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ABSTRACT To facilitate content-based video analysis, automatic scene change detection (SCD) with
large-scale motion activity is an essential fundamental step for locating a transition from one video scene
to another. With the exponential increase in digital media usage, SCD has become more challenging in
processing large motion content with minimal information loss and maximum perseverance. Wipe SCD in
object-camera motion is noticeable evidence of this issue. Wipe transitions, which are a type of gradual
transition, have diverse motion pattern changes when influenced by object-camera motion (camera pan,
large-object, and zoom-in/out), creating a velocity imbalance in the same frame. Furthermore, this motion
imbalance leads to false detection. Due to the loss of motion information and longer processing time of
existing frameworks, we propose a novel method of wipe scene change detection (WSCD) based on deep
spatial-motion feature analysis. First, large input videos are segmented into shots using dimensionality
reduction and adaptive threshold. Secondly, linear regression is used to compute slope angle changes in
shots for candidate selection and wipe localization. Finally, only selected candidates are processed to extract
features using a two-stream inflated 3D-convolutional neural network for RGB stream and optical flow
velocity for motion stream network (I3DCNN) and then classified into wipe in-motion and no-motion clips.
The experimental results are obtained by classifying wipe patterns using a detection reviewing and merging
strategy on corresponding wipe frames. The average improvement in wipe scene change detection accuracy
evaluated on the benchmark TRECVID dataset is 11.9%, demonstrating the efficacy of our proposedmethod.

INDEX TERMS Cut transition, gradual transition, I3DCNN, linear regression, object-camera motion, scene
change detection (SCD), shot boundary detection (SBD), wipe scene change detection (WSCD).

I. INTRODUCTION
After the COVID-19 pandemic, the number of digital media
platform users has continued to grow at an extraordinary
level, which has created a challenge for data management
systems to handle thismassive amount of data [1]. In addition,
the use of object-camera motion activities in multimedia
video production has increased, significantly [2]. Object-
camera motion can be mainly classified into three types: large
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object, camera pan, and zoom-in/out motion. Such diverse
object-camera motion has made video indexing, content-
based video searching, and video retrieval tasks more chal-
lenging. These tasks enable high-level semantic information
analysis to efficiently run video-based applications such as
video surveillance, video production, and creation [3], [4].
To this end, video shot boundary detection (SBD) and scene
change detection (SCD) are the essential preliminary steps
that provide the semantics of the video content [5], [6].
A video sequence can be arranged in descending order of
scenes, shots, and frames. Several continuous frames form
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shots. A change from one shot to the next shot is defined
by a shot transition, and this transition can be consisting of
one or several frames known as shot boundaries [7]. A scene
is made of several shots, and when a specific shot transition
contains a change from one scene to another scene, it is called
a scene change. Hence, scene changes and shot changes are
interconnected [6], [8]. Video shots or scene changes are
created by video editing effects which can be divided into two
main types: abrupt transition and gradual transition [5], [7].
In abrupt or cut transitions, shot changes occur suddenly,
also known as cut shot boundaries. In gradual transitions,
shot changes occur slowly with several frames changing in a
pattern. Gradual shot transitions can be of two types, a single
pattern type (i.e., dissolve, fade-in/out) and a multiple pattern
type, that is, wipe [9], [10]. According to statistical survey
records, most of the existing gradual transition detection
(SBD) methods have mainly focused on dissolve and fade-
in/out transitions [11]. Research studies conducted on wipe
transition detection have not focused on sufficient object-
camera motion-based wipe transitions. The importance of
wipe transition detection in object-camera motion can be
described as follows:

• Wipe transitions carry important low-level semantic
information of the context and content of a video to
obtain high-level information; hence, their automatic
detection is a pivotal step in assisting content-based
video analysis [13], [16].

• Wipe transitions are widely used in digital media (news,
sports, and movies) to provide audiences with a better
content-watching experience [12]. The popular video
editing software Adobe Premiere Pro CC has more than
30 commonly used wipe patterns [15].

• Not only do wipe transitions create disturbances in other
gradual scene change detection methods, but they also
generate velocity imbalance and similar shape pattern
confusion problems when combined with object-camera
motion, as explained in Section III in detail.

Due to their complexity and diverse changing patterns, wipe
transitions are difficult to detect compared to other transition
types as shown in Fig. 1.

In wipe transitions, the pixels in the current scene are grad-
ually replaced by the pixels in the next scene with or without
object-camera motion activities. This transition occurs with
a moving border in a shape pattern between the current and
next scene. These moving borders consist of arbitrary shapes,
directions, and speeds [16]. Most importantly, when arbitrary
object-camera motion occurs in the same frame as moving
borders, it results in a velocity imbalance between them.
Existing wipe transition detection methods suffer from this
problem [15]. Wipe transition classification methods can be
divided into three groups: 1) rule-based methods, 2) machine
learning methods, and 3) rule-machine learning methods
[10]. These methods have reduced the difficulties of wipe
transition detection to some extent which can be described
by dividing wipe transitions into two groups depending on
their movement as follows:

FIGURE 1. Types of wipe scene changing patterns; (a) Diagonal
(no-motion); (b) Clockwise (no-motion); (c) Iris shapes (no-motion);
(d) Circle (no-motion); (e) Half horizontal (no-motion); (f) Half vertical
(no-motion); (g) Vertical (in-motion); (h) Horizontal (in-motion).

FIGURE 2. Architecture of a video with frames, shots, and scenes, where
shot changes occur with cut shot boundaries, and scene changes occur
with motionless and motion wipe transitions.

• Motionless wipe transitions (WIP): The key feature
in this group is that during a transition, the current
shot and next shot remain globally motionless, i.e.,
no foreground or backgroundmovement occurs between
wipe-in and wipe-out scenes as shown in Fig. 2. How-
ever, borders might move at any arbitrary speed and in
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any direction, such as horizontal, vertical, or diagonal
directions, or according to geometrical shapes such as
rectangular, circular, diamond or any random object’s
shape. Rule-based methods related to visual features
can be performed by edge-based [15], [18], histogram-
based [12], [17], [58], pixel-based [26], [27], and visual
rhythm based [20] algorithms.

• Motion wipe transitions (WIM): In contrast, motion
wipe transitions can be divided into two types.

Type 1 motion wipe is where the foreground and background
movements have global motion only, i.e., either the current
wipe-in scene 1 is moving onto the next wipe-out scene 2, or
the next wipe-out scene 2 is moving on to the current wipe-
in scene 1. Hence, foreground and background movements
have the same velocity as the moving wipe. Transformation-
based [21], motion vector-based [22], [25], and machine
learning [23], [38], [56], [57] algorithms can be employed
for motion type 1 wipe transition detection.

Type 2 motion wipe is where object-camera motion occurs
in foregrounds or backgrounds, while type 1 motion wipe is
occurring. Hence, wipe scenes have different velocities, that
is, the local velocity during object-camera movements in the
foreground and background and the global velocity during
type 1 motion wipe. Object-camera motion may occur due to
large objects, camera panning, and zoom-in/out movements,
as shown in Fig. 2. Block motion vector-based [16] and
motion -machine learning-based [24] algorithms are gener-
ally used for type 2 motion wipe transitions.

However, these methods do not classify motionless and
motion wipe transitions in various object-camera motions.
In addition, motion-machine learning methods that have
detected other gradual transitions (dissolve, fade-in/out) in
object-camera motion require high computational costs [14].
Therefore, the correct detection of motion wipe transitions
with fast computation is urgently needed.

