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ABSTRACT Traditional negative sequential patterns(NSPs) mining algorithms are used to mine static
dataset which are stored in equipment and can be scanned many times. Nowadays, with the development
of technology, many applications produce a large amount of data at a very high speed, which is called as
data stream. Unlike static data, data stream is transient and can usually be read only once. So, traditional
NSP mining algorithm cannot be directly applied to data stream. Briefly, the key reasons are: (1) inefficient
negative sequential candidates generation method, (2) one-time mining, (3) lack of real-time processing.
To solve this problem, this paper proposed a new algorithm mining NSP from data stream, called nsp-DS.
First, we present a method to generate positive and negative sequential candidates simultaneously, and a
new negative containment definition. Second, we use a sliding window to store sample data in current time.
The continuous mining of entire data stream is realized through the continuous replacement of old and new
data. Finally, a prefix tree structure is introduced to store sequential patterns. Whenever the user requests,
it traverses the prefix tree to output sequential patterns. The experimental results show that nsp-DS may
discover NSPs from data streams.

INDEX TERMS Data stream, transient, sliding window, negative sequential patterns (NSPs).

I. INTRODUCTION
Sequential pattern mining aims to discover regular sequential
patterns from a dataset of ordered events. Sequential pattern
mining has been widely used in the field of group behavior
analysis [1], [2], [3], optimization strategy [4], classification
and clustering problem [5], [6], phenotypic structure learn-
ing [7], comparative behavior analysis [8], abnormal behavior
detection [9], business intelligence [10], [11], education [10],
recommendation system [12] and so on. In traditional sequen-
tial pattern mining research, sequence data are mostly in
static form, but in reality, sequence data are mostly presented
in a continuous dynamic ‘‘stream’’. Data stream [13], [14],
[15] is a set of continuous sequence information, such as the
user’s network click stream, call data, sensor network data,
scientific data, online retail transaction data, real-time stock
transaction data, and network color data. Sequential pattern
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mining in data streams is an important research branch of
sequential patterns mining.

However, the current research on sequential patterns min-
ing in data streams only focuses on positive sequential pat-
terns(PSPs), and no relevant research on NSPs mining has
been found. Meanwhile, traditional NSP mining algorithms
only target static datasets and cannot be applied directly
to data streams. The data stream-oriented sequential pattern
mining algorithm needs to take more into account the contin-
uous, fast, real-time, massive, changing and orderly charac-
teristics of the data stream. So, it is challenging to apply total
algorithms in static datasets to data streams. The reasons are
as follows:

1) Inefficient Negative Sequential Candidates Method.
Current NSPs mining algorithms first mine PSPs, and then
generate and obtain NSPs based on PSPs. This segmental
method will produce a lot of intermediate results and affect
the mining efficiency.

2) One-time Mining. Traditional NSPs mining is based
on static datasets. All sequences are stored in memory
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simultaneously. So, traditional algorithms process all data
at one time. But, NSPs mining in data streams is based on
continuous, rapid, and massive data. It is difficult to keep an
entire data stream in memory, so it becomes impossible to
process all data at one time.

3) Lack of Real-time Processing. Mining in data streams
has higher requirements for speed. The real-time arrival and
processing of the data stream are not available in traditional
NSPs mining.

Based on the traditionl sequential pattern mining algo-
rithms, the purpose of this paper is to propose a sequential
pattern mining algorithm that can be adapted to data stream
mining scenario. In this article, we propose an efficient algo-
rithm, named nsp-DS, to mine NSPs from data streams. nsp-
DS introduces ideas such as slidingwindows, prefix trees, etc.
The main idea is as follows.

First, we propose a method to generate positive and nega-
tive sequential candidates simultaneously, by improving the
S-Step process in SPAM [16]. At the same time, we present
a new negative containment definition suitable for mining
PSPs and NSPs simultaneously. nsp-DS uses a bitmap to
store data and uses bitwise operations to calculate support
while generating candidates, which requires each item to be
represented on the bitmap in a one-to-one correspondence.

Second, nsp-DS uses a sliding window to store sample
data at the current time. When sliding window is first full,
the algorithm mines the dataset in the window for the first
time. When new data arrives, it replaces the oldest data by
overwriting to update the sliding window. Then, we continue
to mine the current window according to new data.

Third, we design a prefix tree structure to store sequential
patterns. When the sliding window is first full, we create
a prefix tree to store NSPs. With the arrival of new data,
we mine the current window only by the new data and
update the prefix tree using the mined sequential patterns.
This operation can avoid repeated mining of old data in the
sliding window and improvemining efficiency.Whenever the
user requests, it traverses the prefix tree to output sequential
patterns.

Finally, we propose the corresponding algorithm, called
nsp-DS, for mining NSPs from data stream, and conducte
some experiments in four real-world datasets. The experi-
mental results show that nsp-DS can mine NSPs from data
stream efficiently.

The rest of this paper is organized as follows. Section II
discusses related work. In Section III, we introduce funda-
mental concepts about mining sequential patterns in data
streams. Section IV implements the proposed method in
detail. Section V describes the experiments and explains the
experimental results. Section VI concludes this work.

II. RELATED WORK
Currently, we only find relevant studies on PSPmining in data
streams, but not on NSP mining. The relevant research on
NSP mining is focused on static datasets. So, in this section,

we introduce works related to NSPs mining in static datasets
and PSPs mining in data streams.

