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ABSTRACT Prior studies aiming to parametrize the sequences obtained from the Smooth Pursuit Eye
Movements (SPEM) of patients with Parkinson’s disease are based on the manual extraction of cues of
interest. This is because methods to automatically extract the relevant information are complex to implement
and are constrained, in part, by the appearance of a baseline wander (BW). Thus, new methods are required
for preprocessing the SPEM sequences to make the potential parameterisation procedures much more robust,
removing the aforementioned BW. In this respect, the present study compares different BW removal methods
applied to SPEM sequences based on several objective evaluation metrics. At the same time, it proposes a
set of guidelines to estimate the ground truth that is required for comparison purposes. Data were collected
using a high-speed video-based eye-tracking device. 52 patients and 60 controls and 12 young participants
were enrolled in the study. The ground truth required to compare the different BW removal techniques was
manually delineated according to a predefined protocol. Seven methods were developed to remove the BW,
and four objective metrics were used to evaluate the results. According to the results, a method based on the
Empirical Wavelet Transform provided the best performance removing the BW. Furthermore, the objective
and subjective results show that potential asymmetries between left and right eye movements are solved by
removing the BW. Regardless of the techniques used, BW removal is revealed to be a crucial step for any
autonomous SPEM processing tool.

INDEX TERMS Eye movements, smooth pursuit, baseline wander removal, Parkinson’s disease.

I. INTRODUCTION nigra. This degeneration leads to the classic motor symptoms
Parkinson’s disease (PD) is a neurodegenerative disease that of the disease, such as bradykinesia, tremors at rest and
is due to the death of dopaminergic neurons in the substantia rigidity [1]. In addition, certain nonmotor symptoms are
present in these patients, including eye movement defects.
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as multiple system atrophy and Huntington’s disease. These
abnormalities are documented in at least 75% of patients with
PD [2], [3], [4].

In PD patients, abnormal findings on clinical examination
of eye movements are subtle, such as mild hypometria of vol-
untary saccades; and evident abnormalities raise suspicion of
other parkinsonisms [10]. This is why laboratory recordings
of eye movements are emerging as an objective and accurate
assessment of the abnormalities related to the disease.

Seven types of eye movements are typically identified: fix-
ation, saccades, smooth pursuit, optokinetic reflex, vestibulo-
ocular reflex, nystagmus, and vergence [S]. However, most
studies concentrate on the analysis of three eye movements:
fixation, saccades, and smooth pursuits [6], [7]: fixations are
tiny involuntary displacements that seek to stabilise and keep
the focus on a fixed point of interest; saccades are rapid eye
movements that abruptly redirect the gaze from one point of
interest to another; smooth pursuit eye movements (SPEM)
are used to keep the image of a moving object in the fovea.
Despite the interest in fixations and saccades for the analysis
of PD, this paper is devoted to the study of SPEM.

SPEM tests were designed to evaluate in real time the
ability of a subject to follow the exact path of a moving target
object [8]. When this is not the case, corrective movements
are elicited in the form of saccades to catch up to the moving
target. While the presence of saccadic movements during
SPEM is considered normal, their frequency, extent, and type
are different in patients with PD compared to normal sub-
jects [9]. Several types of abnormal and involuntary saccadic
movements have been reported in the literature [9], namely
corrective saccades, which are elicited to eliminate existing
delays when SPEM lags with respect to a moving target;
anticipatory saccades, a type of ballistic movements that
anticipate future target positions; and saccadic intrusions,
which are involuntary movements taking the form of an initial
fast movement away from the expected eye position followed
by a return secondary saccade or a drift. The presence of
these corrective movements leads to a detectable decrease
in saccade amplitude and increased saccade latency, as well
as a slightly impaired smooth pursuit with catch-up saccades
[10]. PD patients also report reduced SPEM speed and gain,
compared to the normal population.

SPEM analysis is of clinical interest in evaluating PD
individuals, as shown by the proliferation of different studies
and approaches on this topic [6]. Unlike other types of eye
movements, SPEM are based on tracking targets in motion
and are dependent on motion perception in the middle tem-
poral area of the brain. Reciprocally, this area of the brain is
essential for the generation of SPEM [11]. This dependence
emphasises the relationship between the oculomotor and per-
ceptual structures. Consequently, SPEM has been identified
as helpful in the determination of disorders such as PD, due
to its correlation with motor dysfunctions [11], [12].

Reference [6] presents a complete systematic review of
the abnormalities found in SPEM of PD patients. However,
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despite the clinical interest in this technique, there are still
gaps to be filled before translating the SPEM analysis into
the clinical practise. This is because their analysis is far from
being simply due to artifacts imbricated in the sequences
gathered.

SPEM sequences are mainly captured using techniques
based on either electro-oculography (EOG) or video-
oculography (VOG). EOG records the electrical activity
(corneo-retinal standing potential) generated between the
front and the back of the human eye, through a set of elec-
trodes placed in the lower and upper eyelids [13]. Unlike
EOG, VOG involves cameras and image processing algo-
rithms to determine the horizontal and vertical positions of
the eye, either analysing the reflexions on the cornea or
determining the pupil position. EOG is computationally less
expensive; however, VOG offers a more convenient, more
accurate, and less invasive method of measuring eye move-
ments [14], which makes it more appropriate for clinical
settings. Due to the nature of SPEM, the sequences obtained
from these tests merge information on voluntary and invol-
untary eye movements. Involuntary movements are mainly of
saccadic origin (i.e., saccadic intrusions, corrective saccades,
and anticipatory saccades), whereas the voluntary movement
in SPEM corresponds to a low frequency sinusoidal pattern of
the eyes while following the target. This voluntary movement
introduces a Baseline Wander (BW) in the SPEM sequences,
which is also contaminated with other sources of information.
The BW might be considered an artifact causing the ampli-
tude of the SPEM sequence to drift up or down, obscuring
the potential analysis of the involuntary movements. For
EOG based SPEM sequences, the BW includes voluntary
movements of the eyes and other undesirable effects related
to electrode-based capture methods. In contrast, in VOG,
the BW is yet induced by voluntary movements of the eyes,
but also contains information from other sources: calibration
issues, ambient noise in the environment, undesired vision
disorders, troublesome head movements, certain attentional
problems, and any software or recording equipment issues.
In either case, the BW could tumble down a potential auto-
matic analysis of SPEM recordings, since BW perturbations
can mask the involuntary movements, which are of specific
interest and are typically a subject of investigation.

