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ABSTRACT To solve the problem of low efficiency in real-time processing and matching of CNAME
records in massive DNS log data, a parallel AC automaton enhancement method based on Spark was
proposed. The method is based on the Spark distributed cluster computing engine of Hadoop, which
ensures the stability of massive DNS log data storage with high fault tolerance and 24-hour real-time
processing. At the same time, the Spark distributed cluster uses the multi-thread parallel computing method
combined with the improved AC automaton algorithm, which not only reduces the memory occupied by
trie construction, but also improves the efficiency of rapid matching of CNAME records of massive DNS
logs. Simulation results show that the proposed method can quickly match CNAME records of massive DNS
log data. Compared with the original AC algorithm, the efficiency is significantly improved, and the time
complexity and storage space are reduced.

INDEX TERMS DNS, matching, CNAME, spark, parallel, distributed cluster.

I. INTRODUCTION
Telecom operators need to dig out their core value through
in-depth analysis of massive DNS [24] log data, and the
alias record called CNAME in the log is often used for
server IP address analysis and CDN (Content Delivery
Network) [25] distribution. CNAME is very important to
operators’ business optimization, so it has become an impor-
tant requirement for telecom operators to quickly extract
and quickly match with the target domain name library to
establish a dynamic CNAME library [1]. Currently, the main-
stream frameworks for large-scale and high-throughput data
processing include distributed intensive data processing plat-
forms Apache Hadoop, HPCC (high performance computing
cluster), Spark, a micro-batch processing model based on
data slice collections, and Flink, an operator-based contin-
uous flow model, etc. [2], [3], [4]. The Hadoop distributed
computing framework mainly includes three parts: HDFS
(Hadoop Distributed File System) [27], MapReduce [27] and
YARN (Yet Another Resource Negotiator) [28]. The Spark
computing framework with Spark Core as the core includes
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local mode and cluster mode [3], [5], [6]. The distributed
cluster parallel computing MapReduce in traditional Hadoop
has the problem of excessive disk I/O overhead, which is
not suitable for iterative calculation and it is easy to cause
a single point of failure. However, Spark is much faster than
MapReduce in performance, benefiting from its in-memory
data processing. Moreover, as a general system, it can sup-
port batch, interactive, iterative, and streaming computations
in the same runtime, which is useful for complex applica-
tions that have different computation modes [29], [30], [31],
[32]. Currently common matching algorithms include single
pattern matching and multi-pattern matching. Common sin-
gle pattern matching algorithms include BF (Bruce Force)
algorithm, KMP (Knuth Morris Pratt) algorithm, and suf-
fix BM (Boyer-Moore) algorithm [7], [8], [9]. Multi-pattern
matching algorithms include AC (Aho-Corasick automaton)
algorithm [10], [11], and improved AC-BM (Aho-Corasick
Boyer-Moore) algorithm based on AC algorithm [12], [13].

The core idea of the BFmatching algorithm proposed in [7]
is to match the text string and the pattern string character
by character, and the efficiency is very low. The core idea
of the KMP algorithm proposed in [8] is to construct the
next array in the pattern string and jump through the next
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array when the pattern string mismatches, but the text string
and the pattern string have multiple identical characters that
will be matched repeatedly, which will affect the efficiency.
Literature [9] proposed a more efficient algorithm - BM
algorithm, the core idea is to increase the pattern string jump
distance by introducing good suffix rules and bad character
rules. The AC automaton multi-pattern matching algorithm
proposed in literature [10], [11] achieves multiple pattern
string matching with one input by constructing a trie tree,
which is more efficient. However, the trie construction of the
AC algorithm wastes a lot of memory and requires multi-
ple backtracking to transfer to the effective successor state
when there is a mismatch, which affects the performance of
the algorithm. Literature [12] and [13] is based on the AC
algorithm, combined with the idea of BM algorithm, and
adopts bad characters and good suffix rules to realize the
jump matching of the pattern tree. The major disadvantage
of this algorithm is that the good prefix rule preprocessing is
complex and difficult to achieve.

Aiming at the characteristics of common pattern matching
algorithms, this paper proposes a PPEACS (Parallel Python
Enhanced Aho-Corasick automaton with highly available
hadoop-based Spark) algorithm. The algorithm introduces an
improved double-array trie method to enhance the original
AC algorithm trie, which effectively reduces the space occu-
pied by data storage, and combines the parallel computing
method on the Spark distributed cluster based on Hadoop,
which can analyze the CNAME domain names of massive
DNS logs. Real-time processing and fast matching, better
performance than other matching algorithms.