A. NSPS MINING IN STATIC DATASETS
NSPs refer to a frequent sequence that contains both occur-
ring and unoccurring events. However, it is much more dif-
ficult to discover NSPs than PSPs due to the complexity of
the problem caused by unoccurring behavior. But, it is obvi-
ous that mining NSPs will find more valuable information.
According to different requirements, researchers have pro-
posed corresponding definitions and algorithms [17], which
are wildly used in medical education, behavior analysis,and
other fields [7], [8], [9]. Hsueh. et al. proposed PNSP algo-
rithm, which converts frequent positive elements to negative
elements and then generates negative sequential candidates
by concatenation [17]. Zheng et al. proposed NegGSP [18]
algorithm based on GSP [19], which scans the dataset to
get NSPs. Cao et al. proposed a very innovative and effi-
cient theoretical framework: the set theory-based NSPmining
(ST-NSP) and the corresponding algorithm e-NSP [20].
It identifies NSPs only by PSPs discovered without
re-scanning the database, which makes e-NSP performs par-
ticularly well on datasets with a small number of elements
in the sequence, a large number of itemsets, and low min-
imum support. However, when the dataset becomes dense,
the key process of obtaining the support of negative sequence
candidates in e-NSP becomes very time-consuming. To solve
the problem, Dong et al. proposed f-NSP [11] algorithm,
which uses a bitmap to store the information of PSP, and then
obtains the support degree of negative candidate sequences
only through bit operation, and is much faster than the hash
method in e-NSP. To mine the expected number of NSP,
Dong et al. proposed a TopK-NSP algorithm [12] to mine
k common NSP. Gao et al. proposed sc-NSP [21]. sc-NSP
improves PrefixSpan algorithm and increases negative can-
didate sequences by relaxing constraints conditions, which
makes more interesting candidate sequences found.

B. PSPS MINING IN DATA STREAMS
The initial research work on data streams was first carried
out by Alon et al. in 1996 [22]. Data stream model was
proposed by Henzinger et al. in 1998. Later algorithms on
data streams proliferate. These algorithms are generally based
on traditional sequential pattern algorithms, combined with
window models commonly used for data stream mining to
extend and optimise the algorithms to obtain new algorithms.
Chedi et al. proposed SPEED [23] which uses a novel treereg
data structure to store useful information. On the basis of
SPEED algorithm, Lei et al. proposed the Seq-Stream algo-
rithm [24]. Shih-Yang Yang et al. designed an incremental
mining algorithm IAspam [25] to mine sequential patterns in
interaction streams. Meanwhile, Shih-Yang Yang et al. also
proposed the ICspan [25] algorithm to mine closed sequences
in data streams. Referring to the two algorithms proposed by
Shih-Yang Yang, Guanling Lee et al. proposed PAlgorithm
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and PSAlgorithm [26] to mine sequential patterns in data
streams, and these two algorithms use the data structure
Path-Tree to effectively integrate some of the mining results.
CI Ezeife et al. proposed the SSM (Sequential Stream Min-
ing) algorithm [27], which decomposes the data stream into
blocks of variable size. Mendes, J.Han et al. proposed the
SS-BE (Stream Sequence miner using Bounded Error) algo-
rithm [28] and SS-MB (Stream Sequence miner using Mem-
ory Error) algorithm [28], both of which decompose the
data stream into data blocks, and then mine sequential pat-
terns in each data block. He Xingxing et al. proposed an
efficient pruning-based sequential pattern mining algorithm
SSPM(Stream Sequential Pattern Mining). Raissi and Pon-
celet [29] proposed a sampling-based algorithm for approx-
imating global patterns. Tanbeer S K [30] et al. proposed
an algorithm combining sliding window with CPS-tree for
data stream sequential pattern mining. Shakeri O [31] et al.
proposed a data stream sequential patterns mining algorithm
with fuzzy constraints.

III. FUNDAMENTAL CONCEPTS
Data stream(DS) can be defined as continuously incoming
sequences at a certain speed, DS = {S1, S2, S3, . . . , Sn, . . .}.
Let I = {i1, i2, i3, . . . , in} represents a collection of items in
DS. Si is a sequence, which consists of some or all of items
in I , Si = {s1, s2, s3, . . . , sk} (1 ≤ k ≤ n) where sj(1≤j≤k)
is an element and contains only one item in I , ∀Si, Si ⊆ I .
The number of all elements in the sequence S is called the
size of the sequence, denoted as size (S). If the size of S is
m, size (S) = m, it is the m− size sequence. Assuming S1 =
⟨d, c, f , c⟩, it is a 4-size sequence, and size (S1) = 4.
If the sequence of α = ⟨α1, α2, . . . , αn⟩ for the sequence

β = ⟨β1, β2, . . . , βn⟩ or β is a supersequence of α, it needs
to satisfy the requirement of 1 ≤ j1 ≤ j2≤. . .≤jn≤m and
α1⊆βj1 , α2⊆βj2 ,. . . , αn⊆βjn , denoted as α⊆β(β includes
α). For example, a subsequence of ⟨a, b, c, e⟩ is ⟨ce⟩, and
⟨a, b, c, e⟩ is a supersequence of ⟨c, e⟩.