As will be discussed later, removal of BW in EOG signals
—as well as in other electrode-based recording methods—
has been extensively addressed in the literature. However,
to the best of the authors’ knowledge, no previous work has
dealt with the problem of BW removal in SPEM sequences
recorded with VOG equipment. In this context, we pose
the idea of removing the BW from the SPEM VOG-based
(VOG-SPEM) sequences as a required step for the further
analysis of saccadic movements, which are the primary
source of information for evaluating different neurodegen-
erative diseases (including PD). We hypothesise that this
preprocessing/denoising step would be of interest to isolate
the involuntary movements of the eyes and for a potential
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FIGURE 1. lllustration of VOG-SPEM sequences corresponding to the patient HF011. a) target and gaze positions for
the left eye; b) target and gaze positions for the right eye; c) residual obtained by subtracting the sinusoidal

background from the left and right eyes positions.

automatic parameterisation and analysis of the VOG-SPEM
sequences using signal processing and artificial intelligence
techniques.

Another fact supporting the need for BW removal proce-
dures is the necessity to remove the apparent asymmetries
that usually appear between both eyes in VOG-SPEM. These
apparent asymmetries are unreal since both eyes are supposed
to move synchronously and symmetrically [15], [16]. Such
coordination is explained because, in binocular vision, the
visual system combines the resulting, somewhat varied reti-
nal images, to generate a single percept, which triggers a
sensorimotor process that requires eye movements to keep
the lines of sight of the left and right eyes pointing to the
same target. In this respect, each eye has six muscles that
control movement in different directions. The brain also uses
a feedback system to precisely adjust the strength of the
12 muscles for each intended gaze direction. But, calibration
problems, head movements of the subject during recording,
certain attentional problems, and vision disorders (e.g., near-
sightedness) lightly deviate the VOG-SPEM sequences from
the target, suggesting a potential lack of coordination and/or
symmetry, which, in fact, might not be present.

To illustrate this phenomenon in VOG-SPEM, Fig. 1 shows
the target and gaze positions of a) the left eye and b) the right
eye (both corresponding to participant HFQ11). Fig. 1c shows
the sequences corresponding to the residual gaze position
for the left and right eyes obtained by removing the gaze’s
sinusoidal background (target position). Although different
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events appear at the same instant in time, the existing BW
might suggest certain asymmetries in the movement of both
eyes.

A potential solution to eye asynchrony is to develop tech-
niques for removing BW. BW removal is a well-known task in
biomedical signal processing contexts. In the past, this prob-
lem has been reported and analysed for other bioelectrical
signals such as EOG [17], [18], electromyogram (EMG) [19],
[20], electrocardiogram (ECG) [21], photoplethysmographic
signals [22], and pulse signals [23], among others. In these
cases, BW occurs primarily due to improper placement of the
subject’s electrodes, changes in skin resistance, or electrode
polarization, but other unavoidable events could also cause it,
such as the participant’s respiration and perspiration (causing
electrode impedance modifications). Although of a different
nature, these unpreventable events are also found in video-
oculography, which is of interest in their proper detection and
removal, since if not addressed, they would drift the estimated
subject’s absolute point of gaze [18].

The literature reports several techniques for the removal
of BWs, with a particular focus on ECG applications. Most
of these methods are generally based on infinite impulse
response (IIR) or finite impulse response (FIR) high-pass
filters, adaptive filtering, and moving average filters; or
based on the decomposition of the signals by using meth-
ods such as empirical mode decomposition (EMD), varia-
tional mode decomposition (VMD), and empirical wavelet
transform (EWT). In addition, different metrics were used
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to evaluate the estimated BW: metrics based on distance
(absolute maximum distance, sum of squares of the dis-
tances, percentage root mean square difference.-PRD), and
statistics-based metrics (mean square error, cross-correlation,
signal noise ratio.-SNR). A traditional approach to remove
BW in ECG is to use a high-pass filter with a cutoff frequency
of 0.7 Hz [24]. In [25] the authors compare different IR
filters (Butterworth, Elliptic, Chebyshev I, and Chebyshev II)
to remove the BW from the ECG sequences, and used SNR as
a metric [25]. Additionally, bandpass, adaptive, and Kalman
filters were used in [26] and [27] implements a non-linear fil-
ter bank to remove BW in ECG signals. When the undesirable
effects to be removed include nonlinear and nonstationary
changes (transients and fundamental frequency variations),
data-driven techniques, which can adapt to the characteris-
tics of the data, are more commonly used than filter-based
approaches. Most of these techniques are based on decom-
posing the signal into different time and frequency scales that
provide tools for extracting low- and high-frequency infor-
mation; also, they can perform locally and auto-adaptively
[28]. These techniques include the discrete wavelet transform
(DWT), EMD, EWT, and VMD [28], [29], [30], [31], [32],
[33]. In this sense, [34] compared methods based on Kalman
filtering, moving average filtering, cubic splines, DWT, and
EMD, suggesting the use of an approach based on EMD as the
best method to remove the BW. In [35], the authors compared
different mother wavelets using MSE and SNR metrics for
the removal of the BW, and the Sym10 wavelet yielded the
best result for their data set. In [31], a hybrid approach
of EMD, discrete wavelet transforms, and constrained least
squares was used for BW denoising. A similar approach is
discussed in [28], using VMD instead of EMD. In [36], EWT,
was used for BW removal from ECG signals, showing better
performance compared to standard linear filters and EMD.

In parallel to ECG applications, the literature also reports
the removal of BW for other biomedical signals. In [37],
the authors used a technique based on the quadratic varia-
tion reduction method to remove BW from ECG, EMG and
electroencephalographic (EEG) signals. In [38], the authors
used a linear deconvolution technique to correct the BW of
the EEG signals. Furthermore, several approaches have been
proposed to remove the BW from the EMG signals [19], [20],
[39]. Likewise, pulse signals are also affected by BW, and its
removal is the first preprocessing step to correctly measure
diagnostic parameters [40]. In [41], the authors remove the
BW of pulse signals using a method based on an energy
ratio and a Meyer wavelet filter. Similarly to other biomedical
signals, EMD was used to remove BW and reconstruct clean
pulse signals [23].