II. SPARK DISTRIBUTED CLUSTER BASED ON HIGHLY
AVAILABLE HADOOP
Since Hadoop is optimized for high data throughput and
sacrifices the delay of obtaining data, it has no advantage for
low-latency data access, but this problem can be effectively
solved by introducing HBASE [33], [34] for massive data
storage. In addition, compared with the Spark computing
framework, Hadoop’s computing engineMapReduce has dis-
advantages such as poor real-time computing, unsuitable for
streaming computing and directed acyclic graph computing.
Lastly, to solve the single point of failure problem of Hadoop
and improve the stability of the 24-hour real-time computing
of the cluster, the paper builds a highly available distributed
cluster on the Linux server, as shown in TABLE 1. In Hadoop,
because the NameNode manages the meta-data information
of the entire HDFS file system, once a single NameNode
stops working in the cluster, it will affect the real-time opera-
tion of the entire cluster [14], [15], making the cluster unable
to process data in real time, and it is also not conducive to the
cluster upgrade and maintenance, the NameNode is designed
in a high-availability mode. Using the high-availability clus-
ter design, even if a master node fails, the standby node can
be switched to the working mode immediately through ZKFC
(ZKFailoverController) [35], [36] process to perform failover
and ensure the normal operation of the cluster. Similarly, the

TABLE 1. Cluster node configuration.

TABLE 2. Software environment.

ResourceManager, which manages cluster resources, is also
designed for high availability in this paper. By simulating
killing the NameNode of the background node master01, the
NameNode of the node master02 immediately changes from
standby to active mode, and the cluster still runs normally in
real time. The software environment is shown in TABLE 2.
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FIGURE 1. Changes in DNS log file data volume.

Compared to the other Hadoop distributed cluster, the
highly available hadoop-based distributed Spark cluster com-
puting design not only avoids the repeated disk I/O overhead
and cluster single point of failure caused by MapReduce
computing in the Hadoop framework, but also ensures that
the cluster can continuously process large-scale clusters in
real time and access data with low latency. Additionally, this
cluster adds a parallel computing module to enhance com-
puting power. For batch processing of massive DNS log data,
it can perform high fault-tolerant storage and fast iterative
calculation based on memory.

A. A. API SELECTION FOR SPARK TO CREATE RDD
RDD (Resilient Distributed Datasets) operations refer to
functions that act on RDDs to generate new RDDs. These
operations can be divided into transfer operations and
action operations [16]. The transfer operation here is a lazy
operation, which means that the operation between two
RDDs will not be executed immediately, till wait for the
action operation to be triggered. Spark supports multiple
APIs (Application Programming Interface) to create RDDs,
such as sc.parallelize (local collection, number of parti-
tions), sc.makeRDD (local collection, number of partitions),
sc.textFile (local/HDFS file/folder, number of partitions ) and
sc.wholeTextFiles (local/HDFS folder, number of partitions),
etc. During this experiment, our data source is an external
file. FIGURE 1 shows the data volume change of the DNS
log file, and FIGURE 2 compares the performance of two
APIs to create RDD. Obviously, in the API for creating
RDD, reading whoTextFiles for a large number of small
files has better performance than textFile and consumes less
time.

B. RDD OPERATOR OPTIMIZATION AND PERSISTENCE
Although operators such as mapPartitons are used in Spark
to replace ordinary Maps, one function call will process all
the data of a partition instead of one, which is more efficient.

FIGURE 2. Performance comparison of two APIs for creating RDD.

However, when the amount of processed data is very large,
once the memory is insufficient, it will cause OOM, that is,
memory overflow, and the job will fail. For this reason, the
computing performance of the mapPartitions operator can
be fully improved by filtering and repartitioning data. Pre-
aggregate on the map side before aggregation and use the
reduceByKey/aggregateByKey operator instead of the group-
ByKey operator, which can reduce the aggregation memory
usage and network transmission data volume in the reduce
phase. However, this is easy to cause data skew. This paper
greatly alleviates data skew by adopting local aggregation
plus global aggregation method. Its specific method steps are
in the first aggregation, first assign a random number to each
key-value key, then perform aggregation operations such as
reduceByKey and de-key prefixing on the data with random
numbers, and finally perform the full aggregation operation
again.

In Spark, RDD adopts a lazy evaluation mechanism, and
every time an action operation is encountered, the calculation
will be performed from scratch [17], [18]. This means that
each call to an action triggers a calculation from scratch.
This is very expensive for iterative calculations, which often
need to reuse the same set of data. Using a persistence
strategy for RDD can improve the data reuse rate. Using a
single persistence level cannot balance memory and CPU.
This paper implements differentiated persistence levels for
different RDD operators, which effectively improves the per-
formance of Spark jobs.

