
Received 18 January 2023, accepted 14 March 2023, date of publication 29 March 2023, date of current version 3 April 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3263114

PPNNBP: A Third Party Privacy-Preserving
Neural Network With Back-Propagation Learning
NAWAL ALMUTAIRI 1, FRANS COENEN 2, AND KEITH DURES2
1Information Technology Department, College of Computer and Information Science, King Saud University, Riyadh 11451, Saudi Arabia
2Department of Computer Science, University of Liverpool, L69 3DR Liverpool, U.K.

Corresponding author: Nawal Almutairi (nawalmutairi@ksu.edu.sa)

This work was supported by the ‘‘Research Center of the Female Scientific and Medical Colleges,’’ Deanship of Scientific Research,
King Saud University.

ABSTRACT With the advances in machine learning techniques and the potency of cloud computing
there is an increasing adoption of third party cloud services for outsourcing training and prediction of
machine learning models. Although cloud-hosted machine learning services enable more efficient storage
and computation of data, privacy concerns and data sovereignty issues remain a major challenge. Privacy-
preserving machine learning provides a promising solution. In this paper, a privacy-preserving neural
network generation and utilization framework is presented, the PPNNBP framework. PPNNBP allowsmodel
training and prediction to be securely delegated to a third party with minimal data owner participation once
the input data have been encrypted without recourse to secret sharing or multiple party setting. This is
achieved using a proposed fully homomorphic encryption scheme, the Modified Liu Scheme (MLS), that
permits certain operations over cyphertexts and features order preservation. The PPNNBP framework using
MLS addresses the challenge of computational complexity of model learning using existing schemes; a
complexity caused by the increasing size of cyphertexts (cyphertext inflation) and the quantity of noise
introduced into cyphertexts through the application of multiplication operations, as learning progresses. Both
the PPNNBP framework and MLS are fully described and analysed. The reported evaluation demonstrates
that the PPNNBP framework achieves accuracy that is comparable to that obtained using a ‘‘standard’’
framework, whilst at the same time operating in a secure manner with minimal data owner participation.

INDEX TERMS Homomorphic encryption, secure machine learning as a service, secure neural network.

I. INTRODUCTION
The growth in public cloud service providers has encour-
aged the emergence of competitive services whereby cloud
providers sell their computing power. Recently, many efforts
have been directed at Machine Learning as a Service
(MLaaS), where cloud providers offer model training and
online prediction services to clients. MLaaS is currently pro-
vided by major organizations including Microsoft, Google,
and Amazon [1], [2], [3]. For example, Google cloud
Machine Learning (ML) engine allows data owners to upload
their data that is used to train model in Tensorflow envi-
ronment. Pre-trained models can be offered online, for any

The associate editor coordinating the review of this manuscript and

approving it for publication was Yu-Chi Chen .

user, to download and fine-tuning such as Inception, AlexNet,
and VGG [4], [5]. However, both of the aforementioned
outsourcing strategies require access to the raw data which is
often come with security concerns. There are various attacks
directed to risk data and ML models such as Model Inversion
Attack (MIA) [6], [7], [8]. These possible attacks demonstrate
that bothMLmodels and training datasets can be the target of
privacy attacks, leading to sensitive information leakage. This
problem tends to limit the take-up of MLaaS, especially in
fields where data disclosure is not only a commercial privacy
problem, but also a legal concern [9], [10]. There is thus
a requirement for techniques that provide rigorous privacy
guarantees to data owners, whereas providing the utility to
support MLaaS. This paper presents privacy-preserving Neu-
ral Network (NN) training and usage.

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 31657

https://orcid.org/0000-0001-6601-5668
https://orcid.org/0000-0003-1026-6649
https://orcid.org/0000-0002-5577-0016

N. Almutairi et al.: PPNNBP: A Third Party Privacy-Preserving Neural Network With Back-Propagation Learning

Data encryption can substantially guarantee data privacy,
but precludes any data manipulation. The introduction of
Fully Homomorphic Encryption (FHE) schemes, that feature
a number of mathematical operations that can be applied
directly to cyphertexts (without decryption), has offered a
potential means of achieving secure ML [11], [12], [13].
However, although FHE may address the privacy concerns
associated with the wide-scale adoption of MLaaS, it features
three principal disadvantages. The first, and most significant,
is the number of operations supported by FHE schemes,
typically limited to addition and multiplication, which in turn
means that more sophisticated operations, such as numeric
comparison, require data owner (or key holder) participation;
for many applications the amount of participation is substan-
tial [13], [14], [15]. The second disadvantage is that the size
of the cyphertexts increases exponentially with the applica-
tion of each multiplication operation, as a consequence of
which large amounts of ‘‘noise’’ are also introduced into
the cyphertexts. This is typically resolved, in many FHE
schemes, by some form of noise management techniques
such as bootstrapping, modulus switching, scale invariant and
flattering [11], [16]. These techniques, however, tend to be
complex [17], [18]. Recently, noise-free FHE schemes have
been proposed whereby noise management can be avoided by
allowing an arbitrarily large quantity of noise [19], [20].Most
of these schemes rely onmultivariate quadratic and univariate
high degree polynomial equation systems [21], [22]. The
multivariate and high degree polynomial equations, in noise-
free FHE schemes, have introduced a cypher inflation prob-
lem whereby the number of subcyphers used to encode a
plaintext increases exponentially with each multiplication.
This has raised problems concerning computational cost and
memory resource requirements [20]. The third disadvantage
is that the defined message space for most practical FHE
schemes is restricted to either the binary [23], [24], [25] or
positive integer space [26], [27], [28]. This means that the
direct encryption of real number values is not supported;
introduced solutions adversely affect the accuracy of any
learnt model [29], [30], [31], [32]. As a consequence of
these disadvantages, the potential of FHE in terms of secure
MLaaS, has not been fully realised.

The PPNNBP framework introduced in this paper is
directed at the secure training, and usage, of NN models
using only encrypted data, in a manner that avoids the disad-
vantages associated with existing FHE schemes as described
above. The framework achieves this by using a novel FHE
scheme, theModified Liu Scheme (MLS), founded on the Liu
homomorphic encryption Scheme (LS) [20]. The MLS main-
tains the noise-free feature of LS, whereas at the same time
providing a mechanism to address the cypher inflation prob-
lem that occurs after eachmultiplication operation as learning
progresses; thus addressing the computational/resources cost
problems. In addition, the MLS includes cyphertext order
preservation to allow secure data comparison, hence avoiding
data owner participation or recourse to complex data compar-
ison protocols [14], [33], [34]; the first FHE scheme to do so.

As in LS, MLS preserves the feature of directly encrypting
real numbers. The features of MLS can be used to implement
a variety of MLaaS services.

The main contribution of this paper is the PPNNBP frame-
work that can be used to securely generate NN models using
Back-Propagation (BP) learning. PPNNBP relies on a sin-
gle cloud server compared to other solutions which require
two [37], [38] or three [33] servers. The paper also proposes
a secure linear approximation of the nonlinear NN activation
function. The underlying reasons for selecting NN with BP
learning are as follows: (i) it is a more powerful learning algo-
rithm than (say) the linear regression and logistic regression
ML algorithms; and (ii) the BP learning method is a central
feature of more sophisticated Deep NN (DNN) and hence
the PPNNBP framework presented here ‘‘paves the way’’ to
privacy-preserving DNN. The PPNNBP framework therefore
allows for the secure training of NNs over encrypted data;
the training data, weights, biases and activation parameters
are all encrypted and only the learning rate and momen-
tum are given in plaintext form. Similarly, the usage of the
trained NN is conducted in an encrypted manner (both input
data and predicted output). The PPNNBP framework features
only minimal data owner participation during training and
usage. Unlike alternative frameworks [14], [17], [18], [35],
PPNNBP achieves an accuracy comparable with that of iden-
tical networks trained without encryption.

The rest of this paper is organized as follows. In Section II,
related works are reviewed. Section III outlines an attack
model. The peculiarities of the introducedMLS are presented
in Section IV. Section V proposes methods to approximate
sigmoid function as a low degree polynomial. Next, the exten-
sion of NN with BP learning to preserve privacy using the
MLS is discussed. Section VII is devoted to experimental
results and evaluation. Finally, some concluding remarks and
future work are given in Section VIII.

II. RELATED WORK
MLaaS over encrypted data has been investigated with the
respect to many ML algorithms. In the context of NN there
are two MLaaS variations; Training as a Service (TaaS) and
Prediction as a Service (PaaS). In TaaS, a cloud provider
sells services that allow data owners to upload their encrypted
data and receive a trained NN model [18], [33], [36], [37],
[38], [41]. For preserving data privacy, the trained model
weights, biases and intermediate calculations as activation
functions are encrypted. In PaaS, a pre-trained NN model
hosted by a cloud provider is monetised for labelling clients
instances in such a way that the data privacy preservation
is maintained for data instances, predicted labellings and
network model weights and biases [14], [17], [33], [35], [37],
[38]. The disadvantages of using FHE for both TaaS and
PaaS were highlighted in the introduction to this paper. In the
reminder of this section a number of solutions to address these
disadvantages are reviewed. Each offers a potential solution
but at a cost; costs addressed by the solution presented in this
paper.

31658 VOLUME 11, 2023

N. Almutairi et al.: PPNNBP: A Third Party Privacy-Preserving Neural Network With Back-Propagation Learning

From the literature it can be observed that the main focus
of recent work with the domain of secure MLaaS has been
directed at secure PaaS [14], [17], [33], [35], [37], [38].
In many cases the learning method was executed over
plaintext training data and the (unencrypted) trained model
was then used to provide PaaS [14], [35]. The challenge
was how to ‘‘feed-forward’’ a network with private client
instances (queries), and calculate the nonlinear activation
functions, without revealing the network’s weights and biases
to the client. The straight forward solution relied on Secure
Multi-Parity Computation (SMPC) [33], [37], [38] and FHE
scheme [14], [37]. Using this solution, the clients encrypt
their private data instances using an appropriate FHE scheme.
The PaaS provider uses the encrypted instances to feed a NN.
First the inner products between the encrypted data instance
and unencrypted weights of the first layer are computed and
then sends the encrypted inner products to the client. The
client decrypts the products, applies the nonlinear activation
function and encrypts the result before sending it back to
the PaaS provider who repeats the process for the remaining
layers. This approach addresses the complexity of evaluating
the activation function but introduces three major limitations:
(i) a significant and undesirable computational overhead on
behalf of the client, (ii) high latency and high bandwidth
usage, and (iii) undesirable disclosure of the network weights
and biases to the client. The last introduces a security con-
cern whereby a MIA [8] can be used to reveal confidential
aspects of the data originally used to train the model. The
research presented in [30] therefore suggested a mechanism
whereby the weights and biases could be obscured using a
Oblivious Transformation (OT) technique that added noises
before delegating the evaluation of activation functions to
the client. However, the solution had a similar communi-
cation/computation overhead as in the case of [14]. Secure
PaaS mechanisms that do not require recourse to clients,
as in the case of [14] and [30], typically work by using some
form of alternative activation functions that can operate in
encrypted form. A popular choice here is a quadratic acti-
vation function, f (x) = x2, that can be evaluated using FHE
properties as presented in [18], [35], and [39]. However, the
quadratic function results in accuracy loss [40]. Whatever
the case, the replacement of the activation function does not
address the substantial involvement of clients or data owners,
in PaaS or TaaS, as FHE schemes typically required the
execution of noise management techniques or required the
re-encrypting of cyphertexts when noise exceeds a prede-
termined level [17], [18], [35]; this is clearly undesirable.
To reduce the amount of time required to re-encrypt cypher-
texts (the principal communication overhead), the level of the
FHE scheme used can be increased [26]. However, this will
increase the size of the cyphertexts, and thus adversely reduce
the scheme multiplication efficiency [41]; this is clearly also
undesirable.