Furthermore, previous works have also highlighted the
need for BW removal in EOG [42], [43], [44]. In [17]
and [18], different methods were used to remove the BW
from EOG signals recorded for human-computer interaction
applications. The techniques included signal differencing,
high-pass filters, frequent resetting, and multilevel wavelet
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decompositions. The authors concluded that frequent reset-
ting and signal differencing best remove the BW drift; how-
ever, frequent resetting is impractical as it disrupts the user’s
interaction, whereas signal differencing alters the morphol-
ogy of the EOG signal, so they finally opted for a high-pass
filter which showed a similar performance than the wavelet
transform with less complexity. This result is in line with
those presented in previous works [45], [46] where high
or median pass filters and wavelet transforms were used,
independently or in combination, for a similar purpose. Since
EOG is an electrode-based acquisition method, the nature of
the perturbations to be removed differs from those of VOG.
Thus, these methods cannot be straightly extrapolated.

On the other hand, despite the extensive literature in the
field, the problem of removing the BW in VOG-SPEM
sequences poses certain challenges because of significant dif-
ficulties in the estimation of the ground truth (GT) to be used
for comparison purposes. Thus, one of the main challenges of
this work is the definition of a protocol to manually delineate
the GT that will be used for further comparison.

The main objective of this work is to propose and com-
pare different automatic methods for removing the BW from
VOG-SPEM sequences. As commented, this preprocessing
step is crucial to separate the voluntary and involuntary move-
ments of the eyes, to allow a simple evaluation of the syn-
chronisation and coordination of the left and right eyes, and
for potential automatic processing of these sequences using
machine learning techniques. As commented, this process
requires the definition of a set of guidelines to estimate the GT
that will be used for comparison purposes. These are impor-
tant milestones to be reached to transfer the SPEM analysis to
clinical practise. In this respect, this work contributes to the
translational medicine [47] in videoculography by proposing
solutions to BW removal in SPEM sequences.

The paper is organised as follows. Section II presents the
materials and methods to record the data set and clinical
assessments. Section III describes the criteria and protocols
for the delineation of the BW, the metrics to evaluate the
estimated BW, and the methods to remove the BW. Section IV
shows the results of the experimental analysis and discussion.
The conclusions are finally drawn in Section V.

Il. MATERIALS

A. PARTICIPANTS AND CLINICAL ASSESSMENTS

52 patients with PD and 48 healthy subjects of the same
age and sex were recruited as controls (Ctrl). Additionally,
for comparison purposes and to understand the relationship
between age and PD, 12 young controls (Yng) were recruited.
The mean age of the PD patients was 63.8 years (range
44-84 years), 64.26 years for the Ctrl group (range
46-80 years), and 25.04 years (range 23-30 years) for the
Yng cohort. Eleven out of the recorded participants’ eye
movements were discarded due to critical failures during
the recording process (double corneal reflexes, participants’
inability to follow the target, etc.). Furthermore, one of the PD
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patients was diagnosed with MS A during clinical assessments
and was also discarded from the analysis. Therefore, 41 PD,
47 Ctrl and 12 Yng participants were available for analysis.

The oculographic data of all participants were recorded
over a period of two years at two university hospitals of the
Madrid Community, Spain: the Fuenlabrada Hospital and the
Gregorio Marafién Hospital.

All participants received a clinical evaluation and their
medical history was recorded, including details such as the
age of onset of PD, duration of the disease, symptoms, and
complications. Patients with PD were assessed using the
Movement Disorder Society - Unified Parkinson’s Disease
Rating Scale (MDS-UPDRS) part III, the Montreal Cognitive
Assessment (MoCA), and the Beck Depression Inventory.
The mean of UPDRS for PD was 16.88 and for Ctrl was 1.5.

This study was approved by the Ethics Committee of the
Fuenlabrada and Gregorio Marafiéon Hospitals. All study par-
ticipants received written informed consent and signed for
participation.

B. RECORDING AND TASKS

Eye movements were recorded with an infrared video-based
binocular EyeLinke1000 Plus (SR Research Ltd, Ontario,
Canada) sampling at 1 kHz. The process is driven by
two computers: one to control the eye-tracking system and
another to present the stimuli. A LED monitor, which is
attached to the second computer, was placed 60 cm in front
of the patient.

The participant was seated with the head resting on a chin
rest. The distance from the upper knob of the camera to the
front of the chin rest is 50 cm. Before each recording session,
the eye tracker system was calibrated using a 9-point grid that
covers the area in which the targets were presented.

to
® O ®
C —

FIGURE 2. lllustration of the stimulus presented to the participants.
Participants fixate on a small white dot for 200 ms. which was placed in
the centre of the screen. After that, the white point disappears, and a red
moving dot appears in the centre of the screen. The SPT follows the
pattern of the red dot following the horizontal component of a
pendulum-like movement. The red-point stimulus moves according to the
arrow directions in the figure.
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Participants were required to fix their gaze on a small white
dot in the centre of the screen for 200 ms (Fig. 2). Then a
red dot moving target immediately appears on the screen.
The Smooth Pursuit Task (SPT) was performed following the
pattern described in Fig. 2. The SPT follows the pattern of
the red dot that moves with a certain frequency (0.2 Hz) and
amplitude (6 degrees) following the horizontal component of
a pendulum-like movement. The maximum viewing angle is
chosen to avoid potential head movements during the test.

lll. METHODS AND METRICS

A MATLAB® custom software was developed to per-
form different processes: data import, preprocessing, blink
removal, and analysis of the sequences extracted from the
VOG device.

