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ABSTRACT Autonomous vehicle (AV) simulation using a virtual environment has the advantage of being
able to test algorithms in various scenarios with reduced resources. However, there may exist a visual gap
between the virtual environment and the real-world. In this paper, in order to mitigate this gap, we trained
Dual Contrastive Learning Generative Adversarial Networks (DCLGAN) to realistically convert the image
of the CARLA simulator and then evaluated the effect of the Sim2Real conversion focusing on the lane
keeping assist system (LKAS). Moreover, in order to avoid the case where the lane is translated distortedly
byDCLGAN, we found the optimal training hyperparameters using feature similarity (FSIM). After training,
we built a system that connected the CARLA simulator with DCLGAN and AV in real-time. As for the result,
we collected data and analyzed them using the following four methods. First, image reality was measured
with Fréchet Inception Distance (FID), which we quantitatively verified to reflect the lane characteristics.
The CARLA images that passed throughDCLGAN had smaller FID values than the original images. Second,
lane segmentation accuracy through ENet-SAD was improved by DCLGAN. Third, in the curved route, the
case of using DCLGAN drove closer to the center of the lane and had a high success rate. Lastly, in the
straight route, DCLGAN improved lane restoring ability after deviating from the center of the lane as much
as in reality. Consequently, it convinced that the proposed method could be applicable to mitigate the gap of
simulation toward real-world.

INDEX TERMS Intelligent vehicles, vehicle driving, autonomous vehicles, lane keeping assist systems, lane
detection, GAN, DCLGAN, FID, autonomous vehicle simulation, CARLA, software-in-the-loop.

I. INTRODUCTION
The autonomous driving industry has largely been expand-

ing at a rapid pace. Autonomous driving has been proposed
as a solution to traffic accidents that cause 1.25 million deaths
worldwide every year [1]. However, in the United States
alone, a total of 392 traffic accidents recently occurred even in
one year due to Level 2 autonomous driving, and these reports
utterly raised the need for securing the safety of autonomous
driving technology [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Razi Iqbal .

Since autonomous driving technology has been required
to have diverse validation processes, autonomous driving
simulation is drawing attention as a new testbed. Unlike
reality, the simulation can implement complex situations,
such as traffic accidents and specific weather, that are hard
to reproduce in the real-world [3], [4], [5]. This technology
gives abundant training datasets about abnormal situations
and can potentially prevent traffic accidents more perfectly.
Therefore, many studies have been conducted for modeling
vehicles in simulation [6], [7], [8].

In order to adapt proven algorithms from virtual-world to
real-world, reducing the gap between simulation and reality
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FIGURE 1. Full framework for identifying Sim2Real image gaps and driving gaps from the CARLA-AV-GAN loop.

is an inevitable task. This gap can be caused by several factors
such as the unreality of sensor models (e.g., camera, LiDAR,
GPS, and IMU), mismatch of dynamic models, and measure-
ment noise in the real environment. Among the factors, the
camera sensor input images are the main cause of the gap
because this sensor accounts for the largest portion of driving.
The image gap which is a difference in visual realism tends to
make driving results unreliable. Besides, mitigating this gap
only by adjusting the simulation parameters can be almost
impossible. Therefore, simulation developers and users often
have used a high-level graphic engine to make the visual
contents of the simulation look more realistic.

To make images from the two domains similar, Gener-
ative Adversarial Networks (GAN) [9] have been adopted.
With the development of the GAN structure, the model has
developed to be applied to various fields such as colorizing
gray image [10] and restoring image quality [11]. Several
studies have also been proposed to make the images of the
virtual world close to reality [12], [13]. Although the study on
improving the graphic quality of the virtual world is active,
autonomous driving tests with these photorealistic techniques
have not yet been well investigated so far.

The purpose of this paper is to show the possibility
of applying GAN to the autonomous vehicle (AV) simu-
lation not just translating images, but also testing driving
results by using CARLA [14] simulator. As for the GAN,
Dual Contrastive Learning Generative Adversarial Networks
(DCLGAN) [15] was selected because DCLGANwas trained
better than other unpaired image translation models such as
CycleGAN [16] without overfitting even with our less diverse
data. Nevertheless, to avoid the lane distortion that DCLGAN
sometimes exhibits, we explored how to train in optimal
conditions using feature similarity (FSIM).

For this purpose, the data were collected from the
three domains: real-world, CARLA with DCLGAN (here-
after referred to as CwD), and CARLA without DCLGAN
(hereafter referred to as Cw/oD). The real-world data were
obtained from the Korea Intelligent Automotive Parts Pro-
motion Institute (KIAPI) and the virtual-world data were
obtained from a virtual map created identically to KIAPI. The
types of data were camera images and GPS data. To show

the DCLGAN contributed to making more realistic driving
results, a method to quantify the Sim2Real gap is needed.
There are several original contributions of this paper as
following.