Sliding Window(SW = {S1, S2, S3, . . . , Sw}), constitutes
an instantaneous sample of DS. w, the width of SW , is the
number of sequences contained in SW . w is set by the user.
For all sequences in a given window SW of a data stream, the
support of sequence s is defined as sup(s) = f (s)/w where
f (s) is the number of sequences in which s occurs. min_sup
is a user defined value to determine if sequence s is frequent
or not. If sup(s) ≥ min sup, the sequence s is frequent.
Definition 1 (Positive Sequential Pattern, PSP): If the sup-

port degree of a positive sequence is bigger than or equal to
min_sup, the positive sequence is a PSP.
Definition 2 (Negative Size): The number of negative ele-

ments in the sequence ns is negative size denoted as neg-
size(ns). If negative(ns)=n, ns is an n-negsize sequence.
For example, ns=⟨¬a, b,¬e, f ⟩, ns is a 2-negsize sequence,
denoted as negsize(ns)=2.
Definition 3 (Positive Matching): For elements, Positive

Matching refers to transforming negative elements into pos-
itive elements. For example, Positive Matching of negative

elements ¬a is a, denoted as p(¬a)=a; For sequences, Pos-
itive Matching is the transformation of all negative elements
in the sequence into their corresponding positive elements,
denoted as p (ns) = {⟨s1′, s2′, . . . , sk ′⟩ |si′ = p(si), si ∈ ns}.
For example, p (⟨¬a, b,¬e, f ⟩)=⟨a, b, e, f ⟩.
Definition 4 (Maximum Positive Subsequence, MPS): The

maximum positive subsequence of a sequence is the subse-
quence that includes all positive elements in this sequence.
S is a subsequence of ns=⟨s1, s2, . . . , sm⟩. If S includes
and only includes all positive elements in ns, then S is the
maximum positive subsequence of ns. denoted as MPS(ns).
For example MPS(⟨¬a, b,¬e, f ⟩)=⟨b, f ⟩.

The definition of negative containment in e-NSP is
MPS (ns) ⊆ ds; ∀1-negMS∈1-negMSSns, p(1 − negMS) ̸⊂
ds, that is, there is no need for a negative element in ns
correspond with a certain element in ds in position. Assuming
ns= ⟨a,¬b, c⟩, ds1 = ⟨a, c, e⟩, ns ⊆ ds1 under the definition
of e-NSP negative containment, that is, there is no need for
an element corresponding to ¬b between elements a and c
in ds(the element can be one or more). However, nsp-DS
uses a bitmap to store data, which requires each element/item
(including negative element/item) to be represented on the
bitmap in a one-to-one correspondence. For example, ds2 =
⟨a, d, c, e⟩, element d between a and c can correspond to ¬b,
then ns ⊆ ds2. The definition of negative containment in
e-NSP can not satisfy this requirement.

We try to extend the bitmap in SPAM [16] by adding
a 0 between each item. Taking the sequence ⟨b, a, b⟩ as an
example, the bitmap of item a is shown in Fig. 1. Among
them, the left side of Table 1 represents the original bitmap
of item a, and the right side represents the expanded bitmap.
The bold font represents the 0 or 1 in the original bitmap, and
the usual represents the added 0.

FIGURE 1. Bit extension.

However, this will make the bitmap sparse, which will
reduce the efficiency of the algorithm. Therefore, in nsp-DS
algorithm, we use a new definition of negative containment.
Definition 5 (Negative Containment): If the negative seq-

uence ns=⟨e1, e2, . . . , ek ⟩ is contained in sequence ds=
〈
d1,

d2, . . . , dm
〉
(m>k), for any negative element ei, there are

p, q, r(p<q<r) that need tomeet the following two conditions:
(1)MPS(ns) ⊆ ds(2)∃ei−1 ⊆ dp

∧
ei+1 ⊆ dr ,and for

∀dq, ei ̸⊆ dq.Especially, for ns=⟨e1, e2⟩ that is 2-size, if e1 is
negative and e2 is positive, ds=⟨d1, d2, . . . , dm⟩ contains ns
must need e2 ⊆ ⟨d2, . . . , dm⟩

∧
e2 ̸⊆ d1; Similarly, if e1 is
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positive and e2 is negative, ds contains ns must need e1 ⊆
⟨d1, d2, . . . , dm−1⟩

∧
e1 ̸⊆ dm.

For example, sequence ds = ⟨b, a, c, d⟩:

1) For negative sequence ns = ⟨b,¬b, d⟩, ns is contained
in ds. That is because the element b does not appear
between b and d in ds.

2) For negative sequence ns = ⟨b,¬c, d⟩, ns is not con-
tained in ds. That is because the element c appears
between b and d .

3) For negative sequence ns = ⟨¬a, b⟩, ns is not contained
in ds. That is because there is no element before b in ds.

4) )For negative sequence ns = ⟨d,¬a⟩, ns is not con-
tained in ds. That is because there is no element after d
in ds.

NSP has no unified definition. Thus, if the form of NSPs
is not constrained, the number of negative sequential candi-
dates will explode. Most of these candidates are meaningless,
which brings difficulties to the mining process. Different
constraints are used in different NSPsmining algorithms. The
negative sequential constraints adopted in this paper are as
follows:
Constraint 1(Size Constraint): The maximum size of

the negative sequence should not be greater than the data
sequence size.
Constraint 2(Frequency Constraint): The positive element

corresponding to each negative element in negative candidate
sequences must be frequent.
Constraint 3(Format Constraint):No consecutive negative

elements are allowed in a negative sequence.
Constraint 4(Negative Element Constraint): The smallest

negative unit in a sequence is an element.
Definition 6 (Negative Sequential Pattern, NSP): If the

support degree of a negative sequence is bigger than or equal
to min_sup, the negative sequence is a NSP.

IV. NSP-DS ALGORITHM
In this section, we propose a novel and efficient algorithm,
called nsp-DS, to obtain NSPs in a data stream. We intro-
duce data structures used in nsp-DS in Section IV-A. The
methods of generating candidate and support calculations are
discussed in Section IV-B. The idea of nsp-DS algorithm is
described by an example in Section IV-C.