Secure TaaS using encrypted data has been considered
in [18], [36], [37], [38], [41], and [33]. Here the model

was trained using encrypted data, and encrypted network
weights and biases are generated. In [33], [37], and [38],
the learning was facilitated by: (i) splitting the training
data across non-colluding cloud servers who will jointly run
SMPC protocols; (ii) using secure inner product calculation
with respect to the multiplication of network weights and
training data features; and (iii) Yao’s comparison protocols
to evaluate comparisons. Two non-colluding cloud servers
are required with respect to the work presented in [37]
and [38], and three servers with respect to the work pre-
sented in [33]. However, this form of secure TaaS using
encrypted data has three major limitations: (i) the computa-
tional complexity of SMPC protocols, (ii) the requirement
for at least two non-colluding cloud servers, and (iii) the
high operating cost of utilizing multiple cloud servers. The
work in [41] presents several approaches for TaaS within
the practical limitations of existing Homomorphic Encryp-
tion (HE) schemes (without resorting to SMPC). The idea
was to replace computations with equivalent HE properties
and approximate well-established activation function. The
replacement of activation functions with quadratic function,
as in the case of PaaS, is not appropriate for TaaS as it features
‘‘unbounded derivation’’ that could result in unusual behavior
of the trained model [40]. The alternative is to approximate
established activation functions using a linear polynomial;
Chebyshev polynomials are used in [41] and [18] whereas
Taylor polynomials are used in [17] and [43]. Experiments
have demonstrated that higher degree polynomials give a
better approximation and thus a better replacement for estab-
lished activation functions. The Rectified Linear Unit (ReLU)
activation function was approximated in [17] by using degree
six polynomials and the sigmoid activation function using
degree three polynomials. However, the disadvantages of
using these approximation were: (i) when using higher degree
polynomials the polynomial coefficients become very small
(for example ×10−31), these are usually truncated to a small
number of digits because of technical limitations, which in
turn affects accuracy, (ii) the amount of noise addedwithin the
cyphertexts, after each homomorphic multiplication, makes
data owner (or client) participation mandatory to re-encrypt
cyphertexts when the noise exceeds a pre-defined level or
requires complex noise management techniques, and (iii) the
approximation requires the pre-analysis of the input data to
decide the appropriate intervals, their corresponding approx-
imation and their polynomial coefficients.

There are a limited number of frameworks that provide
both secure TaaS and secure PaaS, some of which are listed
in Table 1. The frameworks use a variety of cryptographic
methods to maintain data privacy, including the SMPC [33],
[37], [38], OT [37], [38], and the Leveled HE (LHE) scheme,
which supports additions and limited multiplications [37].
The following four limitations can be identified from these
frameworks: (i) the requirement to represent data using
fixed points instead of decimal values, requiring the use of
fixed arithmetic for operations such as replacing activation

VOLUME 11, 2023 31659

N. Almutairi et al.: PPNNBP: A Third Party Privacy-Preserving Neural Network With Back-Propagation Learning

TABLE 1. Comparison of the privacy-preserving frameworks that offer both TaaS and PaaS. DO: Data Owner and SGD: Stochastic Gradient Descent.

functions, (ii) the number of servers involved and thus the
associated security assumption, (iii) the requirement that data
owners participate, and (iv) the disclosure of intermediate
results. All secure frameworks, presented in [33], [37], and
[38], require multiple servers that rely on the Secret Sharing
(SS) to facilitate the secure NN learning. Regardless of the
specific role assigned to the servers, the trust model assumes
that the two servers are untrusted but do not collude; which is
often considered a security risk. The SS is used to reduce or in
some cases avoid data owner participation. This is achieved
by allowing multiple parties to collaboratively perform any
require operations on behalf of data owner which in turn
disclosure the intermediate results. In this paper, only one
cloud server is used to train the model without recourse to
SS or relying on unrealistic security assumption. For this
to be achieved, it requires more efficient encoding scheme
that allows for faster homomorphic computation and serve to
address FHE limitations. The MLS, described in detail later
in this paper, avoids the above disadvantages, and allows:
(i) unlimited homomorphic multiplications without the prob-
lem of cypher inflation and without recourse to some form
of noise management; (ii) PaaS over encrypted data without
involving any data owner participation, whilst the prediction
process is progressing; and (iii) a dramatic reduction of the
amount of data owner participation for TaaS whereas main-
taining model accuracy. As in the case of [33], [37], and [38]
frameworks, in PPNNBP the network topology is disclosed
to the server and the prediction result is only revealed to the
client.

III. ATTACK MODEL
In terms of attack model categorisation, the cloud provider
is assumed to be a passive adversary who follows the semi-
honest attack model. This means we assume that the NN
training and prediction algorithms will be honestly executed
(this is, after all, in the commercial interest of the provider),
but at the same time attempts may be made to learn addi-
tional information by analysing the encrypted data received or
encrypted intermediate data produced during the execution.
The potential attacks that can be directed at the PPNNBP

system are: (i) Cyphertext Only Attacks (COAs) and
(ii) MIA [8]. A COA is where an attacker only has access
to encrypted data. In the case of the PPNNBP system this
might be: the training data, client data instances, interme-
diate calculations, predicted labels and/or the trained model
weights and biases. In the case of MLS, a COAmight be used
to exploit the ordering feature of MLS cyphers and extract
statistical measures describing the frequency of distribution
patterns, that might then be used to identify the nature of
the plaintext values. However, this will only succeed if the
attacker has previous knowledge concerning the original data.
A MIA is where an attacker has access to the NN model
and is able to utilise PaaS with the intention of acquiring
information concerning the model’s behavior beyond simply
the prediction results. In this attack, and as noted in [8],
the attacker can exploit the predictions to reveal confidential
aspects of the data originally used to train the NN model.

IV. MODIFIED LIU SCHEME (MLS)
The MLS, utilised by the PPNNBP, is a new scheme that
modifies the original LS presented in [20]. The modifica-
tions incorporated into MLS had two primary objectives:
(i) addressing the cyphertext inflation problem that occurs
whenever homomorphic multiplication is applied using the
concept of trapdoors; and (ii) providing an ordering feature in
the generated cyphertexts so as to allow encrypted data com-
parison using what is referred to as the ω-concept, the idea of
including a ‘‘gap’’ between subcyphertexts so that different
cyphertexts can be generated for the same plaintext value
whereas data ordering is preserved (but not data equality).
MLS still retains the same characteristics and homomorphic
properties of the original LS, and thus is noise-free, and sup-
ports both addition (⊕) and multiplication (⊗) over cypher-
texts, and the multiplication of cyphertexts with plaintexts
values (⊛). Subtraction operation (⊖) can be implemented
using multiplication with plaintext value (⊛ -1) and additive
property (⊕). The message space and cyphertext space are as
defined for the original scheme; R and Rm respectively. This
means direct encryption of real values are supported. The
following subsections, Subsections IV-A to IV-E, present the

31660 VOLUME 11, 2023

N. Almutairi et al.: PPNNBP: A Third Party Privacy-Preserving Neural Network With Back-Propagation Learning

MLS scheme algorithms and processes for; key generation,
trapdoor calculation, data encryption/decryption and cypher
inflation prevention. Note that in the remainder of this paper
the cyphertext equivalent of a plaintext value x is given
by E(x) which, for simplicity, is written as x ′.

A. KEY GENERATION
The same Secret Key (SK) configuration as used in the
original LS is used in MLS, SK(m)= [(k1, s1, t1), . . . (km,sm,
tm)]. The difference is that the values for the k and s com-
ponents are split into two parts, a ‘‘secret key’’ and ‘‘shared
key’’. The secret part of the key is kept locally by the data
owner, whereas the shared part is used to calculate trapdoors
that allows the desired subcypher ‘‘dimensionality reduction’’
(addressing the cypher inflation problem as discussed fur-
ther in Subsections IV-B and IV-E below). The first step
required to generate the secret key is to randomly select val-
ues for SK(m) in such a way that the following conditions are
satisfied:

1) As in the case of LS, the number of subcyphertexts
generated by the MLS is m where m ⩾ 3.

2) km + sm + tm ̸= 0.
3) ki and si are positive integers (1 ⩽ i ⩽ m) and

the GCDs (Greatest Common Divisors) for ki and si
are > 1 and not equal to si or ki.

4) There exists only one element q (1 ⩽ q < m) such that
tq ̸= 0. This condition was introduced in [42] for facili-
tating secure data comparison in a secure k-Means data
clustering context. In MLS tq = (sq+kq)×ω, where ω

is the numeric gap between cyphertexts included so that
ordering is preserved. The ω value adopted was 10p,
selected to create a large gap that permits increasing
the number of cyphertexts that can be generated for the
same plaintext value (a nondeterministic feature).

The list of random numbers R = [r1, . . . , rm−1], used
for encryption purposes together with the secret key, are all
random nonzero positive numbers between 1 and ω; selected
in such a way that rq, corresponding to element q in the secret
key, is greater than all the remaining random values.

B. TRAPDOORS CALCULATION
Trapdoors, as noted above, are used for ‘‘dimensionality
reduction’’. There is one set of trapdoors, Trap = [trap1, . . . ,
trapm], associated with a single secret key, and there is a
one-to-one correspondence between the two. The last ele-
ment of the list, trapm, as will be demonstrated later, is of
particular significance and is designated as the kst value and
is calculated separately; thus for practical purposes Trap =

[trap1, . . . , trapm−1]. The process for producing Trap is given
by Algorithm 1. The algorithm commences by calculating
the GCD of the subkeys s and k to be retained locally by
the data owner (lines 2 and 3). The set Trap and the shared
sets, SharedS and SharedK, are then defined in lines 4 and 5
as sets of m − 1 elements. The set Trap holds the trapdoor
values, whilst SharedS and SharedK hold the shared part of

the secret key used to calculate the trapdoor values held in
Trap. The algorithm then loops from i = 1 to i = m − 1
(lines 6 to 9) to calculate the shared part of the key, SharedS
and SharedK, that are then used to calculate the trapdoors as
per the equations given in lines 7 to 9. The kst value is then
calculated as per equation in line 10. The algorithm exits with
Trap and the kst value (line 11).

Algorithm 1MLS Trapdoor Calculation
1: procedure TrapdoorsCalculation(SK(m))
2: secretS= GCD(s1, . . . , sm−1)
3: secretK= GCD(k1, . . . , km−1)
4: Declare Trap as a set of m− 1 elements
5: Declare SharedS and SharedK as set of m− 1

elements
6: for i = 1 to i = m− 1 do
7: sharedSi =

si
secretS ▷ sharedSi ∈ SharedS

8: sharedKi =
ki

secretK ▷ sharedKi ∈ SharedK
9: trapi =

sharedSi
sharedKi

▷ trapi ∈ Trap

10: kst = km + sm + tm
11: Exit with Trap and kst

C. ENCRYPTION
TheMLS encryption function uses SK(m) to convert a value x
to m subcyphertexts E(x) = {e1, . . . , em} following steps
very similar to those adopted in LS as shown in Algorithm 2.
The variable l, in line 8, is the cyphertext level counter,
the number of times that dimensionality reduction has been
applied to the cyphertext. There is no limit for the number
of levels supported by the MLS, however, the value of l
is required for decryption purposes (see Subsection IV-D
below). The MLS encryption function associated with the
conditions defined by the key generation conditions presented
in Subsection IV-A preserve the order of the plaintext value
in the qth subcypher (eq). The proof of correctness is given in
Appendix A.

Algorithm 2MLS Encryption
1: procedure Encrypt(x,SK(m))
2: Uniformly generatem−1 arbitrarily random

numbers R = {r1, . . . , rm−1}

3: Declare E as a list of m elements E = {e1, . . . , em}

4: e1 =
(k1×t1×x+s1+k1×(r1−rm−1))

s1
5: for i = 2 to i = m− 1 do
6: ei =

(ki×ti×x+si+ki×(ri−ri−1))
si

7: em = km + sm + tm
8: E .l = 0
9: Exit with E

D. DECRYPTION
The decryption function decodes a cyphertext E to its plain-
text equivalent x, following a process very similar to the

VOLUME 11, 2023 31661

N. Almutairi et al.: PPNNBP: A Third Party Privacy-Preserving Neural Network With Back-Propagation Learning

original LS, as shown byAlgorithm 3. The algorithm starts by
calculating the value for t (line 2). The algorithm then calcu-
lates the new subcyphertext value for each subcypher ei in E
once the dimensionality of the cyphertext has been reduced
(lines 3 to 5). This step is required to produce a correct
decryption. The level counter and secret part calculated in
Algorithm 1 are used to return a cyphertext value to its value
before performing dimensionality reductions. The algorithm
then calculates the s value, line 6, which is then used in
line 7, with SK(m) and t , to calculate the decoded value x.
The algorithm will exit in line 8 with the decoded (plaintext)
value.