First of all, Fréchet Inception distance (FID) [17], which
calculates differences in density of two distributions of image
sets in the diverse environment, was used to measure the real-
ism of the images of the CARLA simulator. After determining
whether FID was suitable for measuring this image gap,
we measured the FID of the images converted by DCLGAN.
These converted images were also used to measure the accu-
racy of the lane detection model, an important part of LKAS.
We compared CwD, Cw/oD, and real-world lane segmenta-
tion accuracy. Furthermore, we compared howmuch the GPS
trajectory of the vehicle driving the virtual KIAPI map devi-
ated from the center of the lane with and without DCLGAN.
The ability of these systems to recover from lane departure on
a straight line was also measured. The last two results have a
differentiated meaning in that they are the driving test, not an
image task. Consequently, we found that the above processes
show that our proposed CwD method is more effective in
practical use of autonomous driving simulation tests such
as LKAS.

II. RELATED WORKS
CARLA [14] has been considered one of the reliable

autonomous driving research simulator. Thus, we used the
CARLA simulator for the implementation of a virtual-vehicle
and building environments by using the functions followed.
First, the provided ROS-bridge enables the connection
between the real-vehicle and the virtual-vehicle. Second,
CARLA allowed us to spawn various sensors and config-
ure specific parameters such as the camera’s FoV, resolu-
tion, and gamma. Lastly, target vehicles can be implemented
through Unreal Engine 4 (UE4), the game engine of CARLA.
We imported a 3D model of Hyundai IONIQ electric vehicle
to spawn sensors at the same position as the real-vehicle.

GAN consists of a generator that creates fake images fol-
lowing real images’ distribution, and a discriminator that dis-
tinguishes between the fake images and the real images [9].
As the two modules compete repeatedly, GAN can generate
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more realistic images. However, the GAN model has a limi-
tation that it necessarily requires paired datasets for training.
CycleGAN solves the problem by adding the reversemapping
that returns the fake image to the original image. Whereas
cycle consistency loss has a drawback that the fake images
have low diversity. This limited output problem of low diver-
sity is well known as mode collapse. Contrastive Learning
for Unpaired Image-to-Image Translation (CUT) and Dual
Contrastive Learning GAN (DCLGAN) tried to deal with
this issue through contrastive learning. Especially, Similarity
Dual Contrastive Learning GAN (SIMDCL) with similarity
loss added to DCLGAN suffers less from the mode collapse
by allocating embeddings as much as the number of data
domains [15]. Thus, we mainly used SIMDCL, considering
the characteristics of our dataset, which has low diversity and
a high risk of mode collapse.

FID is an evaluation metric for a generative model such
as GAN, text-to-image, etc. The distance between the fake
images and the real images is measured by comparing the
extracted features from the pre-trained Inception v3 model
with the Imagenet dataset [18]. In this paper, the distance is
used to measure how realistic the generative model creates
images. FID between true samples (T) and generated sam-
ples (G) is calculated as equation (1) using the mean of the
variance of features (µ) and covariance (

∑
). Tr stands for the

trace of the matrix.

FID(T ,G) = |µT − µG|
2
+ Tr(

∑
T

+

∑
G

−2(
∑
T

∑
G

)
1
2 ).

(1)

ENet-SAD [19] has the characteristic of self-learning,
which delivers and enhances the representation top-down
by distilling the attention map of the lower layer. With this
distillation technique, ENet-SAD can be computed faster
without additional annotation or inference even with much
fewer parameters compared to other CNN-based lane detec-
tion models such as SCNN. Since the IoU of the ground truth
lane and lane segmentation prediction results were better than
the previous models, our LKAS system uses ENet-SAD.

TuSimple [20] introduces the lane segmentation accuracy
formula as equation (2). Cclip is the number of true points in
each clip and Sclip is the number of the ground truth points
in the clip. Thus, we used this evaluation method to compare
accuracy in each domain.