A. DATA STRUCTURE
nsp-DS algorithm mainly includes three data structures,
which are used to store timely datasets in sliding windows,
sequence information, and NSP mining results.

1) BITMAP MATRIX
In SPAM algorithm, for the sequences whose size is between
2k + 1 and 2(k+1), it needs to be complemented. The vacant
position is filled with 0 in the bitmap, which makes the length
of each bitmap equal. For example, Fig.2 is the bitmap of item
a in the sequence ⟨b, a, b⟩. 0 in the fourth bit is a complement.
We follow the method representing negative items in SPAM:

FIGURE 2. The position of a and ¬a.

the occurrence position is represented by 1 and the absence
of occurrence is represented by 0. Then, from Fig.2, we can
see ¬a appears in the first, third, and fourth elements of the
sequence ⟨b, a, b⟩, but there are only three elements in the
sequence ⟨b, a, b⟩, no fourth element. To sum up, according to
the original filling method, an error will appear in the bitmap
of the negative item.

Therefore, in nsp-DS, the complement operation is not
performed. The length of the bitmap of each item is equal to
the size of the current sequence. nsp-DS converts the dataset
in a window into a bitmap matrix(BM), using 1 or 0 to
represent if an item shows in a sequence. Specifically, nsp-
DS creates a vertical bitmap for each item that appears in
the window, and each bit in the bitmap corresponds to the
position of each element in the window. If item i appears in
a sequence, the bit corresponding to the position of item i
in this sequence is set to 1; otherwise, the bit is set to 0.
At the same time, we divide the bitmap, and the length of
each part is the size of the corresponding sequence. Taking
the data in Table 1 as an example, the vertical bitmap of each
item is shown in Fig.3. Using this idea to negative single
items, the position where a negative single item can appear
is set to 1, and 0 otherwise. It can be found that the bitmap
of the negative single item is complementary to the bitmap
of the corresponding positive single item. Therefore, in nsp-
DS, the bitmap of the negative single item is obtained by
inverting the bitmap of the positive single item.

TABLE 1. Sequence dataset.

Sequences can also be represented by bitmaps according
to the above idea. If the last element of a sequence is j, and
all other elements or items of the sequence appear before j,
then the bit corresponding to j will be set to 1; otherwise,
it will be set to 0. Define B(s) to represent a bitmap of the
sequence s.
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FIGURE 3. Bitmap matrix.

2) TABLE OF SEQUENCE INFORMATION
The conversion method of the sequence s in SPAM is to avoid
the situation that the subsequent element α appears before s
and in s. Set to 1 is to ensure that statistics can be performed
as long as the element α appears later. This method only
considers whether the subsequent element α appears and does
not consider the position of α. But a NSP needs to take into
account the position of α and the position where s starts at the
time of conversion. In nsp-DS, we use a new data structure
to show sequence information, including a sequence bitmap,
a negative element bitmap, the set of sequence start position
pointers, and support. The negative element bitmap is the
bitmap of the last negative element in the sequence. Hash
table sidHash ⟨id, position⟩ is the set of sequence starting
position pointers. Suppose e is the last positive element of the
sequence s. sid is the sid number of the sequence containing
e, and position is the first position where e shows in each
bitmap. Taking the dataset in Table 1 as an example, the
information of negative sequences ⟨b,¬b⟩ and ⟨b,¬b, c⟩ are
shown in Fig. 4.

FIGURE 4. Sequence information.

3) SEQUENCE PATTERN TREE
A sequence pattern tree(SPT) is used to maintain sequential
patterns in each sliding window. It is essentially a prefix tree.
Attributes of nodes include item(element) name and sup of
sequence which consists of items in the path from the root
to the node. If node Root is layer 0, the path from Root
to a node at layer k represents k − size sequence. Due to
NSPs’ dissatisfaction with the downward closure property,
there may be some infrequent negative sequences in SPT.
We mark infrequent negative sequences which consists of
items in the path from the root to a node by setting sup of
the node to 0. The structure of SPT is shown in Fig.5.

FIGURE 5. The structure of SPT.

B. CANDIDATE GENERATION AND SUPPORT
CALCULATION METHOD
SPAM algorithm records the position of the first occurrence
in each bitmap of the existing sequence s as k , stores the
position of k in the table, and then converts it once (the bitmap
before k and k is set to 0, and the element after k is set to 1),
and finally does AND operation with the subsequent element
α. If we use the same method as SPAM does, there will be
some problems. Take the dataset in Table 1 as an example.
the bitmap of ⟨b,¬b⟩ is shown in Fig.6, where bs represents
the bitmap transformed by b.

FIGURE 6. The bitmap of
〈
b¬b

〉
.