The main contributions of this paper are as follows:
• Video segmentation: A fast computational method is
developed to segment the video using dimensionality
reduction by principal component analysis (PCA) and
adaptive threshold techniques. To do so, cut shot bound-
ary detection is selected as the segmentation criterion.
Since the cut transition feature is similar to the beginning
and ending frame features of the wipe transition, its
presence in the input video causes disturbances in wipe
scene change detection. Therefore, we chose Cut SBD
for the preprocessing step.

• Candidate selection to locate wipes: A suitable candidate
key frame selection algorithm is developed to locate
motion and motionless wipe transitions that can elim-
inate nonwipe frames and other frames consisting of
small object-camera motion activity. Thus, we employ
linear regression analysis for edge feature changes in
each segmented video clip to predict the temporal
location of nonwipe and wipe frames. This technique
reduces the computational time by enabling processing
with fewer frames in the classifier.

• Very deep spatial-motion feature extraction and
classification: Elimination of falsely detected large
object-camera motion frames from the selected candi-
dates is performed by analyzing very deep global-local
motion information corresponding to their spatial fea-
tures using an inflated 3DCNN and optical flow velocity
neural network (I3DCNN). Hence, we create a training
dataset and set the final classification output criteria
by employing a prediction threshold Ts. This technique
prevents selected candidates from having a prediction
probability (fully connected layer) that is less than the
threshold, considers them as nonwipe object-camera
motion clips, and provides the final classified output
in motionless wipe and motion wipe (type 1, type 2)
transitions with high accuracy.

• Detection reviewing and merging: The classified wipe
transitions are reviewed by detecting their shapes and
merging the detected wipe clips to form a complete
wipe transition. We utilize the advantages of the trans-
fer learning-based CNN-LSTM network (less training
time, less data) for 12 different commonly used wipe
shape classifications (horizontal, vertical, Irish, half
wipe, etc.); then, correctly detected segmented candi-
date wipe transitions of each complete transition are
merged with the proposed merging strategy. We choose
this technique as the postprocessing step because it
increases the detection confidence of the proposed
method.

This paper is organized as follows: related works are illus-
trated in Section II. Section III describes the mathematical
analysis of wipe scene change in object-camera motion, fol-
lowed by Section IV, which explains the proposed WBSC
method. The experimental results and discussions are pro-
vided in Sections V and VI, respectively. Finally, some con-
clusions are presented in Section VII.

II. RELATED WORKS
Most related papers in recent years have mainly focused on
single transition pattern detection, such as cut and gradual
(dissolve, fade-in/out) transitions using different approaches
[53], [54], [55], [56], [57], [58], [59]. In addition, these
methods face challenges in reducing the processing time
while preserving accuracy. In contrast, wipe transitions are
consideredmultitransition patterns due to various shapes with
arbitrary motion. To overcome this issue, existing research
has either included wipe transitions with single transition pat-
tern detection methods or have exclusively proposed methods
for wipe transition detection, as illustrated in subsections A,
B, and C and further summarized in Table 1.

A. FEATURE EXTRACTION-BASED APPROACH
The objective of this approach is to extract low-level visual
features from video frames. A detailed literature review
is conducted to analyze feature differences among various
techniques.
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TABLE 1. Wipe Scene change detection algorithms based on different approaches.
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TABLE 1. (Continued.) Wipe Scene change detection algorithms based on different approaches.

1) VISUAL FEATURE EXTRACTION
Pixel-based algorithms (PBAs) or pixelwise comparisons are
some of the simplest and most popularly used methods for
visual feature extraction [26], [27]. Therefore, these features
are used for statistical property-based computations (mean
and standard deviation) applied for wipe transition detection.
However, this technique suffers from a high false alarm rate
due to small motion activity. Wu et al. [19] proposed an over-
all pixelwise comparison approach for direct current (DC)
images and statistical properties, however their method can
only detect a few wipe patterns. To speed up the efficiency of
pixel-based algorithms, Seo et al. [20] proposed subsampling
pixels from a specific position from each frame to represent
the visual content, known as visual rhythm- based algorithm.
However, pixel-based algorithms have been found to be sen-
sitive to local and global motion in many research studies.
To overcome this issue, edge-based [15], [18] and histogram-
based [12], [17], [40], [53] algorithms have been proposed.
Li and Lee [15] proposed independence and completeness
properties based on edge-pixel feature changes to obtain
the structure of wipe transitions and locate them. The main
drawback of this paper is that this method is only imple-
mented considering motionless wipe transitions and motion
wipe transitions without camera panning motion, resulting
in a high false alarm rate in frames with large object-camera
motion transitions.

Histogram-based algorithms [12], [17], [33], [54] have
been proposed to construct a unified cut and gradual transi-
tion (dissolve, fade-in/out, and wipe) detection model. These
histograms (color and HSV) are used for obtaining thresholds
to classify (rule-based classifier) transition types. Since color

histograms [50] do not incorporate the spatial distribution
information of different colors, they are less sensitive to small
object-camera motion transitions. However, this method is
not expressive enough to accurately classify different tran-
sition types and is sensitive to object-camera motion due to
fast changes in color information.

2) CONTINUITY SIGNAL CONSTRUCTION
Global temporal feature analysis using visual features is
an effective way to construct frame continuous (similarity)
and discontinuous (dissimilarity) signals for localizing wipe
transitions. In general, a discontinuity occurs between two
scenes due to a cut or gradual transition. Otherwise, the shot
maintains its continuity. However, when large object-camera
motion appears in continuous nontransition frames (normal),
such frames have temporal changes similar to gradual transi-
tions, causing discontinuities.

A discontinuous or continuous signal can be obtained by
calculating the adjacent interframe feature distances. Nam
and Tewfik [28] calculated pixelwise dissimilarity and B-line
interpolation curve fitting techniques to measure the linearity
of wipe transitions. However, their method only detects a
few wipe transitions that are linear in the specified direc-
tion. A multifeatured block dissimilarity computation tech-
nique was proposed in [21]. Thomas et al. [36] proposed an
approach for minimizing the energy (color-edge) of a shot’s
background to analyze temporal dissimilarity. However, their
method is sensitive to large foreground movements.

In contrast, Refaey et al. [29] analyzed similarity using the
hue histogram distance (HHD) to achieve robustness against
illumination changes. However, this method is sensitive to
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large object-camera motion. Tippaya et al. [13] have com-
puted cosine similarity signals by using SURF matching and
RGB histograms. However, their method has not been used
to investigate wipe transitions.

B. MOTION ACTIVITY-BASED APPROACH
The objective of the motion activity-based approach is to
analyze local-global object-cameramovements in normal and
transitional frames.

Some studies have proposed macroblock type temporal
feature information analysis in the MPEG coded domain to
locate wipe scene changes [16], [30]. However, they suf-
fer from a high false alarm rate due to illumination and
brightness changes. Mackowiak and Relewicz [31] proposed
motion activity and color dominant feature-based descriptors,
but only evaluated horizontal and vertical wipe transition
patterns. Han et al. [24] proposed a unified SBD model
using dominant color features and motion vectors. How-
ever, their method also detects only a few graphical wipe
transitions. Discrete transformation-based approaches (DCT
and DWT), which represent motion changes by transforming
image signals into the transform domain, have been proposed
in [22], [32], and [34]. In addition, Yufeng et al. [21] used
a Hough transformation on a combined color-edge feature-
based wavelet transformation image signal to obtain the pat-
terns of wipe transitions. However, these methods are sen-
sitive to fast-motion activity. Chavan et al. [34] analyzed
wipe transitions for only one kind of motion, i.e., large object
motion only; hence, this method is sensitive to camera pan-
ning and zoom-in/out motion.

