
with a full plantation background, and usually had more than
one leaf per image.

Once images are collected in the field, they are made
available to the plant pathologist, who then groups them into
folders according to the plant and the disease identified on the
leaf. Blurred images or images irrelevant to the study were
ignored.

A data scientist used the RoboFlow online platform tool
(https://roboflow.com/) to annotate images. Each image was
annotated by specifying the disease class in its leaves.
Only identifiable leaves in the image were annotated. If a
leaf was not infected with a disease, it was assigned to
the healthy class. During annotation bounding boxes are
used to specify the position of the leaf in the image.
Figs. 10 and 11 show annotated images in the Fieldplant
dataset.
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FIGURE 7. Statistics of Fieldplant dataset leaves diseases.

FIGURE 8. Fieldplant dataset setup workflow.

Before adding annotated images to the dataset, the annota-
tions were first checked to ensure that all identifiable leaves in
the image were effectively annotated or that non-identifiable
images were annotated. If an error occurred, the image was
returned for the annotation.

The second level of validation was performed by an expert
pathologist before the publication of the dataset. This is a cru-
cial step in which experts check whether correct annotations
have been assigned to the identifiable leaves of each image.
If any error occurred, the image was sent back to the data
scientist for annotation.

The images collected using this process are presented in
Table 2. The total number of images obtained following direct
collection in the plantations was 6334, but only 5,170 were
retained after the second phase of the process by eliminating
inconsistent images.

IV. BENCHMARKING FieldPlant DATASET
We ran various sets of experiments on the FieldPlant (FP)
dataset to evaluate the performance of the state-of-the-art
CNN in identifying leaves and diseases from the images.
We trained and evaluated the performances of four CNN
(MobileNet [17], VGG16 [39], InceptionV3 [40], and Incep-
tionResNetV2 [41]) on our dataset. All the results presented
for each evaluation are test accuracies.

To compare our dataset with the existing PlantVillage(PV)
and PlantDoc(PD) datasets, we built another dataset called
Cropped-FieldPlant (C-FP) by cropping the initial anno-
tated images with bounding box information. The cropped
images contained only one leaf per image with varying
backgrounds, and usually contained snippets from other
leaves, as shown in Fig. 13 obtained from Fig. 12 after
cropping annotated leaves. After cropping the original
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TABLE 2. Distribution of collected images by areas.

FIGURE 9. Agro-ecological zones of Cameroon [38].

5,170 images, the total number of individual leaf images
was 8,629.

A. SYSTEM CONFIGURATION
All the models in our experiments were trained on a server
with the following characteristics:5 GPU Tesla T4 with
16 GB RAM, 4 TB HDD, and 2 AMD EPYC 7251 CPUs
with 512GB of RAM. Experiments were performed using a
GPU for faster training.

To train the networks, we used sparse_categorical_
crossentropy loss and learning rates of 0.001 for training

FIGURE 10. Corn single leaf image.

FIGURE 11. Tomato multiple leaves image.

and 0.0001 for fine-tuning. Transfer Learning was used to
improve the accuracy of the models. We used the weights
provided in Keras trained on ImageNet for the pre-trained
models. All the images were resized according to the CNN
models before being fed into the network.
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FIGURE 12. Tomato multiple leaves image.

FIGURE 13. Tomato cropped images.

B. PLANT DISEASE IMAGE CLASSIFICATION
1) CLASSIFICATION FROM RAW IMAGES
First, we attempted to determine the suitability of raw Field-
Plant images for classification tasks, as shown in Table 3.
To achieve this objective, the annotated image dataset was
converted into a Multi-Label Classification CSV dataset
using RoboFlow.2 In this representation, the CSV file con-
tains the names of the disease classes identified in each
image of the dataset. Therefore, the models were trained to
recognize the disease(s) present in the image regardless of its
(their) position(s).

PV, PD, and FP represent PlantVillage, PlantDoc, and
FieldPlant datasets, respectively.

2) CLASSIFICATION FROM CROPPED IMAGES
The second benchmark evaluates the classification accuracy
on the Cropped images of FieldPlant (C-FP). The cropping
operation was easily performed from the original annotated
dataset using pascalvoc-to-image3 tool.
For comparison, we also ran the classification mod-

els against PlantVillage(PV) and Cropped PlantDoc(C-PD).
C-PD was obtained from PlantDoc in the same way as
described previously. The accuracies of the different models
for various datasets are presented in Table 4.

2https://roboflow.com/formats/multiclass-classification-csv
3https://pypi.org/project/pascalvoc-to-image/

TABLE 3. Plant disease classification benchmark on raw images.