Algorithm 3MLS Decryption
1: procedure Decrypt(E, SK(m), secretS, secretK)
2: t =

∑m−1
i=1 ti

3: if E .l ̸= 0 then
4: for i = 1 to i = m do
5: ei =

(ei×(secretSE .l/secretKE .l))
tE .l

6: s =
em

(km+sm+tm)

7: x =
(
∑m−1

i=1 ((ei×si)−(s×si))/ki)
t

8: Exit with x

E. SUBCYPHER DIMENSIONALITY REDUCTION
In MLS, as in LS, cyphertext multiplication is achieved by
determining the outer product of the two cyphertexts. Given
two plaintext values x1 and x2, these are encrypted using
MLS and SK(m), to give E1 = {e11 , . . . e1m} and E2 =

{e21 , . . . , e2m} respectively. The cyphertext multiplication
E1⊗E2 is implemented as: {e11 , . . . , e1m}⊗{e21 , . . . , e2m} =

{e11×e21 , . . . , e11×e2m , . . . , e1m×e21 , . . . , e1m×e2m}. There-
fore, for one multiplication the cyphertext size (dimensional-
ity) is increased from m to m2 and continues to exponentially
increase with each multiplication operation. This cyphertext
inflation, as noted earlier, causes a computational overhead
and also leads to a scalability problem. Using the MLS the
size of the generated cyphertext, after a multiplication oper-
ation, is ‘‘reduced’’ back to m using trapdoor information
that allows re-encryption of the cyphertext (without prior
decryption); this is the ‘‘dimensionality reduction’’ referred
to earlier.

Algorithm 4 presents the pseudo code for the dimension-
ality reduction process. The algorithm takes as inputs: (i) a
sequence of subcyphertexts E = {e1, . . . ,em2}, (ii) a set
of trapdoors Trap, and (iii) the kst value. The algorithm
commences (line 2) by declaring a reduced cyphertext list
RE of length m. Next, an index j for the cyphertext set E
and an index z for the reduced cyphertext RE are declared
and initialised (line 3). The algorithm then loops through
m2 subcyphertexts in E (lines 4 to 12). Each iteration com-
mences (line 5) with the creation of a temporary cypher-
text, Temp′, made up of m subcyphertexts in E started by
jth index. The mth subcyphertext in Temp′ and the trapdoor
value kst are used to calculate the value for the parameter s′

(line 6). The algorithm then (line 7) defines the variable
subCypher in which to hold the current subcyphertext value
once calculated. Next, the algorithm loops through Temp′

(lines 8 to 10) and determines the new subcyphertext value
and, on completion, appends it to the list RE which holds
the cyphertexts as calculated so far. The new subcyphertext
values are calculated using the FHE properties of the MLS
scheme; addition ⊕, subtraction ⊖ and multiplication ⊛.
The values of indexes, z and j, are then updated in line 12.
Next, line 13, the cypher level counter is incremented by
one, E .l + 1. At the end of the process the newly calculated
cyphertext, of lengthm, is returned (line 14). In the remainder
of this paper the multiplication of two cyphertexts, followed
by dimensionality reduction, is indicated using the opera-
tor

⊗
; whereas multiplying a cyphertext with a plaintext

value is indicated using the operator ⊛. The correctness of
dimensionality reduction algorithm (Algorithm 4) is given in
Appendix A.

Algorithm 4 Dimensionality Reduction Process
1: procedure DimReduction(E, Trap,kst)
2: Declare RE as a list of m elements
3: j = 1, z = 1
4: while j < m2 do
5: Temp′

= Copy subcyphertext in E started by jth
index of length m

6: s′ = temp′
m ⊛ 1

kst ▷ temp′
m ∈ Temp′

7: subCypher= 0
8: for i = 1 to i = m− 1 do
9: t′ = temp′

i ⊖ s′⊛ trapi ▷ trapi ∈ Trap
10: subCypher=subCypher ⊕t ′

11: rez = subCypher ▷ rez ∈ RE
12: z = z+ 1, j = j+ m
13: RE.l = E .l + 1
14: Exit with RE

V. POLYNOMIAL APPROXIMATION OF ACTIVATION
FUNCTION
The sigmoid activation function, given in (1), is a nonlinear
function that can not be directly computed using the math-
ematical properties of FHE schemes [17], [18], [35], [36],
[37]. The operation of the sigmoid activation function can
be approximated, up to a certain accuracy, using a poly-
nomial approximation method that uses: (i) Taylor series
expansions [17], [43], (ii) Chebyshev polynomials [18], [41],
and (iii) Maclaurin series expansions [44]. In practice, this
approximation needs to be done using a high degree polyno-
mial for accurate results to be obtained. This in turn increases
the number of HE multiplications, the amount of noise, and
the size of the cyphertexts. In this paper, two sigmoid approx-
imations are utilised, the proposed TaylorLinear (ϕ) and
FriendlyFunction (φ) as presented in [37]. With respect to the
PPNNBP, TaylorLinear approximation was used for training
the PPNNBP (TaaS), with limited data owner participation,

31662 VOLUME 11, 2023

N. Almutairi et al.: PPNNBP: A Third Party Privacy-Preserving Neural Network With Back-Propagation Learning

FIGURE 1. Comparison of the FriendlyFunction (φ) and TaylorLinear (ϕ) approximations and their error of approximation compared to the sigmoid
function.

and the FriendlyFunction to provide query classification once
the NN had been trained (PaaS).

sigmoid(x) =
1

1 + e−x
(1)

The TaylorLinear approximation offers the advantage that
it maintains accepted accuracy levels and can be implemented
using MLS with very limited data owner participation. The
Taylor series expansion is used to linearly approximate the
e−x term, which is a part of the sigmoid activation function as
in (1). The e−x term is approximated as per (2) where d is the
degree of polynomial selected by the data owner according
to the required level of accuracy. Using these parameters
TaylorLinear approximates sigmoid, ϕ(x ′) where x ′ is MLS
cyphertext, as follows:

1) Using FHE properties of MLS, the cloud service
provider calculates the Taylor approximation 1 + e|x

′
|

using the Taylor polynomial given in (3) where d repre-
sents the degree of the function as selected by the data
owner according to the required accuracy set against
execution time (there is an inverse trade-off).

2) The data owner performs the ‘‘inversion’’ of value 1+

e|x
′
| to arrive at the approximated value 1

1+e|x′|
.

3) If x ′ ⩾ E(0) the cloud service provider will calculate
the activation function as 1 −

1
1+e|x′ |

. Otherwise the
activation function is as approximated in step 2.

e−x = 1 − x +
x2

2!
−
x3

3!
+ · · · +

(−1)dxd

d !
(2)

1 ⊕ (1 ⊕ x ′
⊕

1
2!

⊛ (x ′
⊗

x ′) ⊕
1
3!

⊛ (x ′
⊗

x ′
⊗

x ′)

⊕ · · · ⊕
1
d !

⊛ (x ′
⊗

. . .
⊗

x ′)) (3)

The absolute value of x ′, |x ′
|, used in step 1 is calcu-

lated by multiplying x ′ with −1, using ⊛, when cypher x ′

is less than the MLS cyphertext of zero. The comparison
of x ′ with zero (in step 3) is conducted, using the MLS
properties, by comparing the qth subcyphertext of x ′ with
qth subcyphertext of zero encrypted. Step 3 also relies on
a mathematical rule associated with the sigmoid function
that allows the calculation of sigmoid(x) and sigmoid(−x)
as per equation sigmoid(−x) = 1−sigmoid(x). The Taylor-
Linear requires some data owner participation; but this par-
ticipation is minimal compared with alternative approaches
such as those given in [17] and [41] as described earlier
in Section II.
A secure activation function is also required in the context

of the provision of PaaS. TaylorLinear can again be used
for this purpose. Alternatively FriendlyFunction (φ) linear
approximation, as considered in [37], may be used. This
offers the advantage, using the MLS, that it can operate over
encrypted data without any data owner participation. The
FriendlyFunction is a piecewise-linear approximation that
returns 0 when x < −0.5, 1 when x > 0.5 and x + 0.5 when
−0.5 ⩽ x ⩽ 0.5. However, it is not as accurate as Taylor-
Linear. Fig. 1, (a) and (c), shows a comparison of sigmoid
activation and its approximation using FriendlyFunction and
TaylorLinear with a range of values for d , d = {3; 5; 7}
and different values for the input x. The symbol ϕd is used
to refer to the TaylorLinear approximation function where
d is the degree of polynomial. The figure also shows the
error (δ) associated with the approximations; calculated as
the difference between the sigmoid function and the approx-
imated functions. The experiments show that the error of
TaylorLinear when d = 3 is δ ∈ [−0.024; 0.024], greater
than when d = 5 and d = 7, δ ∈ [−0.0048; 0.0048] and
δ ∈ [−0.0010; 0.0010] respectively. The FriendlyFunction
provides the worst case; δ ∈ [−0.40; 0.40]. Therefore, the
TaylorLinear approximation provides a better fit with the
sigmoid function than FriendlyFunction approximation and

VOLUME 11, 2023 31663

N. Almutairi et al.: PPNNBP: A Third Party Privacy-Preserving Neural Network With Back-Propagation Learning

thus may provide better TaaS and PaaS (although TaylorLin-
ear requires some user participation).Moreover, TaylorLinear
approximation presented in this paper can be used to obtain
efficient protocols to trainMLmodels that require calculation
of sigmoid activation function.

VI. PRIVACY-PRESERVING BACK-PROPAGATION
The PPNNBP approach comprises a multilayer feed-forward
network with BP learning which is both trained and used
over encrypted data. The privacy-preserving TaaS (PPTaaS) is
given in Algorithm 5 that calls Algorithms 6 for feed-forward
and Algorithms 7 for BP. The notation used is presented in
Table 2. The inputs for PPTaas are: (i) a set of encrypted
training records D′

= {r ′

1, . . . , r
′
n}, each record r ′

i features
a set of a attributes {r ′

i,1, . . . , r
′
i,a}; (ii) a maximum number of

epochs, maxEpoch; (iii) a learning rate η; (iv) a momentum
µ; (v) a set of encrypted target class (data) labels T ′

=

{t ′1, . . . , t
′
n} corresponding to the records inD

′, each featuring
c binary attributes t ′i = {t ′i,1, . . . , t ′i,c}, where c is the
number of classes, and only one attribute has the cyphertext
of 1 indicating the class for the record r ′

i ∈ D′; (vi) an input-
hidden-output network topology defined by L = {l1, . . . , lb}
where l1 is always equals to number of attributes in dataset
and lb is equals to number of class labels, (vii) a threshold
error ϵ′, and (viii) a d value for ϕ approximation; this will not
be required if using φ approximation. The training dataD′, set
of class labels T ′ and the error threshold ϵ′ are all encrypted
using the MLS. The outputs consist of weightsW ′ and biases
2′ encoded in MLS for the network described by L.

Algorithm 5 Privacy-Preserving Training as a Service
(PPTaaS)
1: procedure PPTaaS(D′, maxEpoch, η, µ, T ′, L, ϵ′, d)
2: InitializeW ′ and2′ randomly and encrypt values

using MLS
3: Initialize 1W ′=Encrypt(0) and 12′=Encrypt(0)
4: δ′=Encrypt(0)
5: for epoch = 1 to epoch = maxEpoch do
6: for s = 1 to s = n do
7: Y ′=PPFF(r ′

s, L, d , W
′, 2′) ▷ Algorithm 6

8: δ′,W ′,θ ′=PPBP(Y ′,t ′s,L,δ
′,W ′,2′)

▷ Algorithm 7

9: δ′
=

1
2 × n

⊛ δ′

10: if δ′ < ϵ′ then
11: Exit with W ′ and 2′

12: Exit with W ′ and 2′

As in the case of standard training using BP learning [45],
the privacy-preserving TaaS with BP learning is composed
of two stages: (i) Privacy-Preserving Feed-Forward (PPFF)
and (ii) Privacy-Preserving BP (PPBP). The algorithm com-
mences, line 2, by defining the encrypted sets W ′ and 2′

and initialising them with random values; and then, line 3,
defines the encrypted gradient of the loss with respect to the
weights (1W ′) and gradient of the loss with respect to the

Algorithm 6 Privacy-Preserving Feed-Forward (PPFF)
1: procedure PPFF(r ′, L, d , W ′, 2′)
2: for i = 1 to i = l1 do
3: y′ 1i = r ′

i

4: for j = 2 to j = |L| do
5: for i = 1 to i = lj do
6: v′ = (w′ j−1

1 i
⊗

y′ j−1
1) ⊕

· · · ⊕ (w′ j−1
lj−1 i

⊗
y′ j−1
lj−1

)

7: y′ ji = ϕd (v′ ⊕ θ
′ j
i)