According to the support calculation method in SPAM,
if a bitmap partition contains 1, add one to sup; otherwise,
this partition has no contribution to sup. In Fig.6, the sup
of ⟨b,¬b⟩ is 3, that is, ⟨b,¬b⟩ appears in the 2nd , 3rd , and
5th sequences. We can find that in the 2nd sequence ⟨b, a, b⟩
and 3rd sequences ⟨b, d, b, c⟩, b appears after the first ele-
ment b. Therefore, this method is not suitable for calculating
the support of negative sequences in nsp-DS. Next, we will
show how to complete the S-Step process with the structure
mentioned above. The S-Step is to recursively expand the
sequence of positive and negative elements, and the result is a
logical sequence tree. In other words, S-Step is the process of
creating a sequence tree by traversing. In S-Step, we extend
sequence s by adding an extended element e after the last
element of s. The S-Step includes three types: PP, PN, and
NP. PPmeans that the last element of s and e are both positive,
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PN is that the last element of s is positive and e is negative, and
NP is that the last element of s is negative and e is positive.
Suppose there is a dictionary sequence in the dataset,

if item i occurs before item j, we denote i ≤ j. If sa is
a subsequence of sb, this ordering can be extended to the
sequence definition sa ≤ sb. The root is marked as null in
sequence tree T. Recursively down, if n is a node of the tree,
then all children nodes of n are n′, such that n ≤ n′ and
∀m ∈ T : n′ ≤ m ⇒ n ≤ m. Trees are infinite in this
definition. Since NSP does not satisfy the property of down-
ward closure, in practice, the sequence tree is also infinite.
Therefore, we need to limit the size of the tree. According
to the definition and negative constraint conditions, the size
of PSPs and NSPs cannot exceed the size of the largest
sequence in data streams. Assuming the size of the largest
data sequence is k, for ∀m ∈ T : n′ ≤ m ⇒ n ≤ m,m ≤ k ,
the sequence tree is finite.

Fig.7 is the result of extending two elements (a and b).
Assume that the maximum size of sequences after extending
is 4. The top of the tree is ∅. k − size sequence is in k layer.
Sequences are arranged in lexicographic order in each layer.

FIGURE 7. Sequence tree.

1) PP GENERATION
Assume that the bitmap of sequence sa is B(sa), the bitmap
of extended element e is B(e), and the bitmap of the positive
extended sequence sb is B(sb). B(sb) has such an attribute.
If the value is 1 in a position in B(sb), the corresponding
element j in its data sequence must contain e, and all other
elements in sb must be contained in the elements before j.
Suppose the first occurrence of 1 in B(sa) is at k . The element
corresponding to position k should be the last element j of sa,
and all other elements of samust show before element j.When
an extension element e is added to sa, emust exist strictly after
element j of sb. Therefore, the value in position k in B(sb) is 0.
What is more, if e is contained in any element after j, then
the value in the corresponding position in B(sb) should be 1.
Therefore, in B(sb), all 1 after k should correspond to B(e).
When both the last element of sa and e are positive, we first

generate a bitmap according to B(sa). In this bitmap, values
in all positions less than or equal to k are set to 0, and values
in all positions after k are set to 1. This bitmap is called a
conversion bitmap. The conversion bitmap does an ‘‘AND’’
operation with the bitmap of the extended element e to get

a new bitmap. The bitmap obtained is the bitmap of the
extended sequence sb. The calculation method of sup of sb
is to judge whether there is a 1 in each partition of B (sb) and
if there is a 1, sup is increased by one. If an element appears
multiple times in a certain data sequence, that is, 1 appears
more than once in a certain partition, sup of this partition is
only recorded as 1.

Take the generation process of the extended sequence
⟨b, b⟩ as an example. First, find the position k where 1 first
appears in each partition of B (⟨b⟩). Value in position k is set
to 0, and values in positions after k are all 1. As shown in
Fig.8, in the first partition of B (b), the position where the
first 1 appears is 1. So, the bit in position 1 is converted to 0,
and bits in other positions are converted to 1. The converted
bitmap B ({⟨b⟩}s) is then ANDed with the bitmap of the
extended element ⟨b⟩, and the result is B (⟨b, b⟩).

2) PN GENERATION
Assume that the last element of sequence sa is positive, and
the extended element e is negative. The generation method
of the extended sequence sb bitmap is consistent with that
of PP. But the sup calculation method is different. Suppose
that the position where 1 first appears in a partition of B(sa)
is k , the element corresponding to position k should be the
last element j of sa, and j is positive. If 0 appears after k in
the corresponding partition of B(e), it means that the positive
element corresponding to e appears after j. According to
Definition 5, sb is not included in this sequence.
Therefore, sup of sb is to judge whether 0 appears in posi-

tion after k in B(e). If 0 does not appear, as long as 1 appears
in the corresponding partition in B(sb), sup is increased by
one; otherwise, sup is unchanged.

Take the example of generating the extended sequence
⟨b,¬b⟩. As shown in Fig.9, the transpose position k of the
sequence ⟨b⟩ is marked red, and the position where B (¬b)
appears 0 in this partition is represented by the arrow. We can
find that 1 appears in 2nd and snd partition in B (⟨b,¬b⟩).
However, 1 in these two partitions does not influence sup
because of the appearance of 0 in B (¬b) after k . sup of
⟨b,¬b⟩ is only 1. At the same time, the sequence starting
position in sidHash ⟨id, position⟩ of ⟨b,¬b⟩ is modified, and
the transpose position k of each partition containing 1 is
stored.

3) NP GENERATION
Assuming that the last element of sequence sa is negative,
and the extended element e is positive, the generation method
of the extended sequence sb bitmap is more complicated than
the first two. First, AND the transposed bitmap of sa with
B (e) to get a new bitmap. Secondly, we denote the starting
position recorded in the table of sa information as p and
denote the position where 1 first appears in each partition
in the new bitmap as j. Judge whether 0 appears between p
and j in the negative element bitmap. If not appear, bit 1 in
position j is reserved. If appear, the bit in position j is set
to 0, and bit 1 in position after j in this partition is also set
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FIGURE 8. PP generation.

FIGURE 9. PN generation.

to 0. At the same time, if all 1 are reserved, sup is increased
by one. This operation is to ensure that a negative element
that occurs between two positive elements of the extended
sequence sb does not appear at the corresponding position in
the data sequence.