C. SPARK PARAMETER SELECTION
Spark parameters can be set by the user to control the
job behavior during the execution of the Spark job. These
parameters can change the amount of data in the middle of
the Spark job, change the number of data transfers between
memory and disk, and change the parallelism of each task
in the Spark job [19], [20]. Different parameter values have
different impacts on the execution performance of Spark
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jobs. According to two principles: the main parameters
affect the running performance of the task job and the
resource scheduling in the process of the task job [37],
[38], [39]. Therefore, it is very important to calculate and
select some necessary parameters of Spark through cluster
resources. The number of cores of nodes slave01∼slave03
is 16. In order to ensure the normal operation of other
services, spark.executor.cores is set to 5, just enough to fully
use the cores of nodes slave01∼slave03. According to the
calculation, the total number of spark.executors.instances
in the cluster is 21. spark.executor can be calculated
by combining the calculation formula (spark.executor.
memory + spark.executor.memory Overhead) = yarn.
nodemanager.resource.memory-mb ∗(spark.executor.cores/
yarn.nodemanagher.resource.cpu-vcores) which is 2G.
To make full use of cluster resources, this experiment
chooses to dynamically allocate the number of executors.
spark.default.parallelism defaults to 2 to 3 times the total
number of cores, and the maximum multiple is taken here.
The detailed parameters are as follows.

This article reasonably adjusts the above parameters to
improve the efficiency and performance of Spark jobs, and
the specific results are shown in FIGURE 3.

III. PARALLEL PYTHON EHHANCED AHO-CORASICK
AUTOMATON WITH HIGHLY AVAILABLE
HADOOP-BASED SPARK
This algorithm is based on the high-availability Hadoop
distributed Spark cluster framework. On the basis of this
framework, it includes two parts: the improved algorithm
of AC automaton and the parallel computing method. This
distributed Spark cluster can cope with high fault-tolerant
storage and fast real-time calculation ofmassive data. In order
to further improve the efficiency of fast matching, this paper
introduces the idea of improved AC automata and parallel
computing method.

A. IMPROVED ALGORITHM OF ACT AUTOMATON
The double-array trie can effectively reduce the storage space
without affecting the query rate [21], [22]. Its core is the
base array and the check array. Each element of the base

FIGURE 3. Comparison of Spark tuning parameters.

FIGURE 4. Improved double-array trie.

array represents a trie node, and each base array The element
represents the predecessor state of a certain state, and the
check array is used to check whether the state transition is
correct. The trie can be represented by base and check arrays,
and the following constraints are satisfied between them:

base[s] + c = t (1)

check[t] = s (2)

among them, s is the subscript of the current state, that is, the
parent node, the default base [0] is 0, t is the subscript of the
transition state, that is, the child node, and c is the code value
of the input character.

On this basis, further improvement is introduced to com-
press the non-common prefix of the trie by the tail array.
For example, double-array improvement is performed on
the pattern character P = {‘‘bachelor#,’’ ‘‘bcs#,’’ ‘‘badge#,’’
‘‘baby#’’}, as shown in FIGURE 4, the negative value of
base[s] means non-public Prefix, the absolute value indicates
the starting position of the character suffix corresponding to
the node in the tail array.

As shown in TABLE 3, compared with the memory occu-
pied by the AC algorithm trie, the memory occupied by the
improved double-array trie string is greatly reduced, which
does not exceed 10% of the AC algorithm trie. At the same
time, compared with the double-array trie algorithm, the
memory usage of this algorithm also has an advantage, and
the maximum decrease is about 2 percentage points.
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TABLE 3. Comparison of string memory ratios of different algorithms.

TABLE 4. Construction of enhanced AC automata.

The AC algorithm combined with the process of improving
the double-array trie is shown in TABLE 4.

B. PARALLEL COMPUTING METHOD
In the face of massive data in DNS logs, it is extremely time-
consuming to simply use AC automatonmatching to establish
a CNAME domain name set. The original AC automaton is
serial processing, and in the environment between multi-core
CPUs and clusters, it cannot make full use of server resources
for fast search or matching. For this reason, on the Spark
distributed cluster, the enhanced AC automata is combined
with the parallel Python [23] calculation to process large
data in parallel, which can make full use of the multi-core
CPU of the cluster to improve the computing performance.
Assuming that the domain name data in the DNS log is a set
T, it can be quickly matched with the target domain name
data set P by using parallel multi-threading technology on
the Spark distributed cluster, combined with the enhanced

FIGURE 5. Comparison before and after parallel processing of DNS log
data.

automaton algorithm. The specific steps are summarized as
follows: 1) Segment the DNS log domain name T into s
subsets, namely

T = {t1, t2, t3, . . . ti} (i = 1, 2, . . . s), and the subset
ti = tstr i1, tstr i2, . . . tstr ij, . . . tstr in} (i = 1, 2, · · · s, j =

1, 2, · · · n, tstr ij means the ith subset, the jth domain name),
the target domain name set P = {pstr1, pstr2, . . . pstrk} (k =

1, 2, . . .m, k representing the kth domain name); 2) Create
a cluster All work sections, and start the parallelized Python
cluster; 3) Parallelize s subsets and assign them to theworking
nodes of the cluster; 4) Submit job tasks for calculation.
It can be seen from FIGURE 5 that using parallel processing
methods in Spark computing can improve the efficiency of
big data processing and shorten the running time.