During blinks, the eyelid closure creates a sudden artifact
in the sequence, making the amplitude go towards infinite,
which is followed by a subsequent sudden decrease towards
the initial (or slightly similar) position after the eyelid open-
ing. Meanwhile, the complete closure of the eyelids reports no
position of the eyes. Thus, blinks are preceded and followed
by these high amplitude artifacts, which make difficult an
automatic interpolation process of the sequence. Blinks are
initially detected using the automatic tools provided by the
EyeLink 1000 Plus device. However, the boundaries identi-
fied require a manual review process to identify the beginning
and end of these sudden increases and decreases of amplitude,
not to include them in the subsequent interpolation process.
The time interval between the beginning of the increase
in amplitude and the end of the decrease was removed,
and the middle segment was interpolated by using the
Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)
method [48].

To establish comparisons, as stated above, a GT is required
to compare different techniques of BW removal. Therefore,
the GT was manually delineated using the criteria and proto-
cols described below. The process is carried out in two stages:
first, the initial estimate of the BW was performed using
a simple moving average filter; subsequently, two experts
manually manipulated and adjusted the initially estimated
sequence to obtain the final sequence that will be used as GT
for comparison purposes.

A. CRITERIA FOR MANUAL BW DELINEATION

The simplified objective of manual delineation is to obtain the
GT that will be used for comparison purposes. The GT should
follow the path the participant follows with the gaze, assum-
ing that there are no involuntary movements. Ideally, the GT
should be a sinusoidal pattern similar to the target movement.
However, most of the VOG-SPEM recordings present a gaze
that is shifted with respect to the target in the presence of
certain events (e.g., saccadic intrusions, blinks, etc). These
gaze shifts alter the baseline. Moreover, the gaze points are
also shifted with respect to the target because of drifts that
occur due to calibration problems or due to compensation
for the lag with the target. Therefore, a protocol is required
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FIGURE 3. Example of SPT performed by participant HF011 (left eye, showing only horizontal movements). Figure 3a shows the following
events: compensatory saccades during the latency period in which the participant adapts to the target velocity (A1), a corrective saccade
solving an anticipatory saccade caused by the participant not expecting the deacceleration of the target (A2), noncorrected anticipative
saccade at the steady region (A3) and at a maximum region (A4); an interpolated blink (A5) and a corrective saccade solving an anticipative
saccade (A6) followed by a slight drift. Figure 3b shows saccadic intrusions composed of an anticipative saccade followed by an
intersaccadic interval and a corrective saccade (B1), a corrective saccade reaching the target after a drift (B2), and a noncorrected anticipative
saccade (B3). Figure 3c illustrates saccadic pursuit composed of compensatory saccades (C1), corrective saccade after a drift (C2), and a

saccade that defines a new pathway for the gaze (C3).

to correctly delineate the GT at each of the events/scenarios
that might be identified in the video-oculographic recordings.
According to the type of event addressed, this protocol is
divided into three sections: procedures to follow for saccadic
events, for saccadic pursuit, and for eyes drifting.

1) SACCADIC EVENTS

The protocol defines different procedures to follow for each

saccadic event that is present. Each of them is presented next:

a) Saccadic intrusion with intersaccadic interval: the GT
curve would go through the starting point of the first
saccade (in most cases an anticipative saccade) and it
passes through the middle of the second saccade (could be
back-up or corrective). This is due to the backup saccade
normally not stopping at the target and going beyond it,
therefore requiring a third smaller saccade that corrects
the backup/corrective saccade. The end of this third sac-
cade was the point chosen for the GT pathway, as shown
in Fig. 3b for saccadic intrusions in B1.

b) Saccadic intrusion without intersaccadic interval: the
GT will go through the starting point of the saccadic event,
and it will pass through the end of the saccade, leaving the
whole event outside the baseline.

¢) Anticipative saccades followed by fixation or drift: the end
of the fixation is the pathway to choose, as shown in the
event A3 of Fig. 3a.
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d) Noncorrected anticipative saccade: in case of an antici-
pative saccade starting a new pathway for the gaze that
differs from the expected one, the baseline will go through
the initial point of the saccade (unless a drift is present
previously, which is the case for the event C3 in Fig. 3c)
and will converge with the gaze.

e) Corrective or compensatory saccades: the baseline curve
would be restrained by the end of the saccade as it would
be the result of the correction of a previous event. Con-
secutive corrective saccades could be identified as com-
pensatory saccades for an insufficient VOG-SPEM gain,
which are common during the latency period (see Al in
Fig. 3a), but if they were present in most part of the signal,
it would imply a saccadic pursuit (see C1 in Fig. 3c).

2) SACCADIC PURSUIT

In case the VOG-SPEM sequence suggests a saccadic pursuit
behaviour, the baseline curve is delimited by the end of
the consecutive compensatory saccades, allowing the proper
isolation of the saccadic pursuit defining events and charac-
teristics (low VOG-SPEM gain that coerces several compen-
satory saccades). The residual would show the well-known
cogwheel pattern. Simplifying, this baseline would define the
pathway that the participant is trying to follow but is not able
to, requiring multiple saccadic movements to compensate for
the low VOG-SPEM gain (see Fig. 3c).

VOLUME 11, 2023



M. Bejani et al.: Baseline Wander Removal Applied to Smooth Pursuit Eye Movements From Parkinsonian Patients

IEEE Access

3) EYE DRIFTING
The eyes sometimes show inertial behaviour at the points
in which the stimulus changes direction (corresponding to
the extreme points of the target sequence). Thus, the gaze
is displaced, going beyond the stimulus, and increasing the
amplitude of the VOG-SPEM sequence. The following sce-
narios were considered for these cases:

a) With corrective saccade: there are cases in which
a corrective saccade is performed to reach the target
again, the end point of this saccade being the reference
point to draw the GT through the event (see A2 in
Fig. 3a).

b) With an anticipative saccade: a drift from the target
could be preceded by an anticipative saccade that is not
corrected by a backup saccade, rather than slowly cor-
recting the movement until reaching again the target after
the amplitude of the extreme points. In these cases, the
GT is drawn taking the starting point of the saccade
as a reference to continue until the gaze reaches the
target again (or at least close to it as in the event A6
in Fig. 3a).