Figures 14 and 15 respectively represent the learning
curves and the confusion matrix observed when training
Mobilenet on Plantvillage and testing on Cropped-Fieldplant.

C. PLANT LEAVES DETECTION
In our last set of experiments, we evaluated in Table 5 the
performance of the object detection models on our dataset
using COCO pre-trained weights. The aim of this experiment
was to determine how these models identified individual
leaves in the field images of the dataset at 50% IoU. The
TensorFlow Object Detection API of the TensorFlow Model
Garden [42] was used for this evaluation.

V. RESULTS AND DISCUSSION
Table 3 show how much difficult it is for classification CNN
models to identify diseases on raw field images. As expected,
when the training and test sets are the same, the noise back-
grounds and the multiplicity of leaves on the raw images
reduce the models validation accuracies. These accuracies
are further reduced when the models are trained on PlantVil-
lage and tested on PlantDoc or FieldPlant because of the

35406 VOLUME 11, 2023



E. Moupojou et al.: FieldPlant: A Dataset of Field Plant Images

TABLE 4. Plant disease classification benchmark on cropped images.

TABLE 5. Plant disease detection benchmark.

significant difference in the structure between the training
and test datasets. Recall that PlantVillage has single leaf per
image with uniform background. However, we notice that the
results obtained with FieldPlant are far better than to those
obtained with PlantDoc. This could be because Fieldplant
has more data for models training. The fact that PlantDoc

FIGURE 14. Learning metrics of MobileNet for training = PV and
test = C-FP.

FIGURE 15. Confusion matrix of MobileNet for training = PV and
test = C-FP.

contains both field and lab images could also influence these
results.

Experiments on the cropped images presented in Table 4
show that very good results were obtained when the models
were trained and tested on PlantVillage, which had one leaf
per image, with a uniform background. These results were
less effective when the models were trained and tested on
Cropped FiedPlant or Cropped PlantDoc. This is also due
to the complex backgrounds of the cropped images, which
can not always match between two images even if they
identify the same disease. The results were worse when the
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models were trained on PlantVillage and tested on Cropped
FieldPlant or Cropped PlantDoc because of the large gap
between the image structures. Models fail to produce accu-
rate results owing to background noise and scrap leaves in
images. Similar to the previous experiment, we found that
the results obtained from evaluations involving FieldPlant
were significantly better than those obtained from evalu-
ations involving PlantDoc. The same justifications can be
invoked here.

The learning curves in Fig. 14 show that the model is
underfitting because the validation loss is higher than the
training loss. Furthermore, training accuracy and training
loss were lightly improved after fine-tuning but we notice
an overfitting of the model at that point as the validation
accuracy and loss rather deteriorated. The model reaches low
classification accuracy as shown on the confusion matrix in
Fig. 15. The best-classified class is Corn leaf blight with
51 correct occurrences while 153 occurrences are classified
as Tomato blight leaf. A lot of images are predicted as one of
the Corn disease classes.

The last set of experiments in object detection on the
PlantDoc and FieldPlant datasets show that PlantDoc per-
forms better in identifying individual leaves from raw images
collected in the field. Object detection in complex back-
grounds remains a challenging task [43], [44] because most
current object detection deep learning models are based on
high-level CNN features, which usually fail to capture fine-
grained descriptions of objects. The presence of laboratory
images with uniform backgrounds in the PlantDoc dataset
significantly improves its performance in object detection.
On the other hand, some plant leaves appear only par-
tially in some images of FieldPlant, and their annotation
could have a negative impact on object recognition and
detection tasks.

More generally, the benchmark results allow us to high-
light that MobileNet CNN achieves relatively better accu-
racy in classification tasks for the FieldPlant or PlantDoc
datasets.

VI. CONCLUSION AND FUTURE WORK
In this study, we made available to researchers FieldPlant,
a dataset of 5,170 annotated plant disease images collected
directly from plantations. In contrast to PlantDoc, this dataset
is composed exclusively of field images classified by plant
pathologists. However, the dataset can be enriched with more
disease classes. FieldPlant has the potential to be widely used
in plant disease research and management, and is the first
plant disease dataset with annotated cassava images. We con-
ducted a set of experiments to evaluate the performance of
state-of-the-art classification and object detection models.
The results show that the existing models are not sufficiently
accurate for plant disease detection and classification of
images collected directly from the field, although the clas-
sification task results for FieldPlant are better than those for
PlantDoc. Therefore, suitablemodels should be established to
help farmers identify the diseases that attack their crops and

take appropriate countermeasures. Model ensembling with
image segmentation applied to field images to isolate individ-
ual leaves from a global image may be a promising approach
for solving this problem.
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