C. ALGORITHM FLOWCHART IMPLEMENTATION
As shown in FIGURE 6, the figure is a detailed flow chart of
the processing ofmassive DNS logs based on the Spark-based
parallel enhanced AC automaton algorithm.

IV. SIMULATION RESULTS AND ANALYSIS
The data source of this simulation experiment is the DNS
log data provided by the mobile telecom operator; the file
format is a compressed package of .gz; the processed DNS
data set is about 0.1TB; the domain name data volume in the
target domain name database is selected twice. The exper-
imental environment is the high-availability Hadoop-based
Spark cluster platform built by the operator’s laboratory.
Increased multiple is defined as the time ratio before and after
in TABLE 6 when the number of CNAME increases is the
same.

It can be seen from TABLE 5 that among many match-
ing algorithms, the calculation time of the PPEACS algo-
rithm is the least. Compared with the single mode match-
ing algorithm, the calculation speed of a single CNAME
domain name matching is dozens of times; compared with
the multi-pattern matching algorithm AC algorithm and the
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FIGURE 6. Flowchart of PPEACS algorithm.

TABLE 5. Comparison of matching performance of different algorithms.

improved AC-BM Compared with the algorithm, it is about
8 times that of the AC algorithm, and 2∼3 times that of
the improved AC-BM algorithm. Obviously, this algorithm
has obvious advantages and higher efficiency. It can be seen
from TABLE 6 that the performance of the algorithm is
still optimal when the number of CNAMEs of DNS logs
and the number of target domain names increase on a large
scale, compared with other algorithms, the time spent by
PPEACS has the lowest increased multiple, which shows that
the algorithm is extremely advantageous and very applicable
in the fast matching of big data. Compared with the original
AC algorithm, which is also multi-mode, it needs to construct
a large number of next arrays to store node information. This
algorithm only needs to use double array numerical opera-
tions to represent node storage and conversion information.
Compared with the AC algorithm, the storage space has been
greatly improved.

TABLE 6. Comparison of performance of different algorithms in
multi-mode.

TABLE 7. Comparison of whether PPEACS optimizes settings.

TABLE 8. Maximum memory usage of string matching in number of
different CNAME domain cnames.

From TABLE 7, we can know that optimization settings
such as RDD optimization and parameter optimization during
Spark calculation and analysis will be 2 to 3 times more
efficient than running without optimization settings about
Computing performance for massive DNS log data on Spark
distributed clusters. It can be seen from TABLE 8 that, with
the increase of the number of CNAMEs compared with the
AC algorithm and the AC-BM algorithm, the PPEACS occu-
pies the lowest memory and the advantage of this algorithm
in terms of memory usage becomes more and more obvious.

V. CONCLUSION
The main purpose of this study is to solve the problem of low
real-time processing and matching efficiency of alias records
in massive DNS log data. To ensure the real-time and stable
operation of the cluster, a cluster high availability method is
used. Also, to improve the efficiency of big data processing,
a distributed cluster with Spark as the computing engine
is used to effectively process big data through reasonable
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resource scheduling. Aiming at the low matching efficiency
of existing algorithms for massive data, the Spark-based par-
allel enhanced AC automaton method proposed in this paper
first uses the high-availability Hadoop Spark distributed clus-
ter design to ensure high fault-tolerant storage and real-time
processing of massive DNS data by the cluster. Secondly,
it matches CNAME data in large-scale DNS logs. Compared
with the original AC algorithm, the execution efficiency is
increased by about 8 times, which is about 3 times that
of the AC-BM algorithm. Compared with other matching
algorithms, it has higher performance. Finally, on the basis
of the AC algorithm, the trie tree is improved and enhanced
to reduce the occupied space of the memory. The method has
been applied in the actual production business of the mobile
company, and it has improved the efficiency for the company
to quickly match and obtain the target CNAME from the
massive DNS logs.

Similarly, it can also be applied to keyword filtering, intru-
sion detection, virus detection, word segmentation and other
scenarios, which is of great significance.
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