¢) With two corrective saccades: in some cases, normally
in the first maximum of the first period of the sequence
(influenced by the latency period), the drift could be cor-
rected by two consecutive corrective saccades separated
by an intersaccadic interval. It could be considered that
both saccades are part of the same event of correction or
that they are two independent saccades. The first approach
was chosen and, therefore, when this event appears, the
GT was established considering the end of the second
corrective saccade.

d) No saccade: there are scenarios in which no saccades
occur. In this case, the GT is drafted considering the target
sequence, moving it one-third of the maximum amplitude
of the gaze drift. This decision was taken to properly
isolate the drift of the eye from the target as an event to
be considered.

In addition to the aforementioned scenarios, sometimes a
saccadic intrusion appears at the extreme points in which
the stimulus changes its direction. This scenario could be
identified as either a correction of the drift or as an inde-
pendent event. These cases require a specific evaluation of
the participant’s gaze behaviour with respect to the target.
Generally, the drift appears as a product of the inability of
the participant to decelerate at the same rate as the target.
Therefore, the drift event and its corresponding corrective
saccade (in case it exists) would be below the target line at a
minimum and above the target at a maximum. If this occurs,
accepting this event as a corrective saccade is considered
correct, so the already described procedure is applied (this
is the criterion applied for case A6 in Fig. 3a). If not, the
possibility of this event being a saccadic intrusion should be
considered.

The appearance of a drift or displacement is also pos-
sible (but not as common) in the steady regions in which
the velocity is constant, therefore not being directly caused
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by the deceleration of the stimulus. These cases could be
explained by participant distraction and, normally, are solved
by a corrective saccade, with the GT drafted following the
same criteria as in the extreme points.

B. METRICS FOR EVALUATING THE SIMILARITY OF TWO
SEQUENCES

Four similarity metrics were used to quantitatively evaluate
the similarity of the estimated BW with respect to the manu-
ally delineated GT.

To prevent possible signal strength (amplitude) bias, the
sequence was first normalised, ensuring that all sequences are
within the same range.

The four metrics used are explained below assuming two
sequences, sj[m] and sp[m], with a length of R samples,
where si[m] is the GT sequence, sp[m] is the estimated
sequence, and m is the number of the current sample of the
sequence.

1) Percentage Root-Mean-Square Difference Metric
(PRD) (eq. 1): PRD is a widely used similarity metric
based on distance (1). It ranges in the interval [0, 100],
with 0 being the best value.

> nei (s1[m]—sp[m])?
> Rt (s1[m]—s))?
where s] is the mean value of the original sequence, s{[m].
2) Root Mean Squared Error (RMSE) (eq. 2): it is the
square root of the mean square of all the errors (2).
RMSE ranges in the interval [0.. co), being O the best
value.

PRD (s[m],s2[m]) = 100% (1)

RMSE (s1[m],s2[m (2)

3) Symmetric Mean Absolute Percentage Error (SMAPE)
(eq. 3): measures the accuracy of an estimation system as
a percentage according to (3),. SMAPE provides values
in the interval [0, 200], with O being the best value.

b \/ >R} (s2[m]—s[m])?
N R

1< [sofm]—s;[m]|
SMAPE (1 {m o) =g 2. 70 i oty 72 %

m=1
(3)
4) Signal Noise Ratio (SNR) (eq. 4): compares the GT
level with the level of the residual. The residual is the
difference between the GT and the estimated sequence.
SNR is defined as the ratio of GT power to residual
power (4). SNR provides values in the interval [0.. c0),

being oo the best value.
VD silml?

IR 1T mi—sol m])?
“)

The goal is to get the smallest feasible value for PRD,
RMSE and SMAPE and the largest values for SNR; thus,

the estimated BW is regarded as the closest approximation to
the GT.

SNR (s1[ m], s[ m]) =20 -log,
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TABLE 1. Mean value and std. of the objective metrics used for the seven BW removal methods developed. Results aggregated (all), for Ctrl, PD, and Yng

groups.
Method PRD RMSE SMAPE SNR
PD 15.90 = 17.32 0.044 £ 0.040 9.98 =527 2477 £5.67
Cul 18472 15.76 0.051 £0.037 10.79 = 5.45 23.65% 634
EMD Yng 7555355 0.025 0011 8685317 BATL367
All groups 15.95 14.94 0.045 £ 0.034 0641a 24495561
PD 135421506 0.038 £ 0.036 8302454 2621 £5.68
Cul 1476 % 12.40 0.040 £ 0.028 8502411 25372593
VMD Yng 6102262 0.020 £ 0.008 7512273 30.18 £ 3.36
All groups [ERFESERD) 0.037 £ 0.031 830<4.15 2629 £5.76
PD 12331325 0.035 £ 0.031 9.78%5.02 2667%5.16
Cul 1274 10.06 0.035 20023 104954904 26072499
FDM Yng 6142194 0.020  0.006 9,68 £3381 2081245
All groups 781112 0.033 £ 0026 10.10 £ 4.85 2719597
PD 10.80 = 12.87 0.030 £ 0.030 8692480 2828552
Cul 10.65 % 8.99 0.029 £ 0.021 9142521 2792538
EWT Yng 492£137 0.016 £ 0.004 9195422 31.68 234
All groups 10.02 £ 10.44 0.028 £ 0.024 896:4.92 2852:528
PD 11731393 0.033£0.033 6.98 %439 2772:5383
Cal 12571118 0.034 £ 0.026 738 £4.12 27.11£640
MAF Yng 52122.03 0.017 0,006 645+ 2.83 31452316
All groups 113421196 0.032%0.028 7102410 2783 £ 6.00
PD 113421243 0.032 £ 0.030 8545511 2770£5.75
Cal 1178988 0.033 £ 0.024 9.05:495 2720%5.74
1R Yng 5212222 0.017£0.007 8082356 31512327
All groups 10.81 = 10.65 0.030 £ 0.026 8722486 27.92£565
PD 11402 12.00 0.032 £ 0,030 8.86 £ 588 2756572
Cul 11462908 0.032£0.023 9155517 2716 £546
EMD2 Yng 5302206 0.017£0.006 8142330 3124294
All groups 10.78 £ 10.22 0.031 £0.025 895530 28.00% 545

C. METHODS EVALUATED FOR REMOVING THE BW

This section presents a brief description of the techniques
evaluated to remove the BW of the VOG-SPEM sequences,
Sp[m].