8: Exit with Y ′

Algorithm 7 Privacy-Preserving BP (PPBP)
1: procedure PPBP(Y ′,t ′s,L,δ

′,W ′,2′)
2: one′=Encrypt(1)
3: for i = 1 to i = lb do ▷ lb: # of neurons in output

layer
4: e′ = (y′ bi ⊖ t ′s,i)
5: δ

′ b
i = e′

⊗
(y′ bi

⊗
(one′

⊖ y′ bi))

6: for j = |L| − 1 to j = 2 do
7: for i = 1 to i = lj do ▷ lj: # of neurons in layer j
8: δ

′ j
i = y′ ji

⊗
(one′

⊖y′ ji)
⊗

[(w′ j
i 1

⊗
δ
′ j+1
1)⊕

· · · ⊕ (w′ j
i lj+1

⊗
δ
′ j+1
lj+1

)]

9: for j = |L| − 1 to j = 2 do
10: for i = 1 to i = lj do
11: 1θ

′ j
i = (η ⊛ δ

′ j
i) ⊕ (µ ⊛ 1θ

′ j
i)

12: θ
′ j
i = θ

′ j
i ⊕ 1θ

′ j
i

13: for k = 1 to k = lj−1 do
14: 1w′ j

i k = (η⊛δ
′ j
i

⊗
y′ j−1
k)⊕(µ⊛1w′ j

i k)
15: w′ j

i k = w′ j
i k ⊕ 1w′ j

i k

16: Error ′
= [(y′ b1 ⊖ t ′s,1)

⊗
(y′ b1 ⊖ t ′s,1)] ⊕

· · · ⊕ [(y′ bc ⊖ t ′s,c)
⊗

(y′ bc ⊖ t ′s,c)]
17: δ′

= δ′
⊕ Error ′

18: Exit with δ′,W ′,θ ′

biases (12′) and initialising them with the value 0 encrypted
using MLS. In line 4 the overall error value so far (the overall
loss function), δ′, is then defined and initialised with theMLS
encrypted equivalent of zero. The training is then commenced
(lines 5 to 11), the algorithm iterates until the specified max-
imum number of epochs is reached (maxEpoch), or the error
δ′ value becomes less than the error threshold ϵ′. On each
iteration each sample in the encrypted dataset, r ′

s ∈ D′, is pro-
cessed in turn (lines 6 to 8) through calling PPFF and then
PPBP. PPFF algorithm returns a set of encrypted outputs, Y ′,
for all neurons in NN as specified in topology L. The PPBP
takes the resulting output from PPFF (Y ′), encrypted target
label t ′s, encrypted weights and bias (W ′ and θ ′), topology L
and error so far δ′ as inputs and returns updated error, weights
and bias (line 8). As the BP is derived by assuming that it is
desirable to minimise the error on the output neurons over all
the samples presented to NN, the error δ′ is calculated as an

31664 VOLUME 11, 2023

N. Almutairi et al.: PPNNBP: A Third Party Privacy-Preserving Neural Network With Back-Propagation Learning

TABLE 2. Notation used in Algorithms 5, 6 and 7.

average overall sample (equation in line 9). The overall error
will then be compared with the threshold ϵ′ in line 10.
The PPFF process is given in Algorithm 6, the inputs are

current encrypted data sample r ′, network topology L, degree
of polynomial to approximate sigmoid d , set of encrypted
weights W ′ and biases 2′. In the PPFF, the input data sam-
ple r ′ is applied to the input layer and its effect is propa-
gated, layer by layer, through the network until an output
is produced. Therefore, the output of input layer neurons
(y′ 1i ∀ neuron i ∈ l1) is matched to the attribute values in a
current training sample r ′ (lines 2 and 3); recall the l1 in line 2
is the number of attributes in the attribute set (the number
of values in each record and thus the number of neurons in
the input layer). The remaining layers, the hidden layers and
the output layer, the input of each neuron is calculated as the
weighted sum by multiplying the output of neurons in the
previous layer with the weights connecting the two layers of
neurons (lines 4 to 6). To decide whether a neuron fires or not,
the input is passed onto an appropriate activation function.
In PPFF, the TaylorLinear approximation of the sigmoid func-
tion with degree d , ϕd given in Section V, is used. The result
from ϕd determines the neuron output that becomes the input
for the neuron in the next connected to it (line 7). The PPFF
calculationswere performed using additive andmultiplicative
MLS properties. Tomanage the growth of cyphertexts dimen-
sionality reduction was performed after each multiplication.
The PPFF algorithm will exit with a set of neuron output Y ′

in line 8.
The PPBP is given in Algorithm 7. At the PPBP stage,

the network weights and biases are adjusted to minimise the
error function. With respect to the PPNNBP the BP used
the pattern mode, or what is also sometimes referred to as
the online method, where the weights and bias updates are
applied after the presentation of each training sample. The
inputs are the set of current neurons output Y ′, expected class
label t ′s, network topology L, the overall error value δ′ and
set of encrypted weights W ′ and biases 2′. The algorithm

starts by defining the variable one′ that will be initialised with
the MLS encrypted equivalent of 1 (line 2). A loop is then
commenced with calculating the error for each neuron in the
output layer (layer b). In standard BP, the error for neuron i
in the output layer is calculated by comparing the expected
output with the actual network output value as per (4) where
y i(1 − y i) is the derivative of the sigmoid function. This is
computed in a secure manner in lines 3 to 5 over encrypted
data using MLS properties. Since all the hidden neurons
have, to some degree, contributed to the errors evident in the
output layer, the encrypted output errors, δ′b

i , are transmitted
backwards from the output layer to each neuron in the hidden
layer that immediately contributed to the output layer. This
process is then repeated layer by layer until each neuron in
the network has received an error that describes its relative
contribution to the overall error. The errors for neurons in the
hidden layers are calculated in lines 6 to 8 starting with the
layer immediately preceding the output layer (the |L| − 1th
layer).

δ b
i = (y i − t i) × (y i × (1 − y i)) (4)

Once the error for each neuron has been determined, the
errors are then used by the neurons to update the values for
each weight and biase as per the equations in lines 11, 12,
14 and 15. As illustrated in Table 2, 12′j

i is the change in
the bias of the neuron i in layer j, 1w′j

i k is the change in
the weight between neurons i and k that connect layer j and
following layer (j+1), and η is the learning rate. To accelerate
the learning process momentum (µ) is used to encourage the
changes to continue in the same direction with larger steps.
As the iterative process of incremental adjustment continues,
the weights and biases will gradually converge to a locally
optimal set of values that minimise the loss function; in the
best case scenario globally optimal values will be reached.

VII. EXPERIMENTAL EVALUATION
This section presents the evaluation and analysis of the
MLS and PPNNBP using synthetic datasets and benchmark
datasets taken from the UCI data repository [46]. The syn-
thetic datasets were used to evaluate the MLS performance,
whereas the UCI datasets (listed in Table 3) were used to
evaluate the PPNNBP process. Both MLS and PPNNBP
were implemented in the Java programming language. Java
Remote Method Invocation (RMI) technology was devel-
oped to similate the client-server that both run on the same
PC [47]. The PC on which the experiments were conducted
was equipped with macOS High Sierra operating system,
8 GB memory and 3.8 GHz Intel Core i5 CPU. The exper-
iments were conducted using Ten Cross Validation (TCV);
the results presented in the following subsections are there-
fore average values. Minmax data normalization was applied
to the dataset. Table 3 also lists the number of records
and attributes in each dataset, the network (input-hidden-
output layer) topology, the learning rate η, and momentum
µ parameter settings that were used for the experimentation.
The number of epochs was fixed at maxEpoch = 100 in all

VOLUME 11, 2023 31665

N. Almutairi et al.: PPNNBP: A Third Party Privacy-Preserving Neural Network With Back-Propagation Learning

cases. The NN weights and biases were initialised randomly
from the range [−0.4, 0.4]. In practice these parameter set-
tings would be pre-defined by the data owner. The PPNNBP
was trained using the TaylorLinear with d = 3 (ϕ3). In the
prediction stage the ϕ3 and FriendlyFunction (φ) were used.

TABLE 3. Experiment datasets and neural network parameters (n: number
of samples, a number of attributes, η learning rate, and µ momentum).

The objectives of the evaluation were to analyse: (i) the
operation of the MLS, (ii) the PPNNBP in terms of the
complexity of data owner participation, (iii) the computa-
tional overhead of PPNNBP in comparison with standard NN
(PPNNBP efficiency), (iv) the effectiveness of the approach
(PPNNBP accuracy), (v) the overall security, and (vi) com-
pare PPNNBP with state-of-the-art frameworks. Each is dis-
cussed in further detail in the following six subsections,
Subsections VII-A to VII-F.

A. MLS PERFORMANCE EVALUATION
In this subsection the MLS evaluation is presented. MLS
was evaluated by analysing the performance of the various
supported MLS operations. Performance was measured in
terms of the runtime required to: (i) generate the MLS key,
(ii) encrypt data, (iii) decrypt data, (iv) utilise the FHE
mathematical properties (⊕,

⊗
,⊛), and (v) secure compar-

ison. In the experiments the number of subcyphertexts (m)
considered was m = {3, 9, 15}. The recorded runtimes to
generate the MLS key were 1.16 ms, 1.37 ms and 1.44 ms
for m = 3, 9 and 15 respectively. These results demonstrated
that the runtimes for generating the MLS keys increased with
the number of subcyphertexts m, the number of elements in
the secret key list SK(m), this was to be expected.

The performance associated with MLS encryption and
decryption, the HE mathematical properties (⊕,

⊗
and ⊛)

and order preserving properties, were also measured in terms
of the required runtime to perform the operations in the
context of different sizes of data records and the different
numbers of subcyphertexts featured in MLS. The results are
presented in Fig. 2. The data encryption, decryption and
the homomorphic operations featured ‘‘linear’’ processing
time in relation to the size of the data and the number of

subcyphertexts m. However, the runtimes were negligible;
using MLS a record with 1, 000 attributes can be encrypted
in 0.85 ms when m = 15, and decrypted in 0.52 ms. The HE
mathematical properties (⊕,

⊗
and ⊛) were more expensive,

in terms of runtime, than encryption and decryption although
the multiplication (

⊗
) runtime was much higher than the

addition because of dimensionality reduction. The runtime
associated with the HE mathematical operations increased
with the number of attributes featured in the data, and the
number of subcyphertexts in the MLS. However, the times
reported, as shown in Fig. 2, were again negligible. The
secure comparison of two MLS cyphertexts can be achieved
by comparing the qth subcyphertexts, therefore, regardless of
the number of subcyphertexts (the value of m) the recorded
data comparison runtime was constant at 0.2 ms.

B. DATA OWNER PARTICIPATION
This subsection considers the amount of data owner partici-
pation required to: (i) prepare the data prior to network gen-
eration, (ii) train the network using the PPNNBP framework,
and (iii) predict class label using PaaS. The results for data
owner preparations are presented in Table 4. The data prepa-
ration comprised: Minmax data normalization (column 2);
data encryption, excluding MLS key generation and trapdoor
calculation (column 3); and preparation of the training and
testing samples to facilitate stratified CV (column 4). Inspec-
tion of the table shows that the data owner participation in
preparing the data for network generation was negligible,
and did not introduce any overhead on behalf of the data
owner. The largest dataset, in terms of number of samples and
attributes, ‘‘Libras Move’’ only required, on average, 3.86 ms
for data normalisation, 3.84ms for encryption and 6.98ms for
stratified CV data preparation.

The data owner participation with respect to network train-
ing is given in column 8 of Table 4, measured in terms of the
average runtime over all ten of the TCV folds. Recall that data
owner involvement in the model training is limited to divi-
sion (inversion) operations with respect to the TaylorLinear
approximation of the sigmoid activation function (whenever
it is encountered). It is possible to implement PaaS using two
different methods, TaylorLinear and FriendlyFunction, which
differ in how activation functions are approximated and how
much data owners are involved. TaylorLinear approximation
requires data owner participation. As in the case of training
the model; the time complexity for data owner participation
using TaylorLinear will be in the order of O(

∑i=b
i=1 li); the

number of neurons in NN. Data owners will decrypt approx-
imate activation function values, reverse the values, encrypt
the results, and send them to the cloud. The data owner par-
ticipation for PaaS was evaluated using the ‘‘Libras Move’’
dataset because this was associated with the largest number
of neurons in the generated network (see Table 3). Predicting
the label for one query record in the ‘‘Libras Move’’ dataset,
using a network topology of {90; 10; 15} was 0.14 ms. Note
that FriendlyFunction approximation can be entirely con-
ducted using the homomorphic operations facilitated by the

31666 VOLUME 11, 2023

N. Almutairi et al.: PPNNBP: A Third Party Privacy-Preserving Neural Network With Back-Propagation Learning

FIGURE 2. The MLS performance evaluation for different value of m and different numbers of attributes in a record. The runtime values were
averaged over 10 folds of TCV.