Accuracy =

∑
clip Cclip∑
clip Sclip

. (2)

Yurtsever et al. [12] proposed a rendering method that
realistically synthesizes the background of CARLA using
Conditional GAN and CycleGAN, while leaving objects of
interest such as lanes and vehicles intact. In this way, dis-
tortion or disappearance of the object can be prevented, but
it is not possible to completely translate the appearance of
objects to accurately reflect the properties and patterns of
each domain. The model presented by Richter et al. [13]

FIGURE 2. Vehicle top view and sensor location (left). Sensor installation
on the test vehicle (right).

converts the entire image without such hallucinations by
using the features of G-buffer information such as geome-
try, materials, lighting, and segmentation created during the
game rendering process in the generator model. However,
these studies do not confirm how realistically changed images
actually affect the perception or control results of autonomous
driving algorithms, or do not compare them with actual driv-
ing data. For this comparative study, we trained a GANmodel
with data that directly reflects the difference in characteristics
between our simulation and real domain, and also dealt with
the hallucination problem.

III. ENVIRONMENT SETTING
A. REAL-WORLD SETTING
1) SPECIFICATION
Table 1 describes the sensors and hardware specifications

and Fig. 2 shows the location of the sensors. Although
the camera maximum resolution was 1632×1248 pixels,
808×620 was used by binning. The vehicle was the Hyundai
IONIQ electric vehicle modified for applying the drive-by-
wire system.

2) LKAS ALGORITHM
We have autonomous driving algorithms and architecture

that were certified by MOLIT (Ministry of Land, Infrastruc-
ture, and Transport) of the Republic of Korea. This certifica-
tion required autonomous emergency braking (AEB), smart
cruise control (SCC), and lane keeping assist system (LKAS).
Among the technologies we have, only LKAS function was
used in the experiment.

According to previous papers [21], [22], the path of
autonomous vehicles was derived through camera, GPS, and
IMU sensors. Three paths are obtained through each three
sensors. Then, Optimal Path Tracker Selection picks the best
path among the paths considering the instability of steering
angle, GPS reliability, vision reliability, and road information.

In this study, we only used the path from the camera
and designed this algorithm being worked in two stages. The
first stage performed in deep learning PC installed on AV is
lane segmentation by using the ENet-SAD network model.
This ENet-SAD model was trained by datasets from both the
CULANE dataset [23] and our dataset. The second stage is
lane detection which transforms the segmented image to a
bird’s eye view through inverse perspective mapping (IPM),
and then calculates lane center points by finding the fitting
function that best describes the lane among linear, quadratic,
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TABLE 1. Sensors and hardware’s specification.

and cubic least squares fitting [22]. After these two stages,
the main PC installed in the AV calculates the steering angle
value using the lane detection result and the pure pursuit
algorithm, which enters the CARLA vehicle through the ROS
topic. In this paper, the lane keeping algorithm was used to
obtain data by running a real-vehicle on theKIAPI high-speed
main circuit or by running a virtual-vehicle on the virtual
KIAPI map.

B. CARLA SIMULATOR SETTING
1) CAMERA AND VEHICLE
CARLA simulator provides various sensors and attributes

in the virtual environment. The attributes make it possible to
set the sensor specifications. The performance of the camera
sensor described in Table 1 was imported such as FoV or
Gamma. Then, the camera was spawned according to Fig. 2
position. The CARLA image taken by spawned camera sen-
sor and the real-world image can be also seen in Fig. 3.

2) MAP
To make a custom map, CARLA requires map geometry

information in .fbx format and OpenDRIVE information in
.xodr format. For these, we used RoadRunner recommended
by CARLA as a map editor and OpenStreetMap (OSM) as

FIGURE 3. CARLA image (left) and the real-world image (right).

TABLE 2. Road parameters’ specification.

map data. OSM has latitude and longitude vector data and
RoadRunner makes OSM possible to get both map geometry
information and OpenDRIVE information.

The process of making the KIAPI map was as follows.
First, as shown in Fig. 4(a), we dragged the desired area from
the satellite map in OSM and export the file in .osm format.
Second, as shown in Fig. 4(b), the latitude and longitude were
corrected by comparing the OSM file exported from JOSM
with the GPS file of actual measurement data. After that,
the calibrated OSM file was imported into RoadRunner, and
the RoadRunner file set the road width, lanes, and slope of the
road according to the information announced in KIAPI [24].
Fig. 4(c) describes this process and Table 2 shows the spec-
ification of each parameter. Lastly, this file was exported in
CARLA format such as .fbx and .xodr format files.

3) TIME
The experiment with the same time period as the real-world

is not able to be performed because of the calculation time of
GAN. As a solution, we used synchronous time. According to
CARLA documentation, ‘‘On synchronous mode, the server
waits for a client tick, a ‘‘ready to go’’ message, before
updating to the following simulation step’’ [25]. It means that
we can set the attribute to wait for a step until the vehicle
control command arrives. Therefore, the client server would
wait for a cycle described in the next section.