Five of them are based on decomposition techniques,
which are common methods used to identify modal infor-
mation in time-domain signals. In this work, following the
indications in [49] and [50], different modes were extracted
and combined in the search for the best estimate of the BW.
Since BW is a low-frequency artifact, it is expected that the
main BW components will be located in the low-frequency
modes (i.e. the last ones, according to the usual criterion of
decomposition) of each of the methods used. For comparison
purposes, two additional techniques based on IIR and moving
average filters were also implemented. The methods evalu-
ated are the following!:

1) Empirical mode decomposition (EMD): EMD was first

introduced in [51]. It is a method for decomposing
a time domain signal into several sub-bands using an
iterative approach. These various components (corre-

IThe source code of the methods is available at: https://github.com/
BYO-UPM/BW-SP-Analysis-PD This repository also contains several
SPEM examples, their associated manually delineated ground truth, and a
simple interface to display the results.
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sponding to the sub-bands) are termed intrinsic mode
functions (IMFs). Since EMD is entirely data-driven,
there is no need to decide how many IMFs to use.
The signal is decomposed using the EMD method from
high to low frequency, with the lowest frequency com-
ponent remaining in the residual. IMFs do not have a
predefined frequency range, since the number of IMFs
may vary depending on the signal. Therefore, to distin-
guish between clean and noisy IMFs for BW estimation,
human intervention is usually required. In this work,
the estimated BW of the VOG-SPEM was calculated
by aggregating the last six IMFs and the residual. This
parameter (six) was obtained by iteratively aggregating
the IMFs (from last to first) until the best estimate was
obtained. (Figure 9a in Appendix 2).

2) Variational mode decomposition (VMD): initially pro-
posed in [52]. Like EMD, VMD is a sequential pro-
cess that decomposes a signal into different IMFs that
reconstruct the original signal jointly. The primary dis-
tinction is that the VMD approach uses a non-recursive
but analytical decomposition technique where the IMFs
are decomposed simultaneously around their centre
frequency, whereas EMD decomposes the signal adap-
tively and is data driven. To select clean IMFs, new
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FIGURE 4. Normalized mean value (based on the maximum and
minimum values) for each method and metrics of SPT sequences (for the
SNR metric, the graphic shows NSR=—SNR for coherence with the other
metrics). The missing values are equal to 0 (0 corresponds to the
minimum of the normalized value, and 1 to the maximum).

experiments are required because the VMD is a com-
pletely different approach from the EMD. The optimum
BW of VOG-SPEM was obtained using only the last
extracted IMF (Fig. 9b in Appendix 2).

3) Fourier Decomposition Method (FDM): the FDM, first
introduced in [53], is an adaptive signal decomposition
method based on the well-established discrete Fourier
transform and the use of zero-phase non-causal FIR
filters. The method is efficient for the analysis of non-
linear and nonstationary time series. This study used a
high-pass filter with a 0.6 Hz cutoff frequency for the
FDM method (Fig. 9c in Appendix 2).

4) Empirical Wavelet Transform (EWT): EWT is also a
method for decomposing a time series into various
modes. Although the EMD presents an excessive num-
ber of modes, the EWT provides a more consistent
decomposition. Unlike EMD, which lacks a mathemat-
ical foundation, EWT is a fully adaptable, data-driven
signal processing technique with a well-defined math-
ematical background. The Fast Fourier Transform of
the signal is computed initially, followed by the calcu-
lation of the boundaries using the segmentation of the
Fourier spectrum, and finally the acquisition of vari-
ous modes using an adaptive wavelet filter bank based
on the boundaries [54]. In this work, the VOG-SPEM
sequences are decomposed into three modes through
EWT, and the last three modes are selected to esti-
mate BW. The best number and combination of modes
are obtained by testing different scenarios (Fig. 9d in
Appendix 2).

5) Moving Average Filter (MAF): this method was used
in [55] to eliminate BW in ECG signals. It gives local
k-point means, where each mean is computed for k-point
sliding windows of nearby elements in the sequence.
The method behaves like a low-pass filter computed
in the time domain. In this study, the value of k was
experimentally fixed at 600 (Fig. 9e in Appendix 2).

6) IRR filtering: an IIR high-pass filter with a cutoff
frequency of 0.5 Hz was used. The cutoff frequency
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was experimentally identified by testing different values
(Fig. 9f in Appendix 2).

7) EMD2 (EMD by high-pass filtering each IMF): this
method is based on a combination of an EMD and an IIR
filtering. In this work, the VOG-SPEM sequences were
first decomposed into the number of IMFs identified by
the EMD method and then filtered with an IIR filter
which was applied to the last six IMFs. The estimated
BW of the VOG-SPEM is extracted by summing up
the last six filtered IMFs and the residual. In this work,
a high pass filter with a 0.9 Hz cut-off frequency was
used (the cut-off frequency is experimentally obtained
by testing different values (Fig. 9g in Appendix 2).

Appendix 2 details the different experiments that were car-
ried out to identify the best hyperparameters of each method.
Note that differences in the cutoff frequencies are expected
for the different methods, as reported in [56].

IV. RESULTS AND DISCUSSION

Table 1 shows the mean value of the metrics used for each
method and the Ctrl, PD, and Yng cohorts. As can be seen in
this table, the Yng group has low values for PRD, RMSE,
and SMAPE metrics and high SNR values. Furthermore,
individually, for the three cohorts (Ctrl, PD, and Yng), and
according to the PRD, RMSE and SNR metrics, the best
BW removal method is the one based on EWT, although
MAF provided competitive results according to the SMAPE
metric.

However, the differences in metrics between the Yng and
Ctrl groups and the Yng and PD groups reported significance
(Table 2 in the appendix). However, there are no significant
differences in the metrics obtained between the PD and Ctrl
cohorts (Table 2 in the appendix). This is attributed to the
fact that participants in the Yng group could easily follow the
target; thus, the estimated BW using the different methods
contains small differences concerning the GT. At the same
time, in the Ctrl and PD cohorts, patients report more diffi-
culties following the target, which are corrected with saccadic
events, producing certain divergences between the estimated
BW and the GT.