MLS properties, therefore no data owner participation was
required.

C. PPNNBP EFFICIENCY
The total runtime for training each network using PPNNBP
is given in column 6 of Table 4. Column 5 gives the runtime
to train the same network without using any encryption.
Note that the runtimes given in column 6 are in seconds
(s), whilst those given in column 5 are in milliseconds (ms).
As expected, training a NN over encrypted data introduces
a computational overhead. The difference is due to the com-
putation complexity of the FHE mathematical properties and
the linear approximation of the sigmoid function using Tay-
lorLinear. However, it is argued here, that this is not an unac-
ceptable overhead, even for the largest dataset, the ‘‘Libras
Move’’ dataset, the network was trained in 873.85 s.

Further experiments were conducted using a single
machine to investigate the computational overhead associated
with using a trained PPNNBP to provide PaaS, as compared
to standardNN (over plaintext neural parameters). The results
indicated that the runtimewas negligible. The ‘‘LibrasMove’’
dataset was again considered in this respect as it had the
largest number of neurons in the NN topology and the largest
number of class labels (see Table 3). Using TaylorLinear
approximation, where d = 3, 1, 641, 256 predictions could
be made per hour. In contrast, when using FriendlyFunction
approximation 4, 143, 012 predictions could be made per
hour. The use of standard NN coupled with the standard
sigmoid function allows 655, 463, 103 predictions to bemade
every hour. Therefore, it can be concluded that the standard
NN is more efficient than the PPNNBP using TaylorLinear
and FriendlyFunction, although FriendlyFunction is more
efficient than the linear approximation using TaylorLinear.

D. PPNNBP ACCURACY
The classification accuracy obtained using standard NN over
unseen data samples was compared with the accuracy of
the PPNNBP approach using both TaylorLinear and Friend-
lyFunction approximation and the same network topology
and parameters. The intuition was that the PPNNBP should
produce comparable results to those obtained using the stan-
dard NN; if so the PPNNBP could be said to be operating
correctly. The accuracy evaluation metrics were: (i) Precision
(P), Recall (R), the F1 measure and accuracy (Acc) [48],
and (ii) the value of the loss function calculated for different
numbers of epochs in TaaS. To provide a precise and fair
comparison, the performance measures were calculated over
the same test set for all activation functions (sigmoid, ϕ,
and φ). This approach was previously used in [41] and [49]
for comparing performances of different activation functions.

Table 5 shows the P, R, F1, and Acc values obtained when
using the standard and PPNNBP frameworks. From the table
it can be seen that:

P: For ten of the datasets considered the precision
(P) values obtained for all three approaches were
more-or-less equal. For the remaining four cases,
‘‘Blood Trans’’, ‘‘Leafs’’, ‘‘Lenses’’, and ‘‘Libras
Move’’, the values obtained using TaylorLinear
were comparable with the standard approach and
equal to it in ‘‘Lenses’’; whilst using Friendly
Function the precision values obtainedwere slightly
lower.

R: Recall (R) values were similar in nine cases.
In the remaining five cases, two cases, ‘‘Breast
Tissue’’ and ‘‘Libras Move’’, the TaylorLinear
produced comparable results to sigmoid, whilst
FriendlyFunction produced slightly lower values.

VOLUME 11, 2023 31667

N. Almutairi et al.: PPNNBP: A Third Party Privacy-Preserving Neural Network With Back-Propagation Learning

TABLE 4. Runtime for data owner data preparation and network training operating statistics.

The ‘‘Lenses’’ produced the same result as sigmoid
whilst the result was comparable using Friendly-
Function. In the case of the ‘‘Blood Trans’’ dataset,
the recall values obtained using TaylorLinear and
the sigmoid function were identical, however the
value obtained using FriendlyFunction was slightly
higher. In the case of the ’’Leafs, FriendlyFunction
is lower than sigmoid and TaylorLinear.

F1: With respect to the F1 values obtained, these were
comparable in ten cases; whereas in one case,
‘‘Breast Tissue’’, TaylorLinear and FriendlyFunc-
tion produced identical values slightly lower than
the sigmoid function. In the remaining cases,
‘‘Leafs’’, ‘‘Lenses’’, and ‘‘Libras Move’’, the Tay-
lorLinear was equal to sigmoid function in the case
of ‘‘Lenses’’, higher in the case of ‘‘Libras Move’’
and comparable to the sigmoid function in ‘‘Leafs’’
whilst FriendlyFunction was slightly lower in all
cases.

Acc: In terms of accuracy (Acc), in six datasets the
values obtained for the TaylorLinear approach were
exactly the same as the sigmoid approach. Three
of these cases were also same as FriendlyFunc-
tion approach; ‘‘Banknote Auth.’’, ‘‘Breast Can-
cer’’, and ‘‘Chronic Kidney’’. For ‘‘Dermatology’’,
‘‘Iris’’, ‘‘Libras Move’’, and ‘‘Parkinsons’’ the Acc
obtained using TaylorLinear were slightly higher
than the sigmoid approach whilst FriendlyFunction
produced the same Acc as sigmoid in the case of
‘‘Dermatology’’ and ‘‘Iris’’ and less than sigmoid in
the remaining cases. In ‘‘Breadth Tissue’’, ‘‘Ecoli’’,
and ‘‘Leafs’’, TaylorLinear obtained comparable
Acc to sigmoid and less to the FriendlyFunction.
In ‘‘PimaDisease’’ TaylorLinear and FriendlyFunc-
tion produced same results lower than the sigmoid
approach.

The overall average values for precision were 0.81,
0.80 and 0.77 for standard NN using the sigmoid function,

FIGURE 3. Loss function for the three NN for different number of epochs.

PPNNBP using TaylorLinear and PPNNBP using Friendly-
Function respectively. The overall average values for recall
were 0.78, 0.78, and 0.75 respectively. The average F1 values
were 0.79, 0.78, and 0.75; and the average Acc values were
0.84, 0.84, and 0.79. Therefore, it can be concluded that
the combined PPNNBP approach with TaylorLinear approx-
imation produced comparable results to standard NN with-
out encryption. The results produced using FriendlyFunction
approximation were not as accurate, because the approxima-
tion was coarser than the values produced using TaylorLinear
approximation (as shown in Fig. 1).
The loss function values, during TaaS, were also compared

between standard and PPNNBP using the two different acti-
vation functions with respect to different numbers of epochs.
Fig. 3 shows the loss function for standard and PPNNBP for
different epochs from 10 to 190 in steps of 20. From the figure
it can be seen that in all cases FriendlyFunction produced the
worst performance. The operation of the PPNNBP framework
coupled with TaylorLinear approximation and standard NN
were comparable. Thus it was concluded that TaylorLinear
approximation can approximate the value of the sigmoid
function whereas maintaining the overall accuracy of the
trained model.

E. SECURITY
Using the PPNNBP framework the third party, cloud
provider, is considered to be an ‘‘Honest but Curious’’ party;

31668 VOLUME 11, 2023

N. Almutairi et al.: PPNNBP: A Third Party Privacy-Preserving Neural Network With Back-Propagation Learning

TABLE 5. Prediction accuracies using: (i) standard NN with sigmoid activation, (ii) PPNNBP with ϕ3 approximation, and (iii) PPNNBP with φ

approximation.

thus the semi-honest security model was considered where
the third party executes the stated algorithmwithout deviation
and does not fail to provide the required service. At the
same time the third party is curious, in the sense that it
would ‘‘look’’ at the available data and calculated interme-
diate results. The security of the PPNNBP framework was
thus evaluated in terms of the semi-honest model by iden-
tifying potential attacks that can be instigated during net-
work training (TaaS) and provision of PaaS. Model training
was performed on encrypted data, encrypted data labels, and
encrypted NN weights and biases, thus the only potential
form of attack was a COAs available whenever adversaries
have access to such cyphertexts. The MLS, as in the case
of original LS, is a probabilistic scheme that produces dif-
ferent cyphertexts for the same plaintext value each time
it is applied, even when using the same secret key. This
feature means that MLS cyphertexts are semantically secure,
hence accessing cyphertexts does not provide any useful
information, with respect to the associated plaintext, from the
perspective of an adversary. COAs are more likely to succeed
when attackers have a background knowledge of the data
frequency of the original data values. Knowledge associated
with the ordering feature of some order preserving encryption
schemes might allow an adversary to infer the ranges contain-
ing dense data. Alternatively, frequency analysis could allow
attackers to highlight cyphertexts with the same frequency
as plaintexts (if such plaintexts were available) and then
identify cyphertexts that have the same frequency. However,
this will not be possible in the case of MLS because different
cyphers are produced for the same plaintext values using the
ω-concept presented in Subsection IV-A. The entire model
training was conducted over MLS cyphers and no decryption
took place at the cloud side which implies even more security.
Hence it is argued that the PPNNBP framework, founded on
MLS, is secure with respect to COAs.

In the context of PaaS offered by a cloud provider, there
were two possible issues of concern in the PPNNBP frame-
work: (i) the presence of sensitive information in prediction

requests, and (ii) the knowledge embedded in the trained
model might be accessible to external adversities. In the
context of the first concern, prediction requests are sent in
encrypted form, the third party performs the requested infer-
ence over the encrypted data and then produces an encrypted
prediction that only be decrypted by the data owner. In context
of the second concern, all weights and biases are encrypted
using MLS which, as noted above, has semantic security
features; therefore ‘‘inversion’’ attacks can not be instigated
without access to the required encryption key.

F. COMPARISON WITH STATE-OF-ART FRAMEWORKS
In this subsection, experiments were conducted to compare
the PPNNBP framework and its building blocks with existing
solutions that provide TaaS and PaaS such as SecureNN [33],
SecureML [37], and QUOTIENT [38]. The objective of the
experiments is to compare the accuracy of model, the security
provided, and the complexity of: (i) MLS multiplication,
(ii) secure comparison, and (iii) model training and prediction
with solutions introduced in other frameworks.

The PPNNBP training accuracy was compared with that of
SecureNN (with three layers), SecureML (using ReLU and
quadratic activation functions) and QUOTIENT (shown in
Table 6). As a baseline evaluation of training, we compare
secure training performance to its standard (unencrypted)
counterpart. In order to provide an accurate comparison,
accuracy loss is used. This is calculated as a difference
between the secure framework accuracy and the accuracy of
the standard model. As shown in Table 6, all frameworks
achieved accuracy levels similar to the standard approach;
all accuracy losses were less than 0.014. It is only in the
PPNNBP approach that secure training accuracy is higher
than that of the standard approach, and therefore the accuracy
loss is positive. This was due to the approximation used to
calculate the activation function.

For the purpose of security, training data, intermediate
results, and NN weights and biases must be preserved.
In PPNNBP the training data were encrypted using a key

VOLUME 11, 2023 31669

N. Almutairi et al.: PPNNBP: A Third Party Privacy-Preserving Neural Network With Back-Propagation Learning

TABLE 6. Comparing the accuracy of TaaS using different frameworks to
standard (unencrypted) equivalents.

TABLE 7. Comparison of our MLS based multiplication of k-dimensional
vectors with activation function values with QUOTIENT using OT and GC
and SecureML using OT and LHE.

belonging to the data owner that was not disclosed to the
server. Intermediate results were also protected and not dis-
closed to the server as only cyphertexts were manipulated.
However, comparable TaaS and PaaS frameworks rely on
schemes and protocols that secretly share training data and
intermediate results across two or three non-colluding servers
(as shown in Table 1). Therefore, the security guarantees pro-
vided by these frameworks are weaker than those provided by
PPNNBP, as data privacy may be compromised when servers
collude. In PPNNBP, the only information disclosed to the
server is the NN topology, which is essential for PPNNBP to
operate correctly. This was also the case in SecureNN [33],
SecureML [37], and QUOTIENT [38] frameworks.

MLS introduces the subcyphertexts dimensionality reduc-
tion mechanism to manage the size of cyphertexts throughout
the training process. Table 7 compares the runtimes of MLS
homomorphic multiplications, followed by dimensionality
reduction

⊗
, with the approach facilitated by the OT and

Garbled Circuit (GC) introduced in the QUOTIENT frame-
work and the OT and LHE based approaches introduced in
SecureML. The runtime measures the time required to multi-
ply a vector with k-dimensions by the value of an activation
function. The experiments demonstrate that MLS based mul-
tiplication outperforms all other approaches. Thus, MLS is
well suited to applications requiring extensive multiplication,
such as DNN.