4) NETWORK CONNECTION BETWEEN CARLA AND AV
Three computers were used for the experiments, called the

Main PC, Deep Learning PC (DL PC), and Simulation PC.
As described in Table 1, Main PC decided on vehicle control
such as steering angle value and throttle value. DL PC com-
puted deep learning algorithms such as the LKAS algorithm,
and the Simulation PC played CARLA simulation. Table 3
describes the ROS version for each computer. For connecting
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FIGURE 4. The process of creating a virtual map from the OSM data of
KIAPI. (a) Exporting map data from OSM. (b) PG OSM file edited on JOSM.
(c) KIAPI map produced in RoadRunner.

TABLE 3. Each PC’s Ubuntu version and ROS version.

different versions of ROS 2 between DL PC and Simulation
PC, Cyclone DDS is applied to Simulation PC and Fast RTPS
is used to DL PC.

Fig. 5 shows the flow of the three computers interactions
with ROS topic names. The proposed method with this com-
puter configuration was accomplished as following three pro-
cedures. First, in the Simulation PC, the camera sensor from
CARLA gives an image to DCLGAN. The output from the
DCLGANmodel is sent to the DL PC. Second, in the DL PC,
lane_segmentation function is performed and gives segmen-
tation data to lane_detect function. The lane_detect function
finds the center points of the lane and sends the output points
to the Main PC. Third, in the Main PC, lane_driving function
gets vehicle status from the Simulation PC and center points
from DL PC. By utilizing these values, the lane_driving
function determines the steer value. The move_car function

FIGURE 5. CARLA-AV-GAN connection overview.

calculates proper steer angle, throttle, and brake values. Then
the function sends them to the Simulation PC for control of
the vehicle.

5) TRAINING DCLGAN
We tried to reduce this Sim2Real gap with DCLGAN.

The data of the real-world domain was collected from the
high-speed circuit of KIAPI and the data of the CARLA
domain was collected from the OSM map of KIAPI. Both
were collected while driving at a speed of 30 km/h in the
second lane. The CARLA domain contains 5498 images as
train set and 611 images as test set, and the real-world domain
contains 6929 images as train set and 770 images as the test
set. In order to match the channels of the FLIR camera images
used in the AV, the order of the CARLA image channels was
changed from RGB to BGR.

The images used for training the model were loaded
with a size of 600×600 and cropped to a size of 300×300.
The deep learning network model was selected as SIMDCL
and the rest of the options kept the DCLGAN default set-
tings. Additionally, λNCE,X , a hyperparameter of the loss
function, was determined through the process as described in
equations (3)-(5).

As shown in Fig. 6, if the image passes through the
DCLGAN model, the lane in CARLA may not maintain
its original shape and may be distorted enough to affect
lane-keeping driving. This lane distortion occurs when the
generator of the GAN does not fully learn the data distri-
bution and is fixed only in a specific biased direction to
generate an image [15]. Also, the imbalance between the
straight line data and curved line data of the lane can be the
cause.

In order to solve the problem of distortion of the lane
shape that occurs when training with the default settings of
the model, we tried to find the optimal hyperparameter set
by adjusting the coefficients of the loss function (Hyper-
parameter tuning). Equation (3) shows the loss function
of DCLGAN, and equation (4) shows the loss function of
SimDCL [15]. G is the X domain(in our paper, Carla)→ Y
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domain(Real-world) generator, and F is the Y → X gener-
ator. DX distinguishes the generated X images from the real
images, and DY distinguishes the Y images. HX and HY refer
to vectors embedded by G encoder and H encoder, respec-
tively.When convertingX → Y or Y → X , it uses the normal
GAN loss (LGAN ) for G or F . In addition, PatchNCE loss
(LPatchNCE ) is used, which learns to maximize the similarity
between a patch in the generated real-world image and its
positive pair in the original CARLA image while minimiz-
ing the similarity between the real-world patch and negative
CARLA pairs. Also, Identity loss (Lidentity) is calculated to
preserve the color of the existing image, and Similarity loss
(Lsim) is calculated to measure whether the real image and the
generated image have similar styles in the same domain. The
default coefficients for each loss term are 1 for GAN , 2 for
NCE , 10 for sim, and 1 for idt .

As in equation (5), theX part of the PatchNCEloss term is
associated with a generator that converts X → Y . Where ẑsl is
the query patch of the generated image, zsl is the positive patch
of the original image, and zS\sl is the negative patches. It cal-
culates the entropy-cross loss (l) for all layers and patches.
If the query is closer to the positive paired patch and farther
from the negative patches, it will try to retain more features
of the CARLA patch. We checked whether better results that
keep the direction or shape of the lane can be obtained by
changing the coefficient such as λNCE,X .