Table 1 shows the mean value for each method and the met-
rics of the SPT sequences for the aggregation of all cohorts.
As shown in Table 1 and Fig. 4, the EWT performs better
than the remaining methods based on PRD, RMSE, and SNR
metrics; but for SMAPE, MAF performs better than other
methods.

Beyond the error results and the selection of the best
method according to the GT, it is also important to analyse
the limit cases in which the removal methods, and particularly
EWT as the best method so far, do not perform as expected.
Fig. 5 shows those cases with the worst performance of BW
removal. These examples are presented to highlight the errors
committed in BW removal using EWT. Fig. 5a shows the
results for participant HGO51 (right eye), which has a high
value of RMSE and a low value of SNR (RMSE = 0.143 and
SNR = 12.51 for the EWT method). Fig. 5b shows the results
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FIGURE 5. Results using the EWT method for those participants reporting the worst metrics: a) HG051 (PD patient
with H&Y = 2).; b) HG023 (Ctrl participant who was very nervous during the recording session, and required

multiple repetitions).

—Gaze
——residual (GT)
——residual (EWT)

0.5

Amplitude

a) HG023
I

0 4000

b) HG059
I

8000 12000
Time (ms)

—Gaze
——residual (GT)
~——residual (EWT)

Amplitude

0 4000

8000 12000

Time (ms)

FIGURE 6. The residual sequence for: a) the case with the worst performance of the BW estimation using EWT (HG023);
b) the case with the best performance of the BW estimation using EWT corresponds to a rigid-akinetic PD patient with

H&Y=1 (HG059).

for the participant HG023 (left eye), which has a high value
of PRD and SMAPE (PRD = 47.68 and SMAPE = 31.8 for
the EWT method). The bias between the estimated BW and
the GT is due to the presence of different strong involuntary
events in the sequences.

Furthermore, the inaccuracies in the BW estimation
observed in Fig. 5 might leave unwanted artifacts in the
obtained residual sequences after BW removal. Fig. 6 shows
two examples of residual sequences calculated by removing
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the BW (estimated using EWT) from the gaze position.
Fig. 6a shows the residual sequence for the participant
who reported the worst results (HG023). As expected, this
Fig. shows that the residual best revealing all involuntary
events is obtained by removing the GT from the gaze position.
However, the residual obtained by subtracting the estimated
BW also shows such involuntary events. In contrast, Fig. 6b
shows the participant who reported the best results (HG059).
The alignment between the residual sequence obtained by
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FIGURE 7. Illustration of the residual for the patient HF011: a) residual calculated by subtracting the sinusoidal background
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FIGURE 8. Box plot of the DTW similarity metric between left and right
residuals subtracted from the Target (i.e. sinusoidal pattern), GT, and BW
(by EWT). For the sake of comparison, 8 outliers were removed from the
target column.

removing the BW (estimated using EWT) and that obtained
by removing the GT is excellent.

Notwithstanding, in certain limit cases, some spurious
behaviours persist. The recovered alignment of VOG-SPEM
observed in Fig. 6b after removal of BW is in line with the
expected synchronisation between the eyes. In this sense,
Fig. 7a shows the existing asymmetries between the two eyes
reported in Fig. 1, which are due to calibration and record-
ing issues. Furthermore, Fig. 7b displays the residual signal
obtained by subtracting the GT from the gaze position of the
participant HF011, and Fig. 7c shows the residual obtained
by subtracting the estimated BW (by EWT) from the gaze
position of the participant HFO11. Figs. 7b and 7c show that
the expected symmetry is recovered after the BW removal.
The asymmetries between the two eyes for the residual signal
obtained by subtracting the target (i.e. sinusoidal pattern), GT,
and BW (using EWT) from the gaze position were evaluated
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for all subjects in the experiments using a similarity met-
ric based on dynamic time warping (DTW) [57], reporting
242.39 (std. 347), 59.52 (std. 32), and 50.71 (std. 22) for
the three types of residuals, respectively. Fig. 8 shows the
box plots of the DTW similarity metric obtained. The results
suggest that the removal of the BW solved the asymmetries
between the two eyes. However, after removing the BW, there
are still certain asymmetries, since individuals with PD and
elder Ctrl may be lightly impaired in binocular coordination
during SPEM [12], [58].

V. CONCLUSION

VOG-SPEM sequences merge voluntary and involuntary eye
movements. The voluntary movements correspond to a quasi-
stationary low frequency sinusoidal-like sequence with a
main component centred on the frequency of the stimulus,
whereas involuntary movements are mainly of saccadic ori-
gin and contain high-frequency components. This voluntary
movement introduces a BW in the VOG-SPEM sequences,
which is considered an artifact causing the amplitude of the
VOG-SPEM sequence to drift up or down. The BW also
contains information from other sources, including calibra-
tion issues, environmental noise, attentional problems, vision
disorders, head movements, and potential software or record-
ing equipment problems. Therefore, we propose the idea of
removing the BW for a further analysis concentrated on the
involuntary movements alone, which are the main source of
information for the evaluation of different neurodegenerative
diseases (including PD). Additionally, accurate removal of
BW is considered a crucial step for a clinical evaluation of
the synchronisation and symmetries in the movements of both
eyes.
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TABLE 2. The p-values of the differences between the metrics obtained for the three groups.