If we do not make the above operation, subsequent
sequence extensions may have some misjudgment. For a
sequence, ds = ⟨a, b, d, a, b, d, a, c, d⟩, B (⟨a,¬b, d⟩) is
shown as Fig.10. ⟨a,¬b, d⟩ is the extension sequence of
sequence ⟨a,¬b⟩. According to B (⟨a,¬b, d⟩), we can infer
that element d may appear in 6th and 9th position. But, in ds,
there is an element b between a in 1st position and d in
6th position. In the same way, this b is also between a in
1st position and d in 9th position. According to Definition 5,
⟨a,¬b, d⟩ is not contained in ds. If we extend ⟨a,¬b, d⟩ to
⟨a,¬b, d,¬b⟩, it is obviously wrong that ⟨a,¬b, d,¬b⟩ is
contained in ds according to the sup calculation method used
in PN Generation.

FIGURE 10. The error example of NP support calculation.

Take the generation of the extended bitmap B (⟨b,¬b, c⟩)
as an example, as shown in Fig.11. The red indicates the
starting position k recorded in the table of the sequence ⟨b¬b⟩
information. j is the position where bit 1 first shows in each
partition of B (⟨b,¬b, c⟩). The arrow points to the position
where bit 0 occurs between k and j. Because bit 0 appears
on position 3 in 3rd partition of B (⟨¬b⟩), all bit 1 after
position 3 in 3rd partition of are set to 0.
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FIGURE 11. NP generation.

4) PRUNING STRATEGY
nsp-DS algorithm generates k − size candidate sequences
by extending (k − 1) − size sequences, so the number of
candidate sequences will be very large. It makes it difficult to
search for meaningful sequential patterns. In order to improve
the performance of the algorithm, we need to remove some
candidates during S-Step. This is called Pruning Strategies
which are divided into the pruning strategy of positive candi-
date sequence and the pruning strategy of negative candidate
sequence.

The pruning strategy of positive candidate sequences is
removing infrequent positive sequences generated during
extension according to the downward closure property. For
example, the sequence ⟨c, d⟩ extends to ⟨c, d, e⟩ during
S-Step. If ⟨c, d, e⟩ is infrequent, its extension sequences are
also infrequent. Therefore, delete ⟨c, d, e⟩ directly and no
longer extend it. The pruning strategy of negative candidate
sequences is that two adjacent negative elements are not
allowed in a NSP according to Constraint 3. For example,
for the negative sequence ns = ⟨e1, e2 . . . en⟩, when en is
a negative element, and the following element α is a nega-
tive element, we prune it and do not perform the following
steps.
The algorithm is explained in detail as follows:
1) Traverse each element e in Sn, and combine the

sequence s with e to generate a new extended
sequence s′, as shown in Line 3.

2) If element e is negative and the last element of the
sequence s is also negative, stop the current loop
(Lines 3-5).

3) If the extended sequence s′ is positive and frequent, s′ is
a PSP, and the element e is stored in Stemp (Lines 8-11).

4) If the extended sequence s′ is negative, judge whether s′

and s are frequent. If neither is frequent, stop the current
loop, otherwise store element e in Stemp (Lines 13-17).

5) Merge elements in Stemp with sequence s to generate a
new sequence and perform the next recursion with the
new sequence and Stemp.

Algorithm 1 DFS of Sequence Tree(sequence s,Sn)
Input: sequence s,Sn;
Output: k − size PSPs and NSPs(k>1);
1: Stemp = ∅;
2: for each element e in Sn do
3: sequence s′ ← s = ⟨e1, e2, . . . , en⟩ ∪ e
4: if e is negative and the last element of s is negative

then
5: Continue;
6: end if
7: if s′ is positive sequence then
8: if s′ is frequent then
9: s′ is stored in PSPs;
10: Stemp = temp ∪ e;
11: end if
12: else
13: if s and s′ are infrequent then
14: Continue;
15: else
16: Stemp = Stemp ∪ e;
17: end if
18: end if
19: end for
20: for each element e in Stemp do
21: sequence s′ ← s = ⟨e1, e2, . . . , en⟩ ∪ e
22: DFS of Sequence Tree(s′,Sn);
23: end for

C. IDEA OF NSP-DS ALGORITHM
When the window is full(the number of sequences in a win-
dow is equal w) for the first time, mine PSPs and NSPs,
and store these patterns to SPT. After the window slides, the
new sequence Snew replaces the oldest sequence Sold . SPT is
updated according to elements in Sold . And then, sequential
pattern mining is performed for Snew. Finally, update the
prefix tree again. When the user makes a request, scan SPT
to get PSPs and NSPs in the current period.
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Take the data stream shown in Table 2 as an example
to introduce the nsp-DS algorithm, and set min_sup=0.5
and w=6.

TABLE 2. Data stream.

1) WHEN WINDOW IS FIRST FULL
At first, the window W is empty(w = 0). When the number
of sequences in W is equal to w, W is full. At this time,
we convert the dataset in W into a bitmap matrix and mine
PSPs and NSPs in the dataset ofW .
Take the data stream in Table 2 as an example. When W

is filled for the first time, there are six sequences in W . So,
the dataset inW will be converted into a bitmap matrix(BM),
as shown in Fig.12.

FIGURE 12. BM.