LDCLGAN (G,F,DX ,DY ,HX ,HY )

= λGAN (LGAN (G,DY ,X ,Y )

+ LGAN (F,DX ,X ,Y )

+ λNCELPatchNCEX (G,HX ,HY ,X )

+ λNCELPatchNCEY (F,HX ,HY ,Y )

+ λidtLidentity(G,F). (3)

LSimDCL(G,F,DX ,DY ,HX ,HY )

= λGAN (LGAN (G,DY ,X ,Y )

+ LGAN (F,DX ,X ,Y )

+ λNCELPatchNCEX (G,HX ,HY ,X )

+ λNCELPatchNCEY (F,HX ,HY ,Y )

+ λsimLsim(G,F,HX ,HY ,H1,H2,H3,H4)

+ λidtLidentity(G,F). (4)

LPatchNCEX (G,HX ,HY ,X )

= Ex∼X
L∑
l=1

Sl∑
s=1

l(ẑsl , z
s
l , z

S\s
l ). (5)

In this case, FSIM [26] was used to evaluate the degree
of lane distortion of the generated image in the case of each
adjusted hyperparameter. The edge map similarity between
the original image and the fake image is measured from the
phase congruency (PC) map extracted based on frequency
information and the gradient magnitude (GM) map extracted
based on the gradient of pixel values. The PCmap is obtained
by calculating the sum of vectors (local energy) consisting of

FIGURE 6. This is a mode collapse in which DCLGAN learned only in the
direction of cheating the discriminator rather than generating a wide
range of outputs. (a) Original image, (b) Distorted lane due to mode
collapse.

FIGURE 7. (a) A Cw/oD image cropped to 808×245 size (b) A CwD image
generated therefrom for FSIM measurement.

amplitude and phase from frequency information and divid-
ing it by sum of the amplitudes, and the GM map can be
obtained by convolving the image with a first-order differ-
ential edge detection mask. To compare the edge information
of only lanes, as shown in Fig. 7, 808×245 sized images
excluding the background and car bonnet were cropped from
each 808×620 image of the CARLA test imageset, and the
FSIM of each pair of the Cw/oD image and the CwD image
was measured. A model with proper λNCE,X that maintains
the original lane shape or direction well can have a high FSIM
value. The weight determined in this way is then used for
FID measurement. The relationship and differences between
FSIM and FID are shown in Fig. 8. FSIM can directly mea-
sure the similarity between two paired images, but since
FID compares the distribution of images, it is necessary to
compare image sets when measuring FID.

Table 4 shows the average FSIM value in each λNCE,X .
In all cases, the weight that seems to have the least lane
distortion among theweights trainedmore than 15 epochs and
less than 60 epochs were selected (because the loss function
has largely converged after epoch 15), and the average of the
FSIM values before and after translation of 611 images of
the CARLA domain test set was measured. For FSIM mea-
surements, quality_metrics and image_similarity_measures
Python packages were used [26]. λNCE,X value 3, which has
the highest FSIM value 0.451 and is judged to have the least
distortion, was determined as the optimal condition.

IV. APPROACH METHOD
A. FID VERIFICATION
It is necessary to guarantee whether the difference in

characteristics of lanes can be quantitatively measured.
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FIGURE 8. A diagram of the relationship between Cw/oD images, CwD
images, and real-world images with measuring FSIM and FID from them.
When a CwD image is generated from each CARLA image, the FSIM is
measured from each pair. FID is measured between unpaired CwD
imageset and real-world imageset to measure how realistic the generated
images are.

TABLE 4. Mean FSIM values (611 pairs of paired Cw/oD images & CwD
images) for each λNCE,X .

As previously shown in Fig. 3, the lanes in the real-world are
clearer and thicker than the ones in the virtual environment.
To see if the FID used to quantify the Sim2Real difference
reflects this well, it is necessary to test the FID by separately
creating maps in which the characteristics of these lanes are
clearly distinguished. These maps were created based on
KIAPI map and varied the thickness, texture, length, and
distance of lanes by RoadRunner. Fig. 9 shows these charac-
teristic differences. For the texture, LaneMarking1, 2, and 3,
which are lanematerials provided byRoadRunner, were used.
The material used in LaneMarking1 is the sharpest and 3 is
the faintest. All other variables in RoadRunner were fixed
except for lanes.