An effective optical flow-based motion vector estima-
tion approach was proposed in [25], [35], and [37]. These
motion vectors leverage the system to obtain local temporal
information with fast computation, which is necessary for
motion wipe detection. Hence, unlike the existing methods,
we inflate the optical flow vectors with a CNN classifier to
preserve maximum temporal feature information in corre-
spondence to spatial features.

C. MACHINE LEARNING-BASED APPROACH
A statistical machine learning approach was proposed by
Shen et al. [49], who used speeded-up robust features (SURF)
and fuzzy logic, known as high-level fuzzy petri net (HLFPN)
for key point matching. However, the recall value is incon-
sistent with limited features in their method. Bezerra [44]
proposed a k-means clustering-based classification tech-
nique; however, this method has only been employed for
horizontal and vertical wipe transition patterns. Therefore,
a deep learning-based convolutional neural network (CNN)
approach was proposed in [38], [39], and [55] to obtain
high-level semantic features by combining low-level fea-
tures. However, their method has not detected wipe transi-
tions. Chen et al. [41] proposed a self-supervised machine
learning approach using audio-visual features. However, their
method only works for cut scene change detection. Has-
sanien et al. [23] proposed a spatial-temporal feature-based

CNN that detects wipe transitions and other gradual transi-
tions. However, the processing time is higher in this method.
To resolve this issue, in [10] and [42], a candidate segmen-
tation method was proposed to select candidates and then
only the candidates were fed into a support vector machine
(SVM) classifier. However, they did not precisely classify
wipe transitions in object-cameramotion. Following the same
objective, we have proposed a new linear regression-based
candidate selection approach.Wu et al. [14] proposed a CNN-
HSV and 3DCNN approach (TSSBD) for analyzing deep
spatial-temporal features to detect gradual transitions (dis-
solve, fade-in/out, and swipe) in the presence of large object
motion and illumination changes. However, their method is
sensitive to fast camera movements. Hence, to achieve higher
wipe transition detection accuracy in large object-camera
motion we have proposed an inflated 3DCNN and optical
flow velocity (I3DCNN) for extracting very deep motion
features corresponding to the spatial features.

In the algorithmsmentioned in the three subsections above,
scene change detection approaches start by processing entire
video frames to extract visual and motion features using
different techniques. Although these techniques have worked
well for cut and dissolve transition detection, they still lack
sufficient feature information for wipe transition detection.
As discussed in Section I, wipe transitions have multiple
shape pattern features including their independent motion
pattern from other moving objects or camera movements.
Hence, a good semantic correlation balance between spatial
and motion features information is required for wipe transi-
tion detection, and it is analyzed in Section III of this paper.
Once feature extraction is performed, all these extracted fea-
tures are fed through either rule-based or machine leering
based algorithms for the scene change detection. Appar-
ently, processing entire features decreases the robustness
of the system. Addressing this issue, Benoughidene and F.
Titouna [55] proposed a candidate frame selection-based
algorithm for potential scene transition localization; however,
wipe scene transitions were not investigated with their pro-
posed method. Motion sensitivity and lack of focus in wipe
transition detection are the two most common limitations
that can be observed in Table 1 of related works on scene
transition detection.

Therefore, to summarize, the two major problems that we
aim to solve are 1) the high computational time by proposing
a fast computational video segmentation and candidate selec-
tion method and 2) the high false alarm rate in wipe transition
detection due to object-camera motion by proposing a very
deep spatial-motion (global-local temporals) feature analysis
technique using an inflated 3DCNN and the optical flow
velocity network.

III. ANALYSIS OF WIPE SCENE CHANGES IN
OBJECT-CAMERA MOTION
Diverse geometrical shape patterns make wipe transitions
a distinct type of transition among all the others. Whereas
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FIGURE 3. Structural representation of wipe transitions in no-motion and
in-motion situations, where S1 and S2 represent Scene 1 and Scene 2,
respectively; (α, α + 1α) represents the change in the distances of the
wipe transition from frame n to next frame n + 1; V and U represent wipe
transition motion in S1 and large object motion in S2, respectively.

camera movement (pan or zoom-in/out) can be called global
motion, large object movements can be called local motion.

Depending on the correlation between global-local motion
and wipe transition motion, a wipe transitions can be rep-
resented as three types, as shown in Fig. 3. In a motionless
wipe (WIP) transition, no global motion occurs. Similarly,
in the type 1 motion wipe transition, small local motion might
occur, but no global motion occur; hence, it has the behavior
of amotionless wipe transition. However, in the type 2motion
wipe transition, either both global and local motion occur
or any of the motions occur. The methods proposed in [15]
and [32] can be used to efficiently detect motionless and
motion wipe transitions without large global-local motion,
as shown in Fig. 3 (a) and (b). Furthermore, a DWT-based
method was proposed to detect wipe transitions with local
motion [34], as shown in Fig. 3 (c). However, this method
is unsuitable for wipe transitions with global motion (camera
pan or zoom-in/out), as shown in Fig. 4. The object-camera
motion creates two major problems for wipe transition detec-
tion: 1) velocity imbalance and 2) pattern similarity, which
is mainly responsible for the low accuracy rate in existing
methods, as shown in Fig. 4 and Fig. 5.
According to case study 1 regarding the velocity imbalance

in Fig. 4, existing wipe transition detection methods fail to
detect the beginning and ending frames of wipe transitions
in lengthy transitions. This occurs because the beginning and
ending frames of wipe transitions possess less wipe pattern
changing motion.

According to case study 2, due to the shape pattern simi-
larity between a wipe transition and object motion, existing

FIGURE 4. Case study 1 (Velocity imbalance); Missed detections of
beginning and ending frames of wipe transitions due to a lack of wipe
changing velocity flow. Frame numbers (no.) belong to the TRECVID
2007 dataset.

FIGURE 5. Case study 2 (Pattern similarity). False detection occurs due to
the similar flow of motion vectors between consecutive frames.

methods suffer from the false detection of wipe transitions,
as shown in Fig. 5.
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FIGURE 6. Representation of average velocity feature difference of wipe
transitions; previous, and postwipe transitions in normal or motionless,
large object, camera pan, and zoom-in/out motion frames.

According to the average velocity feature difference in
wipe transitions, motion wipe with object-camera motion can
be distinguished from motionless wipe, as shown in Fig. 6
Most existing works have employed average spatial and

temporal information to classify wipe transitions from other
gradual scene changes. RGB features are commonly used as
spatial information. The temporal or motion feature informa-
tion equation in existing methods can be derived according to
information theory, as in (1).

Classify (I (Wt)) = (I (dn−1) + I (sn−1)),

or,Classify (I (Wt)) = log(1
/
p (dn−1))

+ log(1
/
p (sn−1)). (1)

where, I represents the information and Wt represents the
wipe scene changes in no-motion or in-motion. dn−1 and sn−1
represent motion vector flow (velocity) information in the
preframes or in scene 1 and in the postframes or in scene 2 for
motionless wipe transitions, respectively.

However, two more crucial features need to be added,
namely, the interframe distance and the peak height cor-
relation of motion vector information between the wipe
and object-camera motion. These two pieces of information
have been incorporated in this paper for wipe scene change

FIGURE 7. Representation of a wipe transition (Horizontal) depending on
the presence of motion in pre- and postframes.

detection in object-camera motion and are described in (2).