Experiments show that data comparisons using MLS prop-
erty take 0.2 ms and run on cloud without data owner partic-
ipation (Fig. 2). The cloud will know the comparison result
without revealing the exact value of cyphertexts. Comparable
solutions such as the PrivateCompare protocol introduced
in [33], performs data comparison in a bit-wise manner

and require the involvement of three parties. Therefore, the
number of communications required depends on the number
of bits in the data to be compared. As an example, values
with l-bit with a maximum number of bits of p will have
complexity equal to 2 × l × log(p). In addition, at the end of
the PrivateCompare protocol, the server that runs the training
and prediction algorithms will be able to obtain the results of
the data comparison in addition to the exact value of the most
significant bits.

The experiments conducted in [33] and [38] demonstrate
that SecureNN and QUOTIENT frameworks require long
training times even for small datasets. As an example, in [38],
the reported training time for NN using the ‘‘breast cancer’’
dataset was 14.51 h, while for PPNNBP, the training time was
195.32 s. These are clearly the result of the complexity of
the adopted SMPC protocols. In the case of SecureNN, the
prediction timewas 0.045 s, whichmeans that 90, 000 predic-
tions can be made in an hour as opposed to 1, 641, 256 using
TaylorLinear and 4, 143, 012 using FriendlyFunction approx-
imation. Results indicate that PPNNBP is more efficient than
comparable frameworks.

There are potential limitations to the PPNNBP. The frame-
work was evaluated on a single computer without a network
simulation which measured the potential network overhead
associated with the involvement of data owners. In PPNNBP,
the involvement of data owners are expected to be small.
For example, in TaaS this is limited to O(n ∗

∑i=b
i=1 li) and

for PaaS it is limited to O(
∑i=b

i=1 li) where n is number of
samples in training data, b is number of layers specified in
NN topology, and li is number of neurons in the ith layer. This
is not like using the SMPC protocols that required extensive
communication between multiple parties.

VIII. CONCLUSION AND FUTURE WORK
In this paper the PPNNBP framework, supported byMLS, has
been proposed. The framework, coupled with MLS, allows
for privacy-preserving multilayer NN with BP learning. The
model is trained using encrypted data and encrypted network
weights and biases. It can also be used to provide secure PaaS.
The training of networks and their usage does not entail any
significant computational overhead over data owner, whist at
the same time effectiveness is comparable with that obtained
using standard NN. Thus, the framework is well suited for
Secure MLaaS, which delegate TaaS and PaaS to a third party
data miner with limited data owner involvement. In PPNNBP,
only one cloud server is used to provide TaaS and PaaS. The
advantages offered by the PPNNBP framework result from
theMLSwhich addresses the problem, found in existing FHE
schemes, of the exponential increase in cyphertext size and
the inclusion of noise every time a multiplication operation
is conducted. In addition, MLS incorporates a MLS feature,
the ω-concept, that preserves data ordering and thus allows
for secure data comparison. Using MLS, as in the case of
FHE schemes, the nonlinear sigmoid activation can not be
easily implemented, hence the paper proposes the TaylorLin-
ear approximation for model training which requires some

31670 VOLUME 11, 2023

N. Almutairi et al.: PPNNBP: A Third Party Privacy-Preserving Neural Network With Back-Propagation Learning

data owner participation. For providing PaaS two alternative
linear approximations to the sigmoid function were consid-
ered, TaylorLinear and FriendlyFunction. The second offers
the advantage that it requires no data owner participation, but
at the expense of some reduction in prediction accuracy. For
future work, the authors intend to investigate the utility of
MLS with respect to different ML algorithms.

APPENDIX A MLS PROOF OF CORRECTNESS
A. DIMENSIONALITY REDUCTION ALGORITHM
Assuming MLS number of subcyphertext m = 3 and q = 1
(this means only t1 ̸= 0). The subcyphertexts for encrypting
v1 and v2, using Algorithm 2, are calculated as follows:

Encrypt(v1,SK(3)) = E1 = {e11 , e12 , e13} where

e11 =
k1t1v1 + s1 + k1(r1 − r2)

s1

=
k1t1v1 + s1 + k1r1 − k1r2

s1

e12 =
k2t2v1 + s2 + k2(r2 − r1)

s2

=
s2 + k2r2 − k2r1

s2
e13 = (k3 + s3 + t3) = kst (5)

Encrypt(v2,SK(3)) = E2 = {e21 , e22 , e23} where

e21 =
.

k1t1v2 + s1 + k1(r1 − r2)
s1

=
k1t1v2 + s1 + k1r1 − k1r2

s1

e22 =
k2t2v2 + s2 + k2(r2 − r1)

s2

=
s2 + k2r2 − k2r1

s2
e23 = (k3 + s3 + t3) = kst (6)

Multiplying Encrypt(v1,SK(3)) and Encrypt(v2,SK(3)) gives
E1 ⊗ E2 = E = {e11e21 , e11e22 , e11e23 , e12e21 , e12e22 ,
e12e23 , e13e21 , e13e22 , e13e23}. Using the dimensionality
reduction algorithm (Algorithm 4) the resulted cypher E can
be re-encrypted without being first decrypted whilst reducing
the number of subcyphertexts to only 3 subcyphertexts; when
decrypted this should give v1 × v2. Following the steps out-
lined in Algorithm 4, every three consecutives subcyphers in
E will be associated with a trapdoor in Trap and kst which
will be used to calculate one cypher in the reduced cypher
RE= {re1, re2, re3}. For example, re1 is calculated from
{e11e21 , e11e22 , e11e23}. Applying Algorithm 4 the reduced
subcyphers will be as follows:

re1 = (((e11e21) − (
e11e23
kst

)) × trap1) + (((e11e22)

− (
e11e23
kst

)) × trap2)

re2 = (((e12e21) − (
e12e23
kst

)) × trap1) + (((e12e22)

− (
e12e23
kst

)) × trap2)

re3 = (((e13e21) − (
e13e23
kst

)) × trap1) + (((e13e22)

− (
e13e23
kst

)) × trap2)

According to Trapdoor calculation algorithm (Algorithm
1) the values for trap1 and trap2 are

s1×secretK
secretS×k1

and s2×secretK
secretS×k2

;
and the value for kst will be k3 + s3 + t3. After calling
cypher reduction, the level of RE is one (RE.l = 1). The
RE cypher can then be decrypted using Algorithm 3 to give
v1 × v2. Following Algorithm 3, as the cyphertext level value
in RE is not equal to zero, a new subcyphertext value for each
subcypher rei in RE is calculated (lines 3 to 5) the new RE
subcyphertexts are:

re1 =
1
t
[
s1
k1
(e11e21 −

e11e23
kst

) +
s2
k2
(e11e22 −

e11e23
kst

)]

re2 =
1
t
[
s1
k1
(e12e21 −

e12e23
kst

) +
s2
k2
(e12e22 −

e12e23
kst

)]

re3 =
1
t
[
s1
k1
(e13e21 −

e13e23
kst

) +
s2
k2
(e13e22 −

e13e23
kst

)]

The cyphers are then used, in lines 6 and 7 of Algorithm 3,
and processed the follows:

t = t1 + t2 = t1 + 0 = t1

s =
re3

(k3 + s3 + t3)
=
re3
kst

v =

((re1×s1)−(re3kst ×s1))
k1 +

((re2×s2)−(re3kst ×s2))
k2

t

=
1
t
[
s1
k1

× (re1 −
re3
kst

) +
s2
k2

× (re2 −
re3
kst

)] (7)

The values for re3kst , re1, and re2 must then be calculated.
The values for re3kst are given by:

re3
kst

=
1
t
[
s1

k1kst
(e13e21 −

e13e23
kst

) +
s2

k2kst
(e13e22 −

e13e23
kst

)]

=
1
t
[
s1e13e21
k1kst

−
s1e13e23
k1kst2

+
s2e13e22
k2kst

−
s2e13e23
k2kst2

]

where:

s1e13e21
k1kst

=
s1

k1kst
(kst)(

k1t1v2 + s1 + k1r1 − k1r2
s1

)

(5) and (6)

=
k1t1v2 + s1 + k1r1 − k1r2

k1
= t1v2 +

s1
k1

+ r1 − r2

s1e13e23
k1kst2

=
s1

k1kst2
kst kst =

s1
k1

s2e13e22
k2kst

=
s2

k2kst
e13e22 =

s2
k2kst

kst(
s2 + k2r2 − k2r1

s2
)

=
s2 + k2r2 − k2r1

k2
=
s2
k2

+ r2 − r1

s2e13e23
k2kst2

=
s2

k2kst2
kst kst =

s2
k2

VOLUME 11, 2023 31671

N. Almutairi et al.: PPNNBP: A Third Party Privacy-Preserving Neural Network With Back-Propagation Learning

In other words:
re3
kst

=
1
t
[t1v2 +

s1
k1

+ r1 − r2 −
s1
k1

+
s2
k2

+ r2 − r1 −
s2
k2
]

=
1
t
t1v2 = v2 given that t = t1

The values for re1 and re2 (in (7)) are given by:

re1 =
1
t
[
s1e11e21
k1

−
s1e11e23
k1kst

+
s2e11e22
k2

−
s2e11e23
k2kst

]

The operands in the above are calculated, retrospectively,
as follows

s1e11e21
k1

, shown at the top of the next page.
In other words (recall t = t1):

re1 =
1
t
[
k1t21v1v2

s1
+ t1v1 +

k1t1r1v1
s1

−
k1t1r2v1

s1
+ t1v2

+
s1
k1

+ 2 r1 − 2r2 +
k1t1r1v2

s1
+
k1r21
s1

− 2
k1r1r2
s1

−
k1t1r2v2

s1
+
k1r22
s1

− t1v1 −
s1
k1

− r1 + r2

+
k1t1s2v1
s1k2

+
k1t1r2v1

s1
−
k1t1r1v1

s1
+
s2
k2

+ r2

− r1 +
k1r1s2
s1k2

+ 2
k1r1r2
s1

−
k1r21
s1

−
k1r2s2
s1k2

−
k1r22
s1

−
k1t1s2v1
s1k2

−
s2
k2

−
k1s2r1
s1k2

+
k1s2r2
s1k2

]

=
k1t1v1v2

s1
+ v2 +

k1r1v2
s1

−
k1r2v2
s1

(8)

Recall that t = t1 + t2, however, as the key generation
conditions require that there is only one tq ̸= 0 that is t1 thus
t = t1.
The value for re2 (in (7)) is then given by:

re2 =
1
t
[t1v2 +

s1
k1

+ r1 − r2 +
t1k2r2v2

s2
+
s1k2r2
k1s2

+ 2
k2r1r2
s2

−
k2r22
s2

−
k2t1r1v2

s2
−
s1k2r1
k1s2

−
k2r21
s2

−
s1
k1

−
s1k2r2
k1s2

+
s1k2r1
k1s2

+
s2
k2

+ 2 r2 − 2 r1+

k2r22
s2

− 2
k2r1r2
s2

+
k2r21
s2

−
s2
k2

− r2 + r1]

=
1
t
[t1v2 +

t1k2r2v2
s2

−
k2t1r1v2

s2
]

= v2 +
k2r2v2
s2

−
k2r1v2
s2

where:
s1e12e21
k1

=
s1
k1
[(
s2 + k2r2 − k2r1

s2
)

(
k1t1v2 + s1 + k1r1 − k1r2

s1
)]

=
s1
k1
[(1 +

k2r2
s2

−
k2r1
s2

)(
k1t1v2
s1

+ 1 +
k1r1
s1

−
k1r2
s1

)]

=
s1
k1
[
k1t1v2
s1

+ 1 +
k1r1
s1

−
k1r2
s1

+
t1k1k2r2v2

s1s2

+
k2r2
s2

+
k1k2r1r2
s1s2

−
k1k2r22
s1s2

−
k1k2t1r1v2

s1s2

−
k2r1
s2

−
k1k2r21
s1s2

+
k1k2r1r2
s1s2

]

= t1v2 +
s1
k1

+ r1 − r2 +
t1k2r2v2

s2
+
s1k2r2
k1s2

+ 2
k2r1r2
s2

−
k2r22
s2

−
k2t1r1v2

s2
−
s1k2r1
k1s2

−
k2r21
s2

s1e12e23
k1kst

=
s1

k1kst
(
s2 + k2r2 − k2r1

s2
)(kst)

=
s1s2 + s1k2r2 − s1k2r1

k1s2

=
s1
k1

+
s1k2r2
k1s2

−
s1k2r1
k1s2

s2e12e22
k2

=
s2
k2
(
s2 + k2r2 − k2r1

s2
)(
s2 + k2r2 − k2r1

s2
)

=
s2
k2
(1 +

k2r2
s2

−
k2r1
s2

)(1 +
k2r2
s2

−
k2r1
s2

)

=
s2
k2
[1 +

k2r2
s2

−
k2r1
s2

+
k2r2
s2

+
k22 r

2
2

s22
−
k22 r1r2
s22

−
k2r1
s2

−
k22 r1r2
s22

+
k22 r

2
1

s22
]

= [
s2
k2

+ r2 − r1 + r2 +
k2r22
s2

−
k2r1r2
s2

− r1

−
k2r1r2
s2

+
k2r21
s2

]

= [
s2
k2

+ 2 r2 − 2 r1 +
k2r22
s2

− 2
k2r1r2
s2

+
k2r21
s2

]

s2e12e23
k2kst

=
s2

k2kst
(
s2 + k2r2 − k2r1

s2
)(kst) =

s2
k2

+ r2 − r1

Finally:

v =
1
t
[
s1
k1

× (
k1t1v1v2

s1
+ v2 +

k1r1v2
s1

−
k1r2v2
s1

− v2)

+
s2
k2

× (v2 +
k2r2v2
s2

−
k2r1v2
s2

− v2)]

=
1
t
[t1v1v2 + r1v2 − r2v2 + r2v2 − r1v2]

=
1
t
[t1v1v2]

= v1v2

As expected from decrypting cyphertext RE.

