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ABSTRACT The use of Unmanned Aerial Vehicles (UAVs) in different inspection tasks is increasing. This
technology reduces inspection costs and collects high quality data of distinct structures, including areas that
are not easily accessible by human operators. However, the reduced energy available on the UAVs limits
their flight endurance. To increase the autonomy of a single flight, it is important to optimize the path to
be performed by the UAV, in terms of energy loss. Therefore, this work presents a novel formulation of the
Travelling Salesman Problem (TSP) and a path planning algorithm that uses aUAV energymodel to solve this
optimization problem. The novel TSP formulation is defined as Asymmetric Travelling Salesman Problem
with Precedence Loss (ATSP-PL), where the cost of moving the UAV depends on the previous position. The
energy model relates each UAVmovement with its energy consumption, while the path planning algorithm is
focused onminimizing the energy loss of the UAV, ensuring that the structure is fully covered. The developed
algorithm was tested in both simulated and real scenarios. The simulated experiments were performed with
realistic models of wind turbines and a UAV, whereas the real experiments were performed with a real UAV
and an illumination tower. The inspection paths generated presented improvements over 24% and 8%, when
compared with other methods, for the simulated and real experiments, respectively, optimizing the energy
consumption of the UAV.

INDEX TERMS Inspection path planning, coverage path planning, energy model, unmanned aerial vehicle,
energy efficiency, travelling salesman problem.

I. INTRODUCTION
Traditional methods for inspecting and monitoring diverse
types of structures are often expensive, repetitive, time con-
suming and potentially dangerous for human operators [1].
To overcome this issue, several inspection tasks are currently
being carried out by Unmanned Aerial Vehicles (UAVs) [2],
[3], which represents a reduction of the inspection costs and
of the total time consumed [4]. UAVs are autonomous aerial
robots that can collect high quality data of structures [5],
such as images (visual, thermal, among others) and point
clouds. These vehicles can also easily access the entire sur-
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face of inspection. However, one of the challenges related
with the use of UAVs in autonomous inspections is related
with their limited battery capacity [5]. To allow a UAV to
perform a wider inspection in a single flight, it is important
to increase its endurance by selecting trajectories that opti-
mize the energy consumption during an inspection procedure.
A path that minimizes the total displacement performed by a
UAV does not guarantee an optimized energy consumption.
Therefore, a preferable approach consists in selecting a path
that directly minimizes the energy consumption of a UAV
(that may not be the shortest path). This can be achieved by
smoothing the trajectory of the UAV, by reducing its accelera-
tions during the performance of the path Therefore, this work
presents an algorithm for 3D path planning for inspection of
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structures withUAVs,minimizing the energy loss. As a result,
the contributions of this work are the following:

1) A novel Travelling Salesman Problem (TSP) formula-
tion, named ATSP-PL (Asymmetric Travelling Sales-
man Problem, with Precedence Loss), of which the
Precedence Loss designation is related to the objective
function, where the loss of moving from a current
position to the next one depends on the previous one.

2) An energy model of a UAV that relates each movement
that the vehicle performs with its correspondent energy
loss, and a resulting algorithm for inspection path plan-
ning that optimizes the energy consumption of a UAV,
enabling it to autonomously perform a full coverage of
the structure being inspected;

3) Validation of the developed algorithm in both simulated
and real scenarios, using realistic models of wind tur-
bines and of a UAV in the first case, and a real UAV
along with an illumination tower in the second one.

This article is organized as follows: Section II presents a brief
review of the related work. Afterwards, section III presents
the algorithm developed to obtain the inspection path and
the respective UAV energy model. Experimental evaluation
is demonstrated in sections IV and V, which includes experi-
ments in both simulation scenarios and in a real environment.
Finally, section VI clarifies the most important conclusions
of this research.