After that, the vehiclewas summoned by the RoadRunner
Scenario function, and then driven on the same fixed route on
the KIAPI map. While the car was driving in the center of the
road, 25-second videos were recorded at 30 FPS on each map
with specific characteristics of the lane. By extracting each
frame of the recorded video, about 700 images were created
for each map, and FID operation was performed between the
maps using this. The FID code used in this paper was written
based on PyTorch and the FID’s dimensionality of features
was set to 2048 (default) [27]. To compare only the thickness
of lanes, we fixed the lane material to LaneMarking1, the
length and spacing of lanes to (10m, 10m), and increased
the lane thickness from 0.125m to 0.15m, 0.175m, and 0.2m
respectively. Also, to compare the texture, the thickness was
fixed to 0.125m and the length and spacing of the lanes were
fixed to (10m, 10m). To compare the length and spacing of

FIGURE 9. Front camera image in RoadRunner Simulation Play according
to (a) the thickness of lanes, (b) the material of lane texture, and (c) the
length of the lane and the distance between lanes.

the lanes, the thickness was fixed to 0.125m and the material
to LaneMarking1.

Table 5 shows the FID measurements between each map.
The fact that the value increases toward the upper right of
the table means that the FID actually appears larger as the
characteristics of the lanes are quantitatively farther from
each other. For example, the thickness changing result as
shown in Table 5 (a) shows that the FID is smaller when
the thickness of the lane is quantitatively close, and vice
versa. When compared with the image of the lane with a
thickness of 0.125 m, it can be seen that the FID increases
from 3.36 (0.15 m) to 11.17 (0.2 m). For the texture of the
lane as shown in Table 5(b), the image set with the clearest
lane (LaneMarking1) was farther from the image set with
the blurriest lane (LaneMarking3) than the distance from the
image set with the second clearest lane (LaneMarking2).
The same results as shown in Table 5(c) were obtained for
the length and spacing of the lanes. This can be explained
that the Inception v3 model abstracts the characteristics such
as thickness, texture, length, and spacing of lanes well and
extracts them as features. This tendency confirms that FID
is suitable as a numerical value to quantitatively measure the
difference in characteristics of the lanes.

B. EXTRACTING GROUND TRUTH
To automatically obtain the ground truth data in CARLA

simulator, it was required to perform several works. As shown
in Fig. 10, our works had following three steps. First, we cre-
ated the same map except for the shape of the line. This
map’s line was fully connected shown as Fig. 10 (a). Then,

VOLUME 11, 2023 33921



J. Pahk et al.: Effects of Sim2Real Image Translation via DCLGAN on LKAS in CARLA Simulator

TABLE 5. FID measurement value between image sets with different
(a) thicknesses of lanes, (b) materials of the texture of lanes, and (c) lane
lengths & spaces between lanes.

the vehicle ran in the line-connected map while recording its
movement and collecting segmentation images. Second, the
recording process was turned on in the original map, and then
started to save the test images. Then, we found the specific
pixel color belonging to the line and counted the number of
points for each h_sample which is the height value that lanes
can exist. Lastly, line order was designated.

This algorithm was implemented as described in
Algorithm 1 only for the second road. When searching the
lines based on height, the number of possible points in one
height is 2, 3, or 4 (top red line of Fig. 10(b)). The two points
mean line 2 and line 3 in order from the left (bottom red line
of Fig. 10(b)). The three points mean line 2, line 3, and line 4
if a second point is on the right line based on the middle
of the image (middle red line of Fig. 10(b)). Conversely,
if the second point is on the left line, the three points mean
line 1, line 2, and line 3. Lastly, the four points mean line 1,
line 2, line 3, and line 4. Moreover, as shown in Fig. 11, this
algorithm was successfully applied in the presence of diverse
road conditions for the second lane (i.e., straight and curved
lane).

C. COLLECTING GPS DATA
To compare the driving test results, we collected GPS

data. The virtual vehicle was summoned to a map created

FIGURE 10. The segmentation image from line connected map (a),
extracting the specific pixel color (b), and ground truth points (c). Red
lines in (b) show the example of each case for Algorithm 1.

Algorithm 1 Automatically Extracting Ground Truth
Input Segmentation Images
Output Ground Truth Data

1: h_sample← the list of height values that lines can exist
2: line_rgb← the RGB value of segmented line
3: w← the width of images
4: GT ← the 2D array of ground truth data. Row cor-

responds to h_sample and column corresponds to line
number

5: for i = h_sample do
6: for j = 0, 1, 2, . . . ,w− 1 do
7: Append j in the GT [i] that
8: satisfies Input[i][j] = line_rgb
9: end for
10: if len(GT [i]) = 2 then
11: Set line 2, 3
12: else
13: if len(GT [i]) = 3 then
14: if GT [i][1] < w/2 then
15: Set line 1, 2, 3
16: else
17: Set line 2, 3, 4
18: end if
19: else
20: Set line 1, 2, 3, 4
21: end if
22: end if
23: end for