Method Groups PRD RMSE SMAPE SNR
PD vs. Ctrl 0.30 0.28 0.31 0.22
EMD PD vs. Yng 0.02 0.02 0.25 0.003
Ctrl vs. Yng 0.001 »<0.001 0.07 »<0.001
PD vs. Ctrl 0.57 0.62 0.70 0.38
VMD PD vs. Yng 0.02 0.02 0.44 0.002
Ctrl vs. Yng 0.001 »<0.001 0.26 »<0.001
PD vs. Ctrl 0.82 0.89 0.34 0.44
FDM PD vs. Yng 0.02 0.02 0.93 0.005
Ctrl vs. Yng 0.002 0.002 0.45 p<0.001
PD vs. Ctrl 0.92 0.85 0.39 0.57
EWT PD vs. Yng 0.03 0.02 0.38 0.004
Ctrl vs. Yng 0.002 0.002 0.80 »<0.001
PD vs. Ctrl 0.66 0.72 0.53 0.51
MAF PD vs. Yng 0.02 0.02 0.58 0.003
Ctrl vs. Yng 0.002 0.002 0.30 0.002
PD vs. Ctrl 0.80 0.90 0.50 0.56
IIR PD vs. Yng 0.02 0.02 0.68 0.002
Ctrl vs. Yng 0.002 0.002 0.37 »<0.001
PD vs. Ctrl 0.80 0.90 0.50 0.56
EMD2 PD vs. Yng 0.02 0.02 0.68 0.002
Ctrl vs. Yng 0.002 0.002 0.37 p<0.001
a) b) c) d) e) f) g)
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FIGURE 9. Influence of the hyperparameters of each method in the results (normalized amplitude). a) Performance of the EMD method for different
accumulated number of IMFs; b) Performance of the VMD method for different accumulated number of IMFs; c) Performance of the FDM method vs.
cut-off frequency; d) Performance of the EWT method vs. maximum number of modes and combination of modes required to estimate the BW;

e) Performance of the MAF method vs. k values; f) Performance of the IIR method vs. cut-off frequency; g) Performance of the EMD2 method for different

cut-off frequencies of the residual.

In this context, this work has presented a quantitative com-
parison of the performance of seven different methods for
the estimation of the BW present in VOG-SPEM sequences,
which is based on the maximum similarity between the esti-
mated BW and a manually delineated GT. In this regard, one
of the main contributions of this paper is the proposal of a
set of guidelines and a method to manually delineate the GT
that was used to isolate the involuntary events considered of
interest and for comparison purposes. The development of
this protocol has opened the door to propose, for the first time,
a set of methods to eliminate the BW from SPEM sequences
recorded using VOG means.

For comparison purposes, this work has proposed the use
of seven different methods, namely: EMD, VMD, EWT,
FDM, EMD2, IIR filtering, and MAF. These methods were
objectively evaluated according to four different metrics
(PRD, RMSE, MAF, and SNR). The EWT method pro-
vided the best performance according to three of the met-
rics used (PRD, RMSE, and SNR). The results also show
that MAF performs well according to the SMAPE metric.
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In addition, EMD and IIR filtering provide good results, close
to those of the EWT. Subjective results also demonstrate
that the proposed methods provide very good results, signifi-
cantly removing all voluntary movements in the VOG-SPEM
sequences. This is especially visible when comparing the
movements of the left and right eyes. Furthermore, the asym-
metries between the movements of both eyes that usually
appear due to calibration and recording issues disappeared
significantly after removing the BW.

Regardless of the method used to remove the BW from
the VOG-SPEM sequences, removing it is considered an
essential step to recover the expected synchronisation and
symmetries in the movements of both eyes. Besides, this is
also considered essential to isolate the involuntary move-
ments and for further automatic processing of them.

Once this step is done, we are in a good position to apply
automatic methods to the evaluation and analysis of the resid-
uals, with the aim of characterising the involuntary move-
ments present in the VOG-SPEM sequences using artificial
models.
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Although this study provided valuable information on the
effectiveness of different methods for removing BW from
SPEM sequences, several potential limitations exist. First,
the sample size for the study was relatively small, with only
52 patients, 60 controls, and 12 young participants. Although
this allowed for a detailed comparison of the different BW
removal methods, a larger sample size could result in more
robust and generalisable findings. Second, the methods used
can only be applied to the SPEM analysis. Thus, removing
the BW from sequences obtained with other stimuli would
require different techniques. This limitation might also apply
to SPEM obtained using different amplitudes and/or periods
of the target. Third, due to the lack of an existing ground
truth, it was manually delineated, which might introduce
human bias and subjectivity into the results. Despite these
limitations, the results of this study provide valuable insights
into the effectiveness of different BW removal methods for
SPEM sequences and highlight the importance of removing
the BW.

APPENDIX 1

This Appendix contains the results of an ANOVA statistical
analysis carried out to check the differences between the
metrics calculated to assess the similarity of the GT and the
estimated BW for PD patients vs. Ctrl groups, PD patients
vs. Yng groups, and Ctrl vs. Yng groups (Table 2). For the
comparison between the PD and Ctrl groups, the results show
that there are no significant differences between the metrics
obtained; but certain differences could exist between the PD
and Yng groups, and between the Ctrl and Yng groups, since
Yng can follow the target more consistently, likely due to
attentional or cognitive matters.

APPENDIX 2

This appendix summarises the results of the experiments
performed to select the hyperparameters that provided the
best results for each BW removal method used.

For the EMD method, the estimated BW of the VOG-
SPEM was calculated by adding the last six IMFs to the
residual. This parameter (six) was obtained by iteratively
aggregating the IMFs (from last to first) until the best estimate
was obtained (Fig. 9a).

For the VMD approach, the IMFs were iteratively aggre-
gated from last to first until the best estimation was obtained.

Fig. 9b reports that only one IMF (the last) is required to
get the best performance.

Fig. 9c shows the performance of the FDM method for
several cutoff frequencies. Based on the results, the cutoff
frequency of the FDM method was selected as 0.6 Hz to
provide the best estimate.

The EWT method requires adjusting two hyperparameters:
the maximum number of modes and the combination of
modes required to estimate the BW.

Fig. 9d shows the performance of BW estimation for this
method vs. the maximum number of modes and the combi-
nation of modes required. The best performance is obtained
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using three modes for calculating the EWT, also estimating
the BW using three modes.

Fig. 9e compares the performance of the MAF method
for different values of k. According to the plot, the best BW
estimation was obtained for a value of 600.

The cutoff frequency of the IIR method was experimentally
identified by testing different values. According to the results
presented in Fig. 9f, it was fixed to 0.5 Hz.

The estimated BW by EMD?2 is extracted by summing up
the last six IMFs and filtering the residual using a high pass
filter with a 0.9 Hz cut-off frequency. This cut-off frequency
is obtained experimentally by testing different values accord-
ing to the results provided in Fig. 9g.
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