Classify (I (Wt)) = (I (s+ 1s)n−1 + I (d + 1d)n−1

+ I
(
DE(n−1)

)
) +

(
h+ 1h)n−1

)
,

or,Classify (I (Wt)) = log(1
/
p

(
d + 1d)n−1

)
+ log(1

/
p

(
DE(n−1)

)
+ log(1

/
p

(
h+ 1h)n−1

)
+ log(1

/
p

(
s+ 1s)n−1

)
. (2)

where, (d + 1d)n−1,(s+1s)n−1,DE(n−1), and (h+ h1)(n−1)
represent the motion vector flow (velocity) information in the
preframes and postframes, the interframe distance, and the
peak height of wipe transitions in the object-camera motion
category, respectively. Therefore, we propose a slope-angle
function using linear regression and a two-stream inflated
3DCNN-based method for wipe scene change detection that
not only efficiently detects wipe scene changes but also
reduces the computational time, as explained in Section III.
The experimental results show that our proposed method
increases the accuracy of wipe in-motion scene change detec-
tion by 11.9%, as illustrated in Section IV.

IV. PROPOSED WIPE SCENE CHANGE DETECTION IN
OBJECT-CAMERA MOTION
In this section, the proposed wipe scene change detection
(WSCD) method is described in detail. As depicted in Fig. 8,
the proposed method is implemented in three major stages,
which are explained in subsections A, B, and C. These stages
include video segmentation by cut SBD using principal com-
ponent analysis (PCA) and interframe distance calculations,
candidate selection by generating 20 frame sliding windows
from the segmented video clips, wipe transition localization
using Canny edge feature extraction and slope angle change
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FIGURE 8. Architecture of the proposed WSCD method.

calculations with linear regression, and selected candidate
classification in motionless wipe and motion wipe transi-
tions by applying an inflated 3DCNN model that uses two
streams, i.e., a 3DCNN for deep spatial feature extraction
and an optical flow network for motion feature extraction.
Finally, the proposed WSCD method is reviewed using a
postprocessing step by classifying detected wipe transitions
into 12 commonly used wipe shape patterns using CNN-
LSTM network and the corresponding wipe clips are merged
into a complete wipe transition.

A. VIDEO SEGMENTATION USING CUT SHOT BOUNDARY
DETECTION
Video segmentation helps to analyze the dissimilarities
between scene changes and object-camera motion by
segmenting scenes into small batches for future steps.
A significant distinct feature of the wipe and cut transition is

the disparity between the number of frames in the transition
phase. Considering this, cut shot boundaries are detected first
and then, wipe transitions are detected.

1) PRINCIPAL COMPONENT ANALYSIS
The statistical monitoring of principal component analysis
(PCA) in [45] indicates that it is a well-known method for
dimensionality reduction of a dataset with extremely fast
computation while minimizing the loss of information. Thus,
we used PCA on our large input video dataset to select the
most appropriate pixel change features in each frame by per-
forming eigenvector and eigenvalue calculations. We obtain
the feature vector (Fn) for n frames by calculating the highest
eigenvectors from the first and second principal components,
as in (3).

Fn = (v1 v2)n. (3)

λn = (λ1 λ2)n. (4)

where n = 1, 2, 3, .., n.
v1 and v2 represent the highest eigenvectors correspond-

ing to eigenvalues λ1 and λ2, as in (4), of the first and
second principal components, respectively. We consider the
most suitable feature vectors that best define the frames
and achieve continuity and discontinuity between frames,
as described in Section IV-A2.

2) EIGENVECTOR FEATURE BASED INTERFRAME DISTANCE
CALCULATION
To obtain the interframe distances (dissimilarity signals),
we considered the peak values from the eigenvector features.
The reason for considering the peak value is that when an
abrupt discontinuity occurs between two continuous shots,
the eigenfeatures vary significantly, which results in higher
peaks compared to the adjacent preframe and postframe; this
is known as the cut shot boundary [14]. Many researchers
have used the Euclidean distance calculation method, and it
has been mentioned as one of the best methods [14], [46].
Hence, the eigenvector feature differences of the peak and its
adjacent preframe and postframe values are as follows:

PkFnDifi = (Euc (PrFi−1,PkFn) ,Euc(PkFi−1,PoFi+1).
(5)

PkFn = (Fn)β . (6)

where, frame i represents frame n corresponding to PkFn.
PkFn represents eigenvector featurematrices with the high-

est peaks and theminimum prominence range β. Good results
can be obtained when β is (3 − 4 × 10−6), as in (6). PrFi−1,
PoFi+1, and Euc represent eigenvector feature matrices of the
adjacent preframe and postframe of PkFn and the Euclidean
distance, respectively, as in (5).

The eigenvector feature differences DE (PrFi−1,PoFi+1)
between adjacent PrFi−1 and PoFi+1 of PkFn are as follows:

DE
(
PrF(i−1)j,PoF(i+1)j

)
= Euc(PrF(i−1)j,PoF(i+1)j). (7)
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DE
(
PrF(i−1)j,PoF(i+1)j

)
represents the feature information

of j− th eigenvector feature matrix of frame i. However,
high peaks also occur due to object-camera motion and other
gradual scene changes. Hence, we must consider another
distinct feature that can locate cut shot boundaries accurately,
as described in Section IV-A3.

3) ADAPTIVE THRESHOLD
The feature vectors of preframes and postframes with abrupt
discontinuities always have values close to zero, whereas
wipe and other transitions have gradual changes that include
multiple frames; thus, the feature vectors of such preframes
and postframes do not provide abrupt discontinuities or val-
ues close to zero. Considering this feature, we adaptively
determine the thresholds.

The adaptive threshold T for N DE values used to deter-
mine the cut shot boundary can be obtained as follows:

T = 1
/
N

∑N

1
DE

(
PrF(i−1)j,PoF(i+1)j

)
. (8)

After detecting the cut shot boundary, the collection of
segmented shots or video clips Sh is defined as follows:

Sh = {Vid (1 → (i− 1)) , . . . .,Vid (h (i+ 1) → n)} . (9)

where, Vid represents the video clip, frame i represents frame
n corresponding to PkFn, and h represents the adjacent post-
frame of frame i. These shots or video clips are fed into the
next stage of our proposed method.

Although this threshold can provide good results, some
false detections still occur because of sudden movements.
Reference [47] proposed an adaptive threshold for flash
detection and large-object motion; however, when different
types of motion appear such as camera pan and zoom-in/out
motion, threshold determination becomes very challenging.
Therefore, we propose a candidate selection method to select
input video clips for feature extraction and classification
using I3DCNN, as described in subsection B.

B. CANDIDATE FRAME SELECTION
In the second stage of our proposed WSCD method, we have
described our strategies for selecting candidate frames from
the segmented video clips, Sh. Our candidate selection strat-
egy focuses on two points. First, localizing wipe transitions,
and second, the video clips are prepared by eliminating
normal frames, including object-camera motion, which can
reduce the computational time and falsely detected cut shot
boundaries. Considering this, sliding windows are generated
and their edge feature changes are analyzed to select poten-
tial wipe transition candidates, as described in the following
steps.