FIGURE 11. Results of extracting ground truth (green points) on the
original map images. (a) straight lane. (b) right curved lane. (c) left curved
lane.

based on the GPS trajectory of the real vehicle and drove
while performing LKAS. The starting position was (East,
North) = (44549054.51, 394557162.27) as UTM. GPS data
was collected through the following two experiments. One
is trajectory comparison on a curved road, and the other is a
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FIGURE 12. GPS setting and method flow for each domain.

comparison of lane restoring ability on a straight road. For
trajectory comparison, the vehicle traveled 20 laps in each
case of CwD and Cw/oD. For the lane restoring experiment,
the vehicle was spawned at ± 90cm, ±120cm, ±130cm,
±140cm, and ±150cm in the direction perpendicular to the
lane from the center. Fig. 12 shows how the proposed method
is applied by using both test and simulation environments
with respect to GPS measurement.

V. EXPERIMENTS AND RESULTS
To show the usefulness of DCLGAN in simulation driving

tests, three methods were used to analyze data. First, FID
thoroughly measured the reality of virtual-world images by
calculating differences in the density of two distributions. FID
showedDCLGANmade CARLA images to realistic. Second,
lane segmentation performance, which was the important
attribute for LKAS for autonomous vehicle, was measured
and compared. These results show that ENet-SAD has a bet-
ter understanding of images. Third, GPS data showed CwD
images made driving results more realistic. We selected two
road types: curved roads, and straight roads. Then, the curved
road was analyzed by using RootMean Square Error (RMSE)
and the straight road was considered by the ability of lane
restoring.

A. FID SCORE
Cw/oD2Real image gap was obtained by measuring the

FID between 5498 CARLA images without DCLGAN and
6929 real-world images, and CwD2Real image gap was
obtained by measuring the FID between 5298 images passed
through DCLGAN and 6929 real-world images. Addition-
ally, 4585 separate images captured independently were used
for real to real comparison. This relationship is depicted in
Fig. 13.

As a result of training by setting λNCE,X to 3, the weight
(epoch 26) obtained with FSIM value of 0.451 was used.
An example of an image translated using this weight is shown
in Fig. 14. The lanes of CARLA are inherently blurry and
indistinguishable from the surrounding roads (Fig. 14 (a)),
whereas the lanes of the real-world domain are clear and dis-
tinctly visible in the distance (Fig. 14 (b), (c)). This DCLGAN
weight translates the image by well reflecting the difference
in lane characteristics between these domains without distort-
ing the shape of the lane.

FIGURE 13. Cw/oD2Real gap (Cw/oD vs real-world image set), Real2Real
gap (real-world image set vs another real-world image set), and
CwD2Real gap (CwD vs real-world image set) measured by FID.

FIGURE 14. The lane on the real-world domain side is clearer, it can be
easily distinguished from the surroundings, and the far side can be seen
well. (a) Cw/oD, (b) paired CwD, and (c) real-world lane image for
comparison.

TABLE 6. Real vs Cw/oD, Real vs CwD, and Real vs Real FID values for
each dimensionality of the feature. The FID values of the CwD images
subjected to DCLGAN were always smaller.

FIGURE 15. Specific flow for obtaining lane segmentation accuracy. A, B,
C input image set for each domain. A’, B’, C’ green lines mean ground truth
and blue lines mean ENet-SAD prediction results. D ground truth was
obtained by the previously mentioned algorithm.

Table 6 is the FID measurement of the CARLA images
before and after conversion using the corresponding weights.
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FIGURE 16. Example of GPS orbits of CwD, Cw/oD, and center path among 20 laps. (a) Position of each section. (b), (c), (d), (e) Magnified view of
each section.

Considering the lack of diversity in our dataset, it was also
measured when the dimensionality of the feature was 64,
192, and 768. In all cases, the FID value of CwD was
lower than that of Cw/oD. (e.g. 321.97 (Cw/oD)→ 240.80
(CwD) at 2048 feature dimensionality) That is, as we saw in
the previous section, DCLGAN changed the CARLA image
characteristics such as road color and lane clarity to fit the
real-world domain, and it was possible to quantitatively con-
firm the reduction of the gap with FID.

B. LANE SEGMENTATION ACCURACY
Lane segmentation accuracy in each domain was eval-

uated and followed by the TuSimple evaluation method.

TABLE 7. Lane segmentation accuracy of Cw/oD, CwD and Real-world.