Then, mine dataset in W to get PSPs and NSPs. The
sequential patterns

{〈
a
〉
,
〈
a, d

〉
,
〈
a, d,¬b

〉
,
〈
a, d,¬b, g

〉
,
〈
a, d,

g
〉
,
〈
a, g

〉
,

〈
b
〉
,
〈
b, d

〉
,
〈
b, d,¬b

〉
,
〈
d
〉
,
〈
d,¬b

〉
,
〈
d,¬b, g

〉
,
〈
d, f

〉
,〈

d, g
〉
,
〈
¬b

〉
,
〈
¬b, f

〉
,
〈
¬b, f , g

〉
,
〈
¬b, g

〉
,
〈
f
〉
,
〈
f ,¬b

〉
,
〈
f , g

〉
,
〈
g
〉}

is obtained. These patterns are stored in SPT, as shown
in Fig.13.

FIGURE 13. Sequence pattern tree.

2) WHEN WINDOW STARTS SLIDING
When W is filled, the newly arrived sequence overrides
the oldest sequence in the window, completing a window
sliding. Sidold = Sidnew · · · · · ·w. Sidold is the Sid of
replaced sequence, and Sidnew is the Sid of the newly arrived
sequence.

Step 1: updating BM. The new sequence Sid = 7 replaces
the old sequence Sid = 1. Set the bit of each column of the
row Sid=1 in BM to 0, and re-assign the bit to the row with
the sequence Sid=7. The process and result are as shown
in Fig.14.

FIGURE 14. Update BM.

Update sup of the corresponding node of SPT. 1− size pat-
terns associated with Sid = 1 are

{
⟨a⟩ , ⟨b⟩ , ⟨d⟩ , ⟨f ⟩ , ⟨g⟩ ,

⟨¬b⟩
}
. So, sup of nodes ⟨a, b, d, f , g,¬b⟩ in SPT are decre-

mented by 1. This is shown in Fig.15.
Step 2: mining sequential patterns for Snew. Snew =

SSid=7 = ⟨a, b, e, g⟩. In this step, sequential pattern mining
is conducted only for the elements

{
a, b, e, g,¬b,¬c,¬d,

¬e,¬f
}
. These negative elements are the ones that change

during the alternation of the old and new sequences. Because
the number of items contained in each sequence is far less
than the total number of items in the whole data stream, the
efficiency of nsp-DS is improved.

Scan the BM after updating, and count the num-
ber of 1 in columns a, b, e, g,¬b,¬c,¬d,¬e, and ¬f .
{⟨a⟩ , ⟨b⟩ , ⟨e⟩ , ⟨g⟩ , ⟨¬e⟩ , ⟨¬f ⟩} are 1 − size sequential

31850 VOLUME 11, 2023



N. Zhang et al.: Effective Method for Mining Negative Sequential Patterns From Data Streams

FIGURE 15. SPT after removing Sid=1.

FIGURE 16. SPT after adding Sid=7.

FIGURE 17. SPT after pruning.

patterns. These 1 − size sequential pattern execute
S − Step to get k − size (k > 1) sequential patterns
{⟨a, b⟩ , ⟨a, b, g⟩ , ⟨a, b,¬f ⟩ , ⟨a, b,¬f , g⟩ , ⟨a, g⟩ , ⟨a,¬f ⟩ ,
⟨a,¬f , g⟩ , ⟨b, g⟩ , ⟨b,¬f ⟩ , ⟨b,¬f , g⟩ , ⟨e, g⟩ , ⟨¬e, b⟩ ,
⟨¬e, b, g⟩ , ⟨¬f , b⟩ , ⟨¬f , b, g⟩}
Update SPT with the above sequential patterns. For exist-

ing sequential patterns in SPT, update the sup of correspond-
ing nodes; for newly generated sequential patterns, add them
to corresponding positions in SPT. At this time, we get a new
SPT, as shown in Fig.16.

Step 3: responding to the request of the user. When the
user requests, scan SPT to get sequential patterns in the
current window. Traverse SPT. If sup of for all nodes on
the path from a node to its leaf node are less than min_sup,
delete those nodes from SPT. After pruning, SPT is shown
as Fig.16.

Get sequential patterns {⟨a⟩ , ⟨a, b⟩ , ⟨a, b, g⟩ , ⟨a, b,¬f ⟩ ,
⟨a, b,¬f , g⟩ , ⟨a, d⟩ , ⟨a, d, g⟩ , ⟨a, g⟩ , ⟨a,¬f ⟩ , ⟨a,¬f , g⟩ ,
⟨b⟩ , ⟨b, d⟩ , ⟨b, g⟩ , ⟨b,¬f ⟩ , ⟨b,¬f , g⟩ , ⟨d⟩ , ⟨d, g⟩ , ⟨e⟩ ,
⟨e, g⟩ , ⟨f ⟩ , ⟨g⟩ , ⟨¬e⟩ , ⟨¬e, b⟩ , ⟨¬e, b, g⟩ , ⟨¬f ⟩ , ⟨¬f , b⟩ ,
⟨¬f , b, g⟩}.