1) EDGE FEATURE-BASED SLIDING WINDOW
First, we need to finely analyze Sh to select candidates.
Hence, edge features are extracted first, and then the edge
feature-based matrices are segmented into 20 frame sliding
windows. If Ck represents the edge features of k − th video

clips from Sh, then Ck after generating 20 frame sliding
windows is written as follows:

Ck =
{
(C(1+20)

)
,
(
C(2+21)

)
, ..,

(
C(w+r)

)
}. (10)

where frame w = 1, 2, . . . , k , and r = w+ 1.
These edge feature-based sliding windows contain infor-

mation on pixel changes in the edges for any movement
in the foreground or background of the frame. Therefore,
normal frames with continuity have similar edge pixel values,
whereas wipe transitions and object-camera motion related
transitions have unsteadied and fluctuating edge pixel values.
Considering these distinct edge features, we applied linear
regression statistics to calculate the slope angles of each
sliding window, as described in Section IV-B2.

2) LINEAR REGRESSION AND THE SLOPE ANGLE
To obtain the slope angle, we first need to draw the best curve-
fitting slope on each edge-feature-based window. We use
linear regression to obtain the slope. Linear regression is a
polynomial regression of the first degree.

Therefore, if (fkq,Ckq) are the data points for frames fkq
and edge features Ckq for the q− th 20-frame sliding window
from the k− th video clip, then the linear regression equation
R(fkq) of a first-degree polynomial can be obtained as follows:

R(fkq) =

∑k

q=1
[Ckq −

(
mf kq + b

)
]2. (11)

where, q = {1, 2, . . . ., 20}, m represents slope and b is the
Ckq-intercept.
By solving the partial derivatives of (11) with respect to

slope m and intercept b, we can obtain
( b
m

)
matrices as

follows:

∂R
/
∂b =

∑k

q=1
2(b+ mfkq−Ckq). (12)

∂R
/
∂m =

∑k

q=1
2fkq(b+ mfkq−Ckq). (13)

From the slope for each q− th sliding window, the slope
angle is written as follows:

akq = tan−1m. (14)

The distinguishable slope angle feature among nor-
mal frames in object-camera motion (camera pan, large
object motion, and zoom-in/out), and wipe frames with
object-camera motion is that the transition in normal frames
in object-camera motion is steadier than that is wipe tran-
sition frames in object-camera motion. Hence, this results
in negative slope angles in normal frames in object-camera
motion, and positive slope angles in wipe transition frames
in object-camera motion. This is because when wipe transi-
tions occur, the frames receive new wipe patterns along with
object-camera motion or no motion, and most importantly
the velocity of a wipe pattern transition does not match the
velocity of object-camera motion. Therefore, we consider
sliding windows with positive slope angles as our candidates.

However, as the beginning 2-4 frames of wipe transi-
tions contain very few wipe patterns, negative slope angles
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are obtained for those frames, resulting in misclassification.
Hence, these key frames are fed into the I3DCNN in the next
stage of our proposedmethod for extracting very deep spatial-
temporal features, and the features are classified into binary
classes, as described in subsection C.

C. WIPE SCENE CHANGE DETECTION IN OBJECT-CAMERA
MOTION
There are several existing 3D-ConvNet-based (3DCNN)
models for deep feature extraction because 3D-ConvNet not
only preserves features from the time domain but also pre-
serves the best information in the temporal domain, thus
making it very suitable for video data classification. Refer-
ence [14] used 3D-ConvNet for deep feature extraction in the
spatial and temporal domains and then performed classifi-
cation tasks for gradual shot changes (fade-in/out, dissolve,
and swipe), which does not include wipe scene changes.
In their method, 3D-ConvNet extracts significant information
of RGB features and motion features, but to handle the veloc-
ity imbalance between large-scale object-camera motion and
wipe pattern change motion, we need to include a separate
motion-based algorithm along with 3D-ConvNet that can
extract very deep motion features and improve the perfor-
mance. Hence, we use a two-stream inflated 3D-ConvNet
(I3DCNN) which is fused with the optical flow velocity
algorithm, as shown in Fig. 9. This I3DCNNmodel is inflated
with two subnetworks, one is 3D-ConvNet, and the other
is the optical flow velocity algorithm, where 3D-ConvNet
provides the prediction results from the RGB stream and the
optical flow velocity gives the prediction results from the
motion stream, which are then combined in the last step to
provide the finale prediction result. This approach is known as
two-stream inflated 3D-ConvNet (I3DCNN). Reference [43]
recorded the statistical results on the advantages of I3DCNN
in detail. Adding the optical flow velocity significantly
improved the performance, even though 3D-ConvNet itself
can learn spatial-temporal features from the RGB stream.

1) SPATIAL FEATURE EXTRACTION
All sliding window video clips, including key frames from
the last subsection B, are fed to the I3DCNN model for very
deep spatial-temporal feature extraction, and spatial-temporal
feature learning from the RGB stream is discussed in this
step. As shown in Fig. 10, our 3D-ConvNet architecture con-
sists of 22 convolutional layers (these layers contain a total
of 9 inception modules), 5 pooling layers (4 max-pooling and
1 average-pooling layers), 1 fully connected layer for spatial-
temporal feature learning from the RGB stream, and finally
1 softmax layer to classify wipe transitions in object cam-
era motion. To inflate 2D-ConvNet to 3D-ConvNet, we add
another dimension of time by changing the square size N×N
to into cubic N×N×N filter size, weight size, and bias size.
The number of convolutional kernels is set to 64. In the first
inception layer, the first convolutional network has stride 2,
and after the 7×7 average-pooling layer, the model proceeds

FIGURE 9. Comparison between the 3DCNN and I3DCNN architectures.

FIGURE 10. Representation of the 3D-ConvNet architecture in the I3DCNN
where Incept. represents the inception module.

to the linear classification layer. Reference [43] processed
25 frames per second as the input video frames; however,
we use 20 frame sliding windows. In the first and second
max-pooling layers, we use 1 × 3×3 kernel with a stride
in time; in all other max-pooling layers, we use a 3 × 3×3
kernel with stride 2 in time. The finale average pooling layer
has used 2 × 7×7 kernel. Before the inception layer, the
first convolutional layer has a kernel size of 7 × 7×7 with
stride 2, the second convolutional layer has kernel size of
1×1×1 and the third convolutional layer has a kernel size of
3 × 3×3. The kernel sizes of the convolutional layers inside
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FIGURE 11. Representation of the inception module (Incept.) in the
3D-CNN architecture of I3DCNN.

the inception layers are shown in Fig. 11. In these inception
layers, which contain convolutional layers and pooling layers,
semantic feature vectors that can define the spatial-temporal
features of wipe transitions are stored. However, to predict
wipe changes in large-scale object-camera motion, we need
to add the optical flow velocity to improve the performance,
as described in Section IV-C2.

2) MOTION FEATURE EXTRACTION
As the second stream of the I3DCNN method, optical
flow velocity-based temporal feature extraction is discussed
in this step. Whereas the temporal feature extraction pro-
cess runs iteratively in the optical flow fields, 3D-ConvNet
runs through feedforward computation while directly learn-
ing both spatial-temporal features from RGB inputs [43].
Because of this lack of recurrence, the I3DCNN improves
the performance for large-scalemotion informationwithwipe
pattern change information, where stream one, including
3D-ConvNet, is trained on RGB inputs and stream two
including velocity information is computed on optical flow
inputs. Stream two has two channels for velocity informa-
tion: (Vx ,Vy). Vx and Vy represent the velocity flow toward
the x and y components, that is, the change in position of
each pixel in the (x, y) space with respect to time or frame
numbers. We train the two subnetworks separately and then
obtain combined prediction results that classified the slid-
ing window video clips into wipe no-motion transitions and
wipe in object-camera motion transitions. Classifying wipe
transitions as in-motion and no-motion helps eliminate the
only motion or normal frames, as only motion frames do not
carry the optical flow velocity information of wipe pattern
changes. The experimental results section describes the accu-
racy achieved by our proposed WSCD method.