Prediction results were obtained using ENet-SAD used for
LKAS mentioned in the previous section. As shown in
Table 7, ENet-SAD shows better results in CwD(84.94%)
than Cw/oD(82.85%). Fig. 15 describes specific flow.
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TABLE 8. The degree of how much CwD and Cw/oD deviate from the center of the road in each session. CwD drove a complete lap in all cases, showing a
100% success rate. Cw/oD was 65.0%. Fail spot (X) in Fig. 16 shows the failed points during Cw/oD.

This result shows that DCLGAN made CARLA images
look like ENet-SAD training image dataset. As the training
dataset was collected from real-world, CwD become similar
to the real image. This made ENet-SAD easier to understand
the images.

C. GPS ORBIT
1) DIFFERENCE OF GPS ORBIT
After data collection, to utilize RMSE, we selected two road

types (i.e., slightly curved road, and steep curved road) and
two sections for each road type. Fig. 16(a)-(d) described each
section respectively. Then, the RMSE between the ideal path
connecting the central points of the road and each driving
path was calculated. More specifically, there are two ways
to calculate RMSE: distance east (x) and distance north (y).
Table 8 shows the 10% trimmed mean of RMSE values
of CwD and Cw/oD for each section. The experiment was
performed with the desired speed set at 50km/h turning on
LKAS until finishing one lap. Then we did this experiment
20 times.

As shown in Table 8, CwD tended to run closer to the
center route than Cw/oD for the most part. According to
section I and section IV, the steep curved roads, CwD was
more stable. However, in section II and section III which are
slightly curved roads, CwD andCw/oDwere almost the same.
Moreover, CwD finished whole laps but Cw/oD failed seven
times. There aremany failures on the bottom right corner road
in Fig. 16 (a) which was the most curved road in the case of
Cw/oD. These results of RMSE and success rates mean that
Cw/oD can cause bad driving results, especially on the steep
curved road which is the most important part of the map.

2) LANE RESTORING
In this section, we tried to evaluate how well a vehicle can

return when it abruptly maneuvers out of its lane. If CwD
recognizes the lane better than Cw/oD, the ability to return
to the existing lane within reasonable time should be better
when it deviates from the lane. In common, if the vehicle
starts from its own location and returns to the original lane
within 2 minutes and continues to keep the lane stably, it was
judged as a success.

The results are shown in Fig. 17 and Table 9. As shown in
Table 9, Cw/oD failed when starting by moving 1.5 m, 1.4 m
to the right, and 1.2 m, 1.3 m, 1.4 m, and 1.5 m to the left.
However, CwD succeeded in all but the right 1.5m, left 1.3m,
1.4m, and 1.5m. As shown in Fig. 17, the path returning to
the original lane was confirmed even under relatively extreme

FIGURE 17. Lane restoring GPS path; Red (X), Blue (O). (a) result of
Cw/oD (b) result of CwD.

TABLE 9. Lane return success or not according to the distance from the
center of the lane (+ is right, − is left).

conditions such as +1.4m and −1.3m unlike Cw/oD. Com-
pared to Cw/oD, it can be seen that CwD has better restoring
force to return to the center of the lane by better recognizing
the lane even when it is above the lane away from the center
of the lane.

VI. DISCUSSION AND CONCLUSION
Previous studies have shown ways to make virtual-world

images close to the real-world images by improving GAN.
However, these studies have not focused on the perfor-
mance of GAN especially while driving test in simulation.
In this paper, we evaluated the effect of translating simulation
images into real image via DCLGAN on LKAS in CARLA
simulation.

To measure the effect, we first found the well-trained
DCLGAN weights while minimizing the distortion of the
lanes using FSIM. Then FID quantitatively showed that vir-
tual images can be more similar to reality through DCLGAN,
especially in our KIAPI high-speed circulation environment.
In addition, we made ENet-SAD better understand lane infor-
mation of images by making the features of virtual images
closer to the train set images of ENet-SAD by DCLGAN.
In this process, we proposed an algorithm that automatically
measures lane recognition accuracy in simulation. Finally,
we compared the driving trajectory of critical parts through
RMSE (x) and RMSE (y) and the ability of lane restoring.
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These indicate that the driving result of CwD is more similar
to reality. Thus, these results suggest that applying image
translation on the simulation driving test can be essential and
this visual gap can be reduced by using GAN.

Most notably, this is the first study to our knowledge to
measure the performance of image translation on LKAS in
autonomous simulation. Our results will make researchers in
simulation field focus on image translation. Based on this
study, our future work will concentrate on implementing
scenarios for surrounding vehicles and testing autonomous
driving algorithms such as LKAS and even AEB or SCC.
In addition, a more accurate dynamic model will be applied
through CARSIM with minimum gap of the simulation to
real-world.
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