The pseudocode of nsp-DS algorithm is as follows:

Algorithm 2 Nsp-DS Algorithm
Input: Data Stream DS, min_sup, Window Size w;
Output: Sequence Pattern Tree(SPT);
1: if w is first full then
2: Scan w for all 1− size PSPs
3: 1− size NSPs is generated by 1− size PSPs;
4: insert 1− size PSPs and NSPs to SPT;
5: for each sequence s in 1− size PSPs and NSPs do
6: 1 − size PSPs and NSPs←DFS of sequence

Tree(e,1− size PSPs and NSPs);
7: insert k − size PSPs and NSPs to SPT;
8: end for
9: else
10: while sequence s is not the last sequence of DS do
11: get 1 − size PSPs and NSPs associated with the

oldest sequence in the current window;
12: update SPT(the frequency of all nodes containing

1− size PSPs and NSPs in SPT are reduced 1);
13: replace the oldest sequence with sequence s;
14: get 1−size PSPs andNSPs associatedwith sequence

s;
15: update SPT(1−size PSPs and NSPs associated with

sequence s);
16: for each sequence s in 1− size PSPs and NSPs do
17: k − size PSPs and NSPs←DFS of sequence

Tree(e,1− size PSPs and NSPs);
18: update SPT(k − size PSPs and NSPs);
19: end for
20: end while
21: end if
22: return SPT;

V. EXPERIMENTS ANALYSIS
We conduct experiments on four real-world datasets down-
loaded from
https://www.philippe-fournier-viger.com/spmf/. Table 3 sho-
ws the features of four datasets. nsp-DS are implemented in
Eclipse, running on a Windows 11 PC with 16 GB memory,
and an Intel Core i5 2.4 GHz CPU. All the programs are
written in Java.

Unfortunately, we find no algorithm suitable for a compar-
ison algorithm. The reasons are as follows:

TABLE 3. Features of four datasets.
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1) A traditional sequential patterns mining algorithm is
not suitable for a comparison algorithm. The dataset
used in traditional sequential pattern mining algorithms
is completely different in nature from the dataset used
in nsp-DS. In traditional sequential pattern mining
algorithms, all data are stored in memory simultane-
ously. But data streams are generated continuously over
time. In other words, datasets in traditional algorithms
are static, but in nsp-DS they are dynamic. If comparing
nsp-DS with a traditional sequential patterns mining
algorithm, we cannot find a dataset that is suitable for
both algorithms. Thus, nsp-DS cannot be compared
with a traditional sequential patterns mining algorithm.

2) A PSPs mining algorithm in data streams is not suit-
able for a comparison algorithm. In order to improve
the efficiency of the algorithm and to conform to the
transient characteristics of the data stream, nsp-DS
generates positive and negative candidate sequences
simultaneously. If compared with PSPs mining algo-
rithms in data streams, the new method of producing
candidates in nsp-DS will become meaningless. So,
no PSPs mining algorithm in data streams can be a
comparison algorithm.

A. NUMBER OF NSPs AND PSPs GENERATED BY NSP-DS
In this section, we analyze the number of NSPs and PSPs
generated by nsp-DS with various min_sup. From Fig.18,
we can find that the number of NSPs and PSPs decreases
as min_sup increases when w is fixed. For the same window
size, as min_sup gets larger, the number of candidates that
can meet the support gets smaller so fewer NSPs and PSPs
are produced.

FIGURE 18. Number of NSPs and PSPs in different min_sup when w is
fixed on four data streams.

B. RUNTIMES ON NSP-DS
In this section, we analyze runtimes on nsp-DS. The results
are shown in Fig.19. It is clear that the runtime increases as the
support decreases. When min_sup is decreased, a large num-
ber of NSPs are discovered so that the runtime is increased.

FIGURE 19. Runtime in different min_sup when w is fixed on four data
streams.

FIGURE 20. Scalability test of nsp-DS on four data streams.

C. SCALABILITY TEST ON NSP-DS
In this section, we perform scalability experiments on each
four datasets with increasing number of sequences. Specially,
the selectedwindow sizes are 5,000 in BMSWebView1, 5,000
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in BMSWebView2, 1,000 in FIFA, and 10,000 in MSNBC,
with various low minimum supports min_sup 0.11 and
0.12 on BMSWebView1, 0.04 and 0.05 on BMSWebView2,
0.40 and 0.41 on FIFA, and 0.78 and 0.79 in MSNBC,
respectively. Fig.20 shows the results of nsp-DS on each
dataset in terms of different number of sequences: from
5,000 to 25,000 sequences of BMSWebView1, from 5,000
to 25,000 sequences of BMSWebView2, from 1,000 to 5,000
sequences of FIFA, from 1,0000 to 3,0000 sequences of
MSNBC. Abscissa represents number of sequences, the ordi-
nate represents the running time of the algorithm, and each
point represents the running time of the algorithm in different
support degrees when window size is fixed under the current
dataset.

The experimental results show that the runtime has
a roughly linear relationship with number of sequences
increase under various minimum supports and window size.
Therefore, nsp-DS has good scalability in terms of runtime
with respect to number of sequences.

VI. CONCLUSION AND FUTURE WORK
Because of the characteristics of data streams, traditional
NSPs mining algorithms cannot be directly applied to data
streams. At the same time, the existing algorithms in the data
stream only mine PSPs, and no algorithm mining NSPs is
found. Mining NSPs in data streams is a challenging task.
In this paper, we propose nsp-DS algorithm, which introduces
a sliding window and a prefix tree structure to mine NSPs in
data streams. Firstly, different from the method of two-step
negative candidate generation, nsp-DS generates positive and
negative candidates simultaneously. In particularly, it uses bit
operations to generate negative candidates and calculate sup
of negative candidates. Secondly, a prefix tree structure that
can store NSPs is designed. During data replacement, we only
need to update the prefix tree, not create another tree. Finally,
experiments show that nsp-DS algorithm can mine NSPs in
the data stream.

Although nsp-DS can be applied to mining NSPs in data
streams, it is only applicable to sequences whose element is
1−size in data streams.Work still remains to accurately mine
sequences with k−size element(k > 1) in data streams. Then,
since NSPs do not have the downward inclusion property,
there may be infrequent nodes in the prefix tree. We need to
find a better structure to store NSPs.
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