31672 VOLUME 11, 2023

N. Almutairi et al.: PPNNBP: A Third Party Privacy-Preserving Neural Network With Back-Propagation Learning

s1e11e21
k1

=
s1
k1
[(
k1t1v1 + s1 + k1r1 − k1r2

s1
)(
k1t1v2 + s1 + k1r1 − k1r2

s1
)]

=
s1
k1
[(
k1t1v1
s1

+ 1 +
k1r1
s1

−
k1r2
s1

)(
k1t1v2
s1

+ 1 +
k1r1
s1

−
k1r2
s1

)]

=
s1
k1
[
k21 t

2
1v1v2
s21

+
k1t1v1
s1

+
k21 t1r1v1

s21
−
k21 t1r2v1

s21
+

k1t1v2
s1

+ 1 +
k1r1
s1

−
k1r2
s1

+
k21 t1r1v2

s21
+
k1r1
s1

+
k21 r

2
1

s21
−
k21 r1r2
s21

−
k21 t1r2v2

s21
−
k1r2
s1

−
k21 r1r2
s21

+
k21 r

2
2

s21
]

=
s1
k1
[
k21 t

2
1v1v2 + k1t1s1v1 + k21 t1r1v1 − k21 t1r2v1 + k1t1s1v2

s21
+s21 + k1r1s1 − k1r2s1 + k21 t1r1v2 + k1r1s1 + k21 r

2
1 − k21 r1r2

s21
−k21 t1r2v2 − k1r2s1 − k21 r1r2 + k21 r

2
2

s21
]

=
k21 t

2
1v1v2 + k1t1s1v1 + k21 t1r1v1 − k21 t1r2v1 + k1t1s1v2 + s21

s1k1
+k1r1s1 − k1r2s1 + k21 t1r1v2 + k1r1s1 + k21 r

2
1 − k21 r1r2

s1k1
−k21 t1r2v2 − k1r2s1 − k21 r1r2 + k21 r

2
2

s1k1

=
k1t21v1v2

s1
+ t1v1 +

k1t1r1v1
s1

−
k1t1r2v1

s1
+ t1v2

+
s1
k1

+ r1 − r2 +
k1t1r1v2

s1
+ r1 +

k1r21
s1

−
k1r1r2
s1

−
k1t1r2v2

s1
− r2 −

k1r1r2
s1

+
k1r22
s1

=
k1t21v1v2

s1
+ t1v1 +

k1t1r1v1
s1

−
k1t1r2v1

s1
+ t1v2 +

s1
k1

+ 2 r1 − 2r2 +
k1t1r1v2

s1
+
k1r21
s1

− 2
k1r1r2
s1

−
k1t1r2v2

s1
+
k1r22
s1s1e11e23

k1kst
=

s1
k1kst

(
k1t1v1 + s1 + k1r1 − k1r2

s1
)(kst)

=
1
k1
(k1t1v1 + s1 + k1r1 − k1r2) = t1v1 +

s1
k1

+ r1 − r2
s2e11e22
k2

=
s2
k2
(
k1t1v1 + s1 + k1r1 − k1r2

s1
)(
s2 + k2r2 − k2r1

s2
)

=
s2
k2
[(
k1t1v1
s1

+ 1 +
k1r1
s1

−
k1r2
s1

)(1 +
k2r2
s2

−
k2r1
s2

)]

=
s2
k2
[
k1t1v1
s1

+
k1k2t1r2v1

s1s2
−
k1k2t1r1v1

s1s2
+ 1 +

k2r2
s2

−
k2r1
s2

+
k1r1
s1

+
k1k2r1r2
s1s2

−
k1k2r21
s1s2

−
k1r2
s1

−
k1k2r22
s1s2

+
k1k2r1r2
s1s2

]

=
k1t1s2v1
s1k2

+
k1t1r2v1

s1
−
k1t1r1v1

s1
+
s2
k2

+ r2 − r1

+
k1r1s2
s1k2

+ 2
k1r1r2
s1

−
k1r21
s1

−
k1r2s2
s1k2

−
k1r22
s1s2e11e23

k2kst
=

s2
k2kst

(
k1t1v1 + s1 + k1r1 − k1r2

s1
)(kst)

= (
k1t1s2v1 + s1s2 + k1s2r1 − k1s2r2

s1k2
)

=
k1t1s2v1
s1k2

+
s2
k2

+
k1s2r1
s1k2

−
k1s2r2
s1k2

VOLUME 11, 2023 31673

N. Almutairi et al.: PPNNBP: A Third Party Privacy-Preserving Neural Network With Back-Propagation Learning

B. ORDER PRESERVING FEATURE CORRECTNESS
In MLS, data ordering is preserved using the data encryption
function associated with: (i) the key generation conditions
(Subsection IV-A), and (ii) the ω-concept that, although gen-
erating random values, retains the data ordering across the
cyphertexts. The ω-concept uses a simple mathematical rule
to ensure a ‘‘gap’’ between cyphertexts so that adding random
offsets (sampled from a particular range) will not cause any
overlap, and hence guarantees data ordering. The value for
ω can be determined using 10p, and the random values ri
can then be sampled from range 0 to ω. Random values are
generated each time the encryption function is called, a side-
effect of this is that data equality is not preserved. This feature
facilitates precluding Cyphertext Only Attacks (COAs) by
generating different cyphertexts for the same plaintext value,
even when the same list of keys is used (the probabilistic
feature of the MLS scheme). If we consider the situation
where q = 1 and m = 3, the encryptions of v1 and v2 are
E1 = {e11 , e12 , e13} and E2 = {e21 , e22 , e23} where:

e11 =
k1t1v1 + s1 + k1(r11 − r12)

s1

e21 =
k1t1v2 + s1 + k1(r21 − r22)

s1

As already noted, the encryption function selects a differ-
ent value for ri every time the encryption function is invoked,
thus r1i ̸= r2i . If v1 > v2. Thus, applying the encryption
function, and since the k1, s1 and t1 values are all positive,
the consistent values (private keys) will be:

k1t1v1 + s1 > k1t1v2 + s1

Adding random numbers to the above might change the
data ordering. The ω-concept is used to create a ‘‘gap’’
between every consecutive plaintext value so as to allow
the addition of a random number while preserving the data
ordering. The value of ω is embedded in t1, when q = 1,
in other words t1 = (s1 + k1) × ω. Recall the value of t1 is
multiplied with the v in MLS encryption function. The value
of the random numbers r1i and r2i are sampled from 0 to ω.
Therefore, the maximum value of r11 − r12 is ω and also the
maximum value of r21 − r22 is ω (less than the gap multiplied
with v in encryption function). Recall that ri1 when q = 1 is
greater than the value of other random values. Therefore, the
encrypted values of v1 and v2 can be compared:

k1v1 > k1v2
k1v1ω ≫ k1v2ω where ω = 10p

k1v1ω(s1 + k1) ≫ k1v2ω(s1 + k1)

k1v1t1 ≫ k1v2t1
k1v1t1 + s1 ≫ k1v2t1 + s1 (9)

In mathematics if c is an integer number greater than 1,
then c× num ≫ c+num; the ω-concept uses this basic
mathematical rule so that if a random value, sampled from

the range 0 to ω, is added to the two operands in (9) the data
order will still hold.

k1v1t1 + s1 + k1(r11 − r12) > k1v2t1 + s1 + k1(r21 − r22)
k1v1t1 + s1 + k1(r11 − r12)

s1
>
k1v2t1 + s1 + k1(r21 − r22)

s1
e11 > e21 (10)

As argued in MLS the data order is preserved in eq sub-
cyphertext.

REFERENCES
[1] J. Barnes, ‘‘Using azure ML studio,’’ in Microsoft Azure Essentials Azure

Machine Learning, 1st ed. Redmond, WA, USA: Microsoft Press, 2015,
ch. 3, sec. 4, pp. 44–93. [Online]. Available: https://tinyurl.com/2cpfvyy3

[2] V. Lakshmanan, ‘‘Using azure ML studio,’’ in Data Science on the
Google Cloud Platform, 2nd ed. Sebastopol, CA, USA: O’Reilly
Media, 2022, ch. 9, sec. 2, pp. 317–322. [Online]. Available: https://
tinyurl.com/4f54s22m

[3] A. Kaplunovich and Y. Yesha, ‘‘Cloud big data decision support system
for machine learning on AWS: Analytics of analytics,’’ in Proc. IEEE Int.
Conf. Big Data (Big Data), Dec. 2017, pp. 3508–3516.

[4] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, ‘‘Inception-v4,
Inception-ResNet and the impact of residual connections on learning,’’ in
Proc. AAAI Conf. Artif. Intell., 2017, pp. 4278–4284.

[5] C. Alippi, S. Disabato, and M. Roveri, ‘‘Moving convolutional neural
networks to embedded systems: The AlexNet and VGG-16 case,’’ in Proc.
17th ACM/IEEE Int. Conf. Inf. Process. Sensor Netw. (IPSN), Apr. 2018,
pp. 212–223.

[6] X. Yuan, P. He, Q. Zhu, and X. Li, ‘‘Adversarial examples: Attacks
and defenses for deep learning,’’ IEEE Trans. Neural Netw. Learn. Syst.,
vol. 30, no. 9, pp. 2805–2824, Sep. 2019.

[7] G. Ateniese, L. V. Mancini, A. Spognardi, A. Villani, D. Vitali, and
G. Felici, ‘‘Hacking smart machines with smarter ones: How to extract
meaningful data from machine learning classifiers,’’ Int. J. Secur. Netw.,
vol. 10, no. 3, pp. 137–150, 2015, doi: 10.1504/IJSN.2015.071829.

[8] M. Fredrikson, S. Jha, and T. Ristenpart, ‘‘Model inversion attacks that
exploit confidence information and basic countermeasures,’’ in Proc. 22nd
ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2015, pp. 1322–1333.

[9] A. K. Das, ‘‘European Union’s general data protection regulation, 2018:
A brief overview,’’ Ann. Library Inf. Stud., vol. 65, no. 2, pp. 139–140,
Jun. 2018.

[10] L. O. Gostin, ‘‘National health information privacy: Regulations under
the health insurance portability and accountability act,’’ J. Amer.
Med. Assoc., vol. 285, no. 23, pp. 3015–3021, Jun. 2001, doi:
10.1001/jama.285.23.3015.

[11] C. Gentry, ‘‘A fully homomorphic encryption scheme,’’ Ph.D. dissertation,
Dept. Comput. Sci., Stanford Univ., Stanford, CA, USA, 2009.

[12] J.-W. Lee, H. Kang, Y. Lee, W. Choi, J. Eom, M. Deryabin,
E. Lee, J. Lee, D. Yoo, Y.-S. Kim, and J.-S. No, ‘‘Privacy-preserving
machine learning with fully homomorphic encryption for deep neu-
ral network,’’ IEEE Access, vol. 10, pp. 30039–30054, 2022, doi:
10.1109/ACCESS.2022.3159694.