3) DETECTION REVIEWING AND MERGING STRATEGY
Finally, we need a merging strategy that can eliminate the
overlapped wipe frames from the sliding windows, and then
the nonoverlapping frames need to be merged to obtain

FIGURE 12. Architecture that classifies input video clips into 12 types of
wipe shape patterns using CNN-LSTM.

FIGURE 13. Merging strategy of the proposed method.

a complete wipe transition. However, before merging the
videos, we need to review the detection results to elimi-
nate further false detections due to object-camera motion
in the sliding windows. To do so, we further classify the
pattern of the wipe type from the detected wipe in-motion
and no-motion classes by using transfer learning (ResNet-50
CNN) for feature extraction and an LSTM sequential layer for
classification, as shown in Fig. 12. Finally, sliding windows
are merged to obtain a complete wipe transition, as shown in
Fig. 13.
In the 20-frame sliding window, except for the first frame,

the other 19 frames overlap twice each up to the 20−thsliding
window. For example, between the q − th sliding window,
which has frames q = {1, 2, . . . ., 20}, and another q + w
sliding window, which has frames q+w = {21, 22, . . . ., 40},
we have 19 sliding windows, in which each frame q =

{1, 2, . . . ., 20} has two overlapped sections. Hence, in our
merging strategy, we eliminate frames that occur two times
and merge frames that occur once. To merge corresponding
wipe frames, we compare the continuity of frame numbers
in classified sliding windows with the key frame numbers of
k − th shot from subsection B. If the ending frame number
of the q − th sliding window is N frames away from the
beginning frame number of the adjacent sliding window, then
we consider it as the start of another wipe transition, and
therefore obtain G as the output.

We summarize our proposed wipe scene change detection
in object-camera motion (WSCD) method in Alg.1.
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Algorithm 1 Proposed Wipe Scene Change Detection
(WSCD) in Object-Camera Motion Based on Linear Regres-
sion and an Inflated Spatial-Motion Neural Network
Input:
X = [x1, x2, . . . , . . . , xn]− frames of one test video.
S = [S1, S2, . . . , . . . , Sh]− segmented shots or video clips
by cut shot boundary detection.
C = [C1,C2, . . . , . . . ,Ck ]− Selected candidate clips in a
20-frames sliding window.
Output:
G = [c1, c2, . . . , . . . , ck ]− Detected motionless wipe and
motion wipe scene change clips.
Step 1. A dimensionality reduction method for large input
that preserves the most appropriate eigenvector feature infor-
mation by principal components analysis (PCA) and an
interframe discontinuity calculation is proposed for cut shot
boundary detection and segmentation of X into S with fast
computation.
Step 2. A candidate selection method by fusing Canny edge
features and linear regression is proposed by calculating the
slope angle information changes on each 20-frame sliding
window C from S.
Step 3. A very deep two-stream inflated 3DCNN and optical
flow velocity model are utilized to classify key frameC in the
wipe scene change in object-camera motion and wipe scene
change in no-motion.
Step 4. A deep LSTM model is used to further classify the
detected wipe scene change in 12 types of wipe patterns for
detection review.
Step 5. A merging strategy is used to merge corresponding
wipe frames in a complete wipe scene change transition by
eliminating the overlapped wipe frames from sliding win-
dows and obtaining output G.

V. EXPERIMENTAL ANALYSIS
Our proposedWSCDmethod is tested on two datasets: one is
the TRECVID dataset, and the other is our own Multimedia
dataset. As our approach is to detect wipe transitions in
object-camera motion, we needed a well-balanced dataset for
training and evaluation, but the TRECVID dataset lacks this;
hence, we created our own Multimedia dataset for training
and evaluation, as explained in subsections A and B.

A. TRECVID DATASET
We perform our experiments on the TRECVID 2001 and
TRECVID 2007 datasets, which are provided by the
US National Institute of Standards (NIST) benchmark
dataset [60]. Although the content in this dataset vary and
includes News, Sports, and TV series, which is sufficient
for creating training datasets for other gradual transitions
(dissolve and fade-in/out), it is not sufficient for wipe tran-
sitions in object-camera motion. Hence, we created a Multi-
media dataset. We split the Multimedia dataset for training
and evaluation and use the TRECVID dataset for evaluation

only. To prove the superiority of our proposed method, we
primarily compared the performance of cut shot boundary
detection with the HSV histogram, HLFPN-Keypoint match-
ing, and C3D-based methods and the performance of wipe
scene change detection with pixel-border, macroblock-type
information, and deepSBD-based methods.

B. MULTIMEDIA DATASET
Our Multimedia dataset contains videos of news reports and
movies. We collected news report videos from the BBC news
channel and collected ‘‘Star Wars’’ and ‘‘Sherlock Holmes’’
movie datasets available on social media. In the ‘‘News
Reporting’’ category we have collected 30 videos that are
4-6 minutes long, and in the ‘‘Movies’’ category we collected
10 videos that are 2-4 minutes long. We split this dataset
into training and evaluation datasets. Unlike the TRECVID
datasets, our Multimedia dataset contains various wipe types
with object-camera motion from recent years. We prepared a
ground-truth dataset and used it to evaluate the performance
of the proposed method.

C. PERFORMANCE EVALUATION CRITERIA
To illustrate the efficiency of our proposed WBSC method,
we compare the performance of our proposed method with
that of the existing methods using the following criteria:

Precision (P) = {Zc
/
(Zc + Zf )} × 100. (15)

Recall (R) = {Zc
/
(Zc + Zm)} × 100. (16)

F − Score (F1) = {2PR
/
(P+ R)} × 100. (17)

where Zc, Zf , and Zm represent the number of correctly
detected frames, number of falsely detected frames, and num-
ber of missed detected frames in the cut or wipe transitions,
respectively. Precision (P) and Recall (R) are the rates of false
positives and false negatives, respectively. P and R provide
higher values when false and miss detection rates are low.
The F − Score (F1) is a measure that considers both the P
and R values.

D. IMPLEMENTATION DETAILS
The proposed method is built on the deep learning I3DCNN
model, which uses GoogleNet and the optical flow algorithm
as two of the base subnetworks and MATLAB software
version R2021b. Our 3D-ConvNet has three channels, and
the optical flow has two channels. We found it helpful to
resize the video frames to 112 × 112 to preserve maximum
temporal information in the optical flow subnetwork. For
the 3D-ConvNet subnetwork, we resized the video frames
to 224 × 224. We set the mini-batch size to 10 video clips,
iteration to 500, the base learning rate to 1 × 10−4, and
the momentum to 0.9. All experiments are conducted on an
Nvidia Titan 1650i GPU with Intel(R) Core(TM) i7-10750H
CPU @ 2.60 GHz with a 64-bit operating system and MAT-
LAB software version R2021b.
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TABLE 2. Performance of the proposed method on cut SBD.

TABLE 3. Comparison of frameworks for cut SBD on the TRECVID dataset.

E. CUT SHOT BOUNDARY DETECTION
We evaluated the proposed method on three videos from
TRECVID 2001 dataset, three videos from the 2007 dataset,
and four videos from our Multimedia dataset. The value of
minimum peak prominence β is set to 4×10−6. The detection
accuracy of our proposed method on the TRECVID and
Multimedia datasets is presented in Table 2.