II. RELATED WORK
The use of UAVs in different types of inspection tasks is
increasing significantly. The most common sensors used for
inspections with UAVs are both visual and thermal cam-
eras [6], [7]. These sensors allow to execute non-destructive
tests, capable of detecting the most significant in-service
defects [7]. To improve the quality of the data collected by a
camera sensor during a inspection, a LiDAR sensor can also
be used [8], [9]. A 3D LiDAR represents a relevant method
to obtain the characteristics of the inspected structure, given
its capability of directly obtaining depth, resulting in accurate
3D point clouds of the surrounding environment [10]. These
3D sensors are used in robotics to improve the accuracy in
distinct tasks, such as in object detection [11], [12], scene
reconstruction and navigation [13], [14]

Although a UAV equipped with the required sensors is able
to collect the necessary information for an inspection task, its
limited flight endurance represents a considerable drawback.
To increase the autonomy of the UAVs, it is important to opti-
mize the path that the vehicles will perform as a function of
its energy consumption, while assuring that the entire surface
of inspection is completely verified. The energy model of a
UAV represents the energy loss relative to each individual
movement of the vehicle, such as the cost of displacement
and the cost of directional changes [15]. Each UAV has its
own particular characteristics, such as weight, dimensions,
propellers and motors type. For that reason, it is not easy
to derive a general parametric model that represents the
energy consumption of each different UAV. Therefore, one

possible way consists in performing tests in each particular
UAV. Franco and Buttazzo [16], [17] performed a complete
analysis on the energy loss based on real measurements of
the UAV IRIS quadrotor, powered by a 3S LiPo battery with
5.5 Ah of capacity. Each movement, including moving for-
ward, ascending/descending, and acceleration/deceleration,
was analysed to create a model of the energy consumed rela-
tive to each UAV action. Besides its movement, the influence
of environmental conditions also takes an important role on
the autonomy of the UAV, such as the wind speed and its
direction, and the atmospheric flow conditions [5]. These
factors interfere with the stability of the UAV, resulting in
energy losses required to compensate those external forces.

To achieve the least expensive sequence of inspection,
it is possible to apply several path planning algorithms. The
most adequate approach can depend on the shape of the
structure to be inspected. A geometric method may result
in appropriate paths for regular structures (like a cube or
a cylinder) with a reduced computation time, whereas an
heuristic approach may result in optimized paths for more
complex structures. Given that the inspection path can be
resampled in a set of viewpoints of the structure [18], [19],
this problem can be formulated as the well-known Travelling
Salesman Problem [15], [20]. Examples of used optimization
techniques are genetic algorithms [15], ant colony [21], and
particle swarm optimization (PSO) based algorithms [20],
[22], among other heuristics and metaheuristics. A possible
approach to reduce the complexity of the problem consists in
dividing the structure in multiple sub-spaces of inspection.
First it is computed the order that each sub-space will be
inspected, and secondly it is obtained the path within each
sub-space [23].

III. ENERGY EFFICIENT INSPECTION PATH PLANNING
Several steps need to be performed to achieve an energetically
optimized path to inspect complex structures with a UAV,
which are depicted in Fig. 1, that takes a wind turbine model
as an example. Given a structure’s model, it is possible to
discretize its surface and define amap of the inspection poses,
named viewpoints. A UAV’s energy model can be defined by
relating each movement with the correspondent energy loss.
With these two formulation steps completed, an algorithm for
path planning was developed, ensuring that the entire surface
of interest is covered during the inspection, optimizing the
energy consumption. By analysing the data collected during
the inspection it is possible to reconstruct the structure’s
model, as well as to draw a confidence map that allows to
pinpoint the confidence on the quality of the data in each
location.

A. DEFINING THE MAP OF THE INSPECTION POSES
The map of the inspection poses consists in defining a set of
viewpoints that ensure that the entire surface of interest of
the structure is completely covered. The definition of these
viewpoints depends upon the characteristics of the sensors
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FIGURE 1. Scheme of the developed inspection path components, including the mapping of the relevant viewpoints, the UAV energy model, the
generated inspection path and the correspondent model reconstruction and confidence map.

used in the inspection, such as cameras and 3D LiDARs, and
also on the structure’s shape. To guarantee the coverage of
the entire surface of the inspected