[13] S. Alex, K. J. Dhanaraj, and P. P. Deepthi, ‘‘Private and energy-
efficient decision tree-based disease detection for resource-constrained
medical users in mobile healthcare network,’’ IEEE Access, vol. 10,
pp. 17098–17112, 2022, doi: 10.1109/ACCESS.2022.3149771.

[14] M. Barni, C. Orlandi, and A. Piva, ‘‘A privacy-preserving protocol for
neural-network-based computation,’’ in Proc. 8th Workshop Multimedia
Secur., Sep. 2006, pp. 146–151.

[15] H. Fang and Q. Qian, ‘‘Privacy preserving machine learning with homo-
morphic encryption and federated learning,’’ Future Internet, vol. 13,
pp. 94–114, Apr. 2021, doi: 10.3390/fi13040094.

[16] Y. Lee, S. Heo, S. Cheon, S. Jeong, C. Kim, E. Kim, D. Lee, and
H. Kim, ‘‘HECATE: Performance-aware scale optimization for homomor-
phic encryption compiler,’’ in Proc. IEEE/ACM Int. Symp. Code Gener.
Optim. (CGO), Apr. 2022, pp. 193–204.

[17] E. Hesamifard, H. Takabi, and M. Ghasemi, ‘‘CryptoDL: Deep neural
networks over encrypted data,’’ 2017, arXiv:1711.05189.

31674 VOLUME 11, 2023

http://dx.doi.org/10.1504/IJSN.2015.071829
http://dx.doi.org/10.1001/jama.285.23.3015
http://dx.doi.org/10.1109/ACCESS.2022.3159694
http://dx.doi.org/10.1109/ACCESS.2022.3149771
http://dx.doi.org/10.3390/fi13040094

N. Almutairi et al.: PPNNBP: A Third Party Privacy-Preserving Neural Network With Back-Propagation Learning

[18] Q. Liu, X. Lu, F. Luo, S. Zhou, J. He, and K. Wang, ‘‘SecureBP from
homomorphic encryption,’’ Secur. Commun. Netw., vol. 2020, pp. 1–9,
Jun. 2020, doi: 10.1155/2020/5328059.

[19] I. Mustafa, H.Mustafa, A. T. Azar, S. Aslam, S.M.Mohsin, M. B. Qureshi,
and N. Ashraf, ‘‘Noise free fully homomorphic encryption scheme over
non-associative algebra,’’ IEEE Access, vol. 8, pp. 136524–136536, 2020,
doi: 10.1109/ACCESS.2020.3007717.

[20] D. Liu, ‘‘Homomorphic encryption for database querying,’’ U.S. Patent
US10 027 486 B2, Dec. 27, 2013.

[21] Y. Wang and Q. M. Malluhi, ‘‘Privacy preserving computation in cloud
using noise-free fully homomorphic encryption (FHE) schemes,’’ in Proc.
ESORICS, Heraklion, Greece, Sep. 2016, pp. 301–323.

[22] O. Özerk, C. Elgezen, A. Mert, E. Öztürk, and E. Savaş, ‘‘Efficient
number theoretic transform implementation on GPU for homomorphic
encryption,’’ J. Supercomput., vol. 78, pp. 2840–2872, Jul. 2021, doi:
10.1007/978-3-319-45744-4-15.

[23] J. Bos, K. Lauter, J. Loftus, andM. Naehrig, ‘‘Improved security for a ring-
based fully homomorphic encryption scheme,’’ in Proc. IMACC, Oxford,
U.K., 2013, pp. 45–64.

[24] Z. Brakerski, ‘‘Fully homomorphic encryption without modulus switching
from classical GapSVP,’’ in Proc. Crypto, Santa Barbara, CA, USA, 2012,
pp. 868–886, doi: 10.1007/978-3-642-32009-5-50.

[25] M.Dijk, C. Gentry, S. Halevi, andV.Vaikuntanathan, ‘‘Fully homomorphic
encryption over the integers,’’ in Proc. EUROCRYPT, 2010, pp. 24–43,
doi: 10.1007/978-3-642-13190-5-2.

[26] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, ‘‘(Leveled) fully homo-
morphic encryption without bootstrapping,’’ ACM Trans. Comput. Theory,
vol. 6, no. 3, pp. 1–36, Jul. 2014, doi: 10.1145/2633600.

[27] A. Kipnis and E. Hibshoosh, ‘‘Efficient methods for practical fully homo-
morphic symmetric-key encryption, randomization and verification,’’ in
Proc. IACR, Nov. 2012.

[28] D. Liu, ‘‘Practical fully homomorphic encryption without noise reduc-
tion,’’ in Proc. IACR, May 2015.

[29] L. J. Aslett, P. M. Esperança, and C. Holmes, ‘‘Encrypted sta-
tistical machine learning: New privacy preserving methods,’’ 2015,
arXiv:1508.06845.

[30] C. Orlandi, A. Piva, and M. Barni, ‘‘Oblivious neural network comput-
ing via homomorphic encryption,’’ EURASIP J. Inf. Secur., vol. 2007,
pp. 1–11, Jun. 2007, doi: 10.1155/2007/37343.

[31] H. Kumarage, I. Khalil, A. Alabdulatif, Z. Tari, and X. Yi, ‘‘Secure
data analytics for cloud-integrated Internet of Things applications,’’
IEEE Cloud Comput., vol. 3, no. 2, pp. 46–56, Mar. 2016, doi:
10.1109/MCC.2016.30.

[32] IEEE Standard for Floating-Point Arithmetic, Standard 754–2019, Revi-
sion IEEE 754-2008, Jul. 2019, pp. 1–84, doi: 10.1109/IEEESTD.
2019.8766229.

[33] S. Wagh, D. Gupta, and N. Chandran, ‘‘SecureNN: 3-party secure compu-
tation for neural network training,’’ in Proc. PoPETs, Stockholm, Sweden,
2019, pp. 26–49.

[34] T. Veugen, ‘‘Improving the DGK comparison protocol,’’ in Proc. IEEE
Int. Workshop Inf. Forensics Secur. (WIFS), Dec. 2012, pp. 49–54, doi:
10.1109/WIFS.2012.6412624.

[35] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, ‘‘CryptoNets: Applying neural networks to encrypted data
with high throughput and accuracy,’’ in Proc. ICML, New York, NY, USA,
2016, pp. 201–210.

[36] T. Graepel, K. Lauter, and M. Naehrig, ‘‘ML confidential: Machine learn-
ing on encrypted data,’’ inProc. ICISC, Seoul SouthKorea, 2012, pp. 1–21.

[37] P. Mohassel and Y. Zhang, ‘‘SecureML: A system for scalable privacy-
preserving machine learning,’’ in Proc. IEEE Symp. Secur. Privacy (SP),
May 2017, pp. 19–38.

[38] N. Agrawal, A. S. Shamsabadi, M. J. Kusner, and A. Gascón, ‘‘QUO-
TIENT: Two-party secure neural network training and prediction,’’ inProc.
ACM SIGSAC Conf. Comput. Commun. Secur., Nov. 2019, pp. 1231–1247.

[39] R. Livni, S. Shalev-Shwartz, and O. Shamir, ‘‘On the computational effi-
ciency of training neural networks,’’ in Proc. Adv. NIPS, Cambridge, MA,
USA, 2014, pp. 855–863.

[40] H. Chabanne, A. D.Wargny, J.Milgram, C.Morel, and E. Prouff, ‘‘Privacy-
preserving classification on deep neural network,’’ Tech. Rep., 2017.

[41] E. Hesamifard, H. Takabi, M. Ghasemi, and N. W. Rebecca, ‘‘Privacy-
preserving machine learning as a service,’’ Proc. Privacy Enhancing Tech-
nol., vol. 2018, no. 3, pp. 123–142, Jun. 2018.

[42] D. Liu, E. Bertino, and X. Yi, ‘‘Privacy of outsourced k-means cluster-
ing,’’ in Proc. 9th ACM Symp. Inf., Comput. Commun. Secur., Jun. 2014,
pp. 123–134.

[43] J. W. Bos, K. Lauter, and M. Naehrig, ‘‘Private predictive analysis on
encrypted medical data,’’ J. Biomed. Informat., vol. 50, pp. 234–243,
Aug. 2014, doi: 10.1016/j.jbi.2014.04.003.

[44] J. Yuan and S. Yu, ‘‘Privacy preserving back-propagation neural net-
work learning made practical with cloud computing,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 25, no. 1, pp. 212–221, Jan. 2014, doi:
10.1109/TPDS.2013.18.

[45] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ‘‘Learning inter-
nal representations by error propagation,’’ in Readings in Cogni-
tive Science, 1st ed. Univ. California San Diego, CA, USA: MIT
Press, 1986, ch. 8, pp. 318–362. [Online]. Available: https://ieeexplore.
ieee.org/document/6302929

[46] D. Dua and C. Graff,UCIMachine Learning Repository. Irvine, CA, USA:
University of California, School of Information and Computer Science,
2019. [Online]. Available: http://archive.ics.uci.edu/ml

[47] J. Waldo, ‘‘Remote procedure calls and Java Remote Method Invocation,’’
IEEE Concurrency, vol. 6, no. 3, pp. 5–7, Jul. 1998.

[48] J. Makhoul, F. Kubala, R. Schwartz, and R. Weischedel, ‘‘Performance
measures for information extraction,’’ in Proc. DARPA Broadcast News
Workshop, Herndon, VA, USA, Feb. 1999, pp. 249–252.

[49] B. Karlik and A. V. Olgac, ‘‘Performance analysis of various activation
functions in generalized MLP architectures of neural networks,’’ Int. J.
Artif. Intell. Expert Syst., vol. 1, no. 4, pp. 111–122, Feb. 2011.

NAWAL ALMUTAIRI has a general background in data mining, security,
and AI. She works in the field of cybersecurity, especially detecting attacks
usingML. She is currently an Assistant Professor with the Information Tech-
nology Department, King Saud University. Her research interests include
privacy-preserving data mining (PPDM), homomorphic encryption (HE),
property preserving encryption (PPE), data mining as a service (DMaaS)
using cloud facilities, and collaborative data mining.

FRANS COENEN has a general background in AI.
He has been working in the field of data mining
and knowledge discovery in data (KDD) for the
last 15 years. He is currently a Professor with the
Department of Computer Science, University of
Liverpool, where he is the Director of Doctoral
Network in AI for Future Digital Health. He also
leads a small research group working on many
aspects of data mining and KDD. He has some
390 refereed publications on KDD and AI related

research. He has been on the programme committees for many KDD confer-
ences and related events. His research interests include the application of the
techniques of data mining and knowledge discovery in data to unusual data
sets, such as graphs and social networks, time series, free text of all kinds,
2D and 3D images, particularly medical images, video data, and data mining
over encrypted data.

KEITH DURES is currently a Lecturer in computer
science with the Department of Computer Science,
University of Liverpool, and the Assistant Director
of Studies of Online M.Sc. Programmes. He is
also the Chair of the IT Sub-Group (university-
wide), an Admissions Tutor, an Internal Examiner,
a Module Coordinator, and the CPD Lead of the
Department of Computer Science. He is a mem-
ber of the Teaching and Scholarship in Comput-
ing (TASC) Group with interests in research and

development with respect to teaching and learning. His research interests
include knowledge discovery in databases, data mining, software engineer-
ing, and cyber security. His professional exposure (includes British Com-
puter Society and Higher Education Academy), includes responsibility for
academic and commercial course development, teaching, supervision, and
examination at all levels.

VOLUME 11, 2023 31675

http://dx.doi.org/10.1155/2020/5328059
http://dx.doi.org/10.1109/ACCESS.2020.3007717
http://dx.doi.org/10.1007/978-3-319-45744-4-15
http://dx.doi.org/10.1007/978-3-642-32009-5-50
http://dx.doi.org/10.1007/978-3-642-13190-5-2
http://dx.doi.org/10.1145/2633600
http://dx.doi.org/10.1155/2007/37343
http://dx.doi.org/10.1109/MCC.2016.30
http://dx.doi.org/10.1109/IEEESTD.2019.8766229
http://dx.doi.org/10.1109/IEEESTD.2019.8766229
http://dx.doi.org/10.1109/WIFS.2012.6412624
http://dx.doi.org/10.1016/j.jbi.2014.04.003
http://dx.doi.org/10.1109/TPDS.2013.18