Here, n represent total number of frames in the cut transi-
tion, and (D1,D2, . . . ,M3,M4) represent the testing video
clips of the corresponding dataset.

To demonstrate the efficiency of our proposed method,
we compare the proposed algorithm with the blocked his-
togram and C3D-based method. The method comparison
results are shown in Table 3. By using appropriate eigen-
vector features from the first and second principal compo-
nents only, the dimensionality of the large input dataset is
reducedwith aminimal loss of information and extremely fast
computation.

Generating eigenvector feature matrices by PCA and
employing the threshold calculation strategies in our pro-
posed method reduces the rate of missed detection, thereby
providing a higher F1 value. Although the HSV color his-
togram feature-based method can provide a good precision
value, it suffers from more missed detections than the pro-
posed method. The C3D-based method uses CNN features
that can detect cut and gradual transitions simultaneously;
however, it suffers from false detections and requires a longer
computational time.

TABLE 4. Comparison of candidate frame selection frameworks.

Additionally, many research papers have proposed two
or multiple feature-based methods, such as SURF+HSV
[13] for cut shot boundary detection, which can ana-
lyze spatial and temporal information, resulting in a lower
false detection rate. In addition, many recent related works
have achieved higher precision (more than 96%), how-
ever wipe transitions have not been investigated in these
approaches [53], [54], [55], [56], [57]. Therefore, we propose
a candidate selection method that can increase the overall
accuracy of the proposed WSCD method, as illustrated in the
next subsection.

F. CANDIDATE FRAME SELECTION
The experiment in this subsection is conducted on segmented
shots or video clips to determine the possible location of wipe
scene changes. The main objective of candidate key frame
selection is to reduce the processing time during classification
in a neural network by feeding a smaller number of frames
while obtaining a higher scene change detection accuracy.
As the output from this experiment, we obtain segmented can-
didate video clips containing wipe in-motion or no-motion
transition key frames. References [10] and [48] evaluated
candidate key frame selection criteria based on the following
equation:

FRP = (Zseg
/
Ztot ) × 100. (18)

where Zseg and Ztot represent the total number of key frames
in the candidate segments and the total number of frames in
the video shot, respectively.

Hence, we compare the performance of our proposed
method with existing works [10], [48] using the FRP
measurements, as shown in Table 4. As the TRECVID
2001 dataset does not contain precise wipe transition effects,
we have compared it with the TRECVID 2007 dataset. Find-
ing the location of wipe scene changes requires temporal
information; hence, we found it helpful to segment the shots
into a 20-frame sliding window and track the slope angle
changes or fluctuations. Because of the velocity imbalance
between the wipe pattern transition and large-scale object-
camera motions, such as camera pan, zoom-in/out, and large

object transition motions, slope angles received higher
values than normal frame transition. Hence, we considered
positive values for the location of wipe scene changes. On the
other hand, we considered all the negative values of slope
angles as normal frame changes and only motion frame
changes, and therefore eliminated them from the candidates.
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TABLE 5. Dataset 1 distribution for I3DCNN.

TABLE 6. Dataset 2 distribution for CNN-LSTM.

Our combined edge feature and slope angle calculation
technique provide a higher wipe scene change detection accu-
racy with a lower FRP rate. Although reference [10] achieved
a lower FRP rate than our method, our specific aim is to detect
wipe scene changes that have unique characteristics com-
pared to other gradual transitions, and reference [10] did not
specifically mention detecting various wipe scene changes
in large-scale object-camera motion in the paper. However,
2-4 beginning and ending frames of wipe scene changes still
suffer from missed detections using our candidate selection
method. In addition, some object-camera motion frames that
have shapes that are similar to thewipe pattern changes obtain
positive slope angle values; hence, they are falsely detected
as wipe transitions. Therefore, we employed a dense temporal
feature extraction technique as described in subsection G.

G. WIPE SCENE CHANGE DETECTION IN
OBJECT-CAMERA MOTION
Experiments are conducted on the selected candidate window
clips. The dataset distribution for training and validation is
80:20. We prepared two sets of datasets: Dataset 1 for two-
stream I3DCNN classification and Dataset 2 for LSTM clas-
sification, as listed in Tables 5 and 6, respectively.

As we classify candidate sliding window clips into WIP
and WIM classes, we set a score threshold Ts = 0.80 to label
the final output. Any sliding window with a score lower than

TABLE 7. Performance of the proposed method on wipe transitions
detection.

TABLE 8. Performance of the proposed method on wipe patterns
detection.

Ts is considered as a nonwipe object-camera motion; hence,
it is not considered in the final output set. In the next step,
we classified detected wipe transitions in to 12 different pat-
terns by adding CNN-LSTM layers as our detection review
technique. Thus, our proposed system efficiently provides
higher accuracy with lower computational time, as shown in
Table 7 and Table 8. The improvement in the Precision(P)
and Recall(R) demonstrates reduced falsely detected wipe
transitions and reduced missed detected wipe transitions,
respectively. A good F1 rate represents the harmonic mean
of the P and R rates. Therefore, our proposed WSCD method
achieves promising results with a good balance of the P and
R rates.

To clarify the obtained results in Table 7 and Table 8,
a graphical representation of the training and validation accu-
racy with the loss is presented in Fig. 14, and confusion
matrices of the experimented dataset are depicted in Fig. 15.
These confusion matrices represent the number of correctly
and incorrectly detected wipe transitions and the patterns
of each class. Among the total number of test datasets,
1886 data points were actual wipe video clips, and the
rest were falsely detected as localized wipe transitions dur-
ing the candidate key-frame selection step because of large
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FIGURE 14. Representation of training and validation accuracy with loss.

FIGURE 15. Confusion matrix representation for the obtained results.

object-camera motion. As the final class output label, our
classifier correctly classified 1828 clips, and 58 windows
were incorrectly classified into WIP and WIM classes. From
these correctly classified video clips, we have randomly
selected 346 video clips and classified them into 12 types of
wipe patterns. A total of 311 clips were correctly classified
and 35 clips were incorrectly classified.

The proposed detection reviewing technique demonstrates
high performance for the wipe pattern classes ‘‘Horizon-
tal (Ho)’’ and ‘‘Vertical (Ve)’’, as indicated by the high-
est achieved F-1 rates. However, comparatively lower F-1
rates are observed in wipe pattern classes ‘‘Checker (Ch)’’
and ‘‘Irish (Ir)’’. Pattern similarity in long wipe transitions
increases false detection rate, as shown in Fig. 16.

FIGURE 16. Cases of false detection in wipe pattern classes.

TABLE 9. Comparison with different wipe detection techniques.

TABLE 10. Comparison with different gradual transition detection
techniques evaluated on the TRECVID dataset.

We compare our methods with existing techniques under
two conditions: first, it is compared with the existing tech-
niques that include wipe in-motion (WIM) and wipe no-
motion (WIP) detections, as shown in Table 9; second, it is
compared with the existing techniques that do not include
wipe detection but detect average gradual shot boundaries or
scene changes, as shown in Table 10.

Our deep motion feature extraction and detection review-
ing technique improves the motion wipe scene change detec-
tion accuracy by 11.9%. The pixel-border trajectory-based
method [15] and histogram feature [12] provide higher accu-
racy in wipe no-motion class detection only, but for large
object-camera motion, we need a high temporal feature.
In contrast, the Macroblock and SGOP-based (threshold
set 2) [16] methods extract temporal features; however, in the
case of large-scale object-camera motion, a good balance of
spatial and temporal features is lacking.

To address large-scale motion information, these meth-
ods need to be improved by very deep motion extraction
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methods, such as the two-stream I3DCNN. Our proposed
method improves the overall accuracy to 95.1% compared
to the existing related works. The TSSBD [14] method
detects cut SBD first and then detects other gradual scene
changes; however, their system processes all video frames,
which is time-consuming. The WHT-SBD method uses mul-
tifeature for wipe scene change detection; however, their
method also suffers from problems similar to TSSBD. The
STKP+SVM [10] method can also detect candidate frames
and has a lower FRP rate than our method; however, our
method can detect not only the locations but also the various
patterns of wipe scene changes.

VI. DISCUSSION
In our proposed WSCD scheme, the post- and preframe pair
interframe difference DE and Threshold T have a direct
impact on the candidate selection that locates potential wipe
transition segments. This process requires two steps: cut shot
boundary detection for video segmentation and candidate
frame extraction from segmented video clips for potential
wipe selection.

Initially, we selected the frame pair interframe difference
DE and minimum prominence β as cut shot boundary detec-
tion criteria, where β was set from 3 × 10−6 to 4 × 10−6.
All peaks higher than the range of β were considered cut shot
boundaries, as well as video segmentation regions. However,
many large object movements, and flash effects are in the
same β range as the cut shot boundary in the video, resulting
in missed detection. Therefore, the threshold T is carefully
adapted, and it is determined based on the correlation between
the preframes and postframes of cut shot boundaries. T is
set from –0.003 to +0.005; the peaks that have satisfied all
three parameters,DE , β, and T are considered cut shot bound-
aries; and unsatisfied peaks are discarded. Hence, setting all
three parameters can achieve significantly good precision
while maintaining good recall in cut shot boundary detection.
Thereafter, the videos are segmented into clips using the
detected cut shot boundaries.

Second, the process of candidate selection from segmented
video frames has a direct influence on wipe transition detec-
tion. The purpose of this process is to eliminate normal and
object-camera motion frames such as camera pan, zoom-
in/out, and large object movements from each segment of
a video, which has been one of the main limitations in
many alternative works, as discussed in the literature review
in Table 1. Therefore, we adapt the combined Canny edge
pixel value feature and linear regression-based mathematical
model for potential wipe localization, where the parameters
Ck and akq are the criteria to distinguish potential wipe
transitions from object-camera motions. To obtain sufficient
motion information, sliding windows are generated on each
video segment, and the length of each window is set to
20-frames. Thereafter, Canny edge feature information Ck is
extracted from eachwindow onwhich the slope angles akq are
calculated. According to the analysis of edge feature changes,
normal and object-cameramotion transitions are steadier than

TABLE 11. Comparison with recent techniques for gradual transition
detection evaluated on the TRECVID 2007 dataset (2018-2022).

wipe transitions; therefore, object-camera motions provide
more −akq values, whereas wipe transitions provide more
+akq values. All positive values of the slope angle +akq are
selected as our candidate segments, and thereafter only fed
these candidate frames into the classification step.

In this paper, we investigate our candidate frames selection
method using the FRP rate, which is proportional to the total
number of candidate frames Zseg and inversely proportional to
the total number of frames in segment Ztot . A lower FRP rate
indicates a better candidate selection method, and our method
achieves 2.4% lower FRP rate than the existing single-plane-
based method [48]. However, in some cases, the beginning
and ending 2-4 frames of a complete wipe transition are
miss detected as −akq due to small changes in the transition
pattern, and fast object-camera motion transitions are falsely
detected as +akq. Therefore, we classify our selected candi-
dates using an inflated very deep 3DCNN and dense optical
flow motion-based (I3DCNN) model into wipe no-motion
(WIP) and wipe in-motion (WIM) classes.

The performance of the classification step is highly depen-
dent on the training dataset. The traditional TRECVID
2007 dataset has a smaller number of wipe transition patterns.
Therefore, we used Multimedia dataset to train the network.
Our trained I3DCNN model is tested on the TRECVID
2007 dataset, and it achieves good recall and precision values
for both the WIP and WIM classes. To prove the efficiency
of our proposed scheme, we compare our results with recent
machine learning-based approaches on the TRECVID 2007
dataset, as shown in Table 11. Our proposed scheme effi-
ciently improves the precision, recall, and F1−score by 3.0%,
6.8%, and 4.6%, respectively, compared to recent alternative
works [14], [56].

We also investigate 12 different common wipe patterns
used in recent years by classifying the WIP and WIM clips
using the CNN-LSTM network. The purpose of this method
is to review detected WIP and WIM clips. However, in some
cases, the wipe transition in lengthy zoom-in/out (more than
50 frames) motion frames achieves low precision, which is a
limitation of our proposed method. Another limitation is that
fast illumination changes directly affect the cut shot boundary
detection method. These two problems can be solved using
histogram-based illumination change analysis and motion
pattern classification, which will be explored in our future
work.

In contrast, our proposed method shows a remarkable
improvement in wipe scene change detection in the presence

33096 VOLUME 11, 2023



D. Chakraborty et al.: Wipe Scene Change Detection in Object-Camera Motion

of several object-camera motions. Moreover, it reduces the
processing time by proposing a candidate frame selection
method and resolves motion sensitivity issues in existing
related works. Furthermore, the comparison results with the
existing alternative methods on the TRECVID 2001 and
TRECVID 2007 datasets show that our proposed method
provides high accuracy for the overall detection with the
interframe distance, the candidate selection method, and the
wipe in-motion or no-motion classification approach.

VII. CONCLUSION
Content-based video analysis is a challenging task for object-
camera motion-based videos in Multimedia applications.
With the extensive growth of digital video usage, various
object-camera motion-based complex video editing effects
are being widely broadcast for viewers’ attention.Wipe scene
change detection is therefore considered to be a highly impor-
tant preliminary step toward obtaining high-level content
analysis using low-level information.

Wipe transitions aremultipattern and arbitrary speed-based
gradual scene changing effect that often generates velocity
imbalance and pattern similarity confusion in the presence
of object-camera motion (camera pan, zoom-in/out, or large
object movement). Because of this, not only do existing
methods suffer from lower accuracy rates in wipe scene
change detection, but these transitions also make detecting
other scene change effects difficult. Moreover, conventional
methods have the limitations of high computation costs and
time.

Therefore, our proposed wipe scene change detection
method is designed to focus on detecting nonmotion and
object-camera motion-based wipe transitions by analyzing
velocity transition patterns. In addition, a candidate seg-
ment selection approach is implemented by observing inter-
frame distances to locate wipe transitions, aiming to process
fewer frames to minimize the computational cost. Our sys-
tem improves the wipe in-motion detection accuracy and the
overall detection accuracy by 11.9% and 7.45%, respectively.
Furthermore, a detection reviewing technique is performed
using various wipe shape pattern classifications to re-evaluate
our detection confidence.

The experimental results show that our proposed method
outperforms existing wipe scene change detection methods in
terms of various object-camera motion-based wipe transition
detection tasks and fast processing. To reduce the veloc-
ity imbalance and pattern similarity confusion, we obtain a
combination of spatial-motion feature-based patterns from
different motion activities. We also test two new types of
half-wipe patterns that can be easily confused with object
motion. Our conclusion is that lengthy zoom-in/out motion
transition frames and fast illumination changes are the current
limitations of our proposed method, which directly affect
the performance of the candidate frame selection method.
Therefore, our future work will focus on motion similarity
analysis under illumination changes to improve scene change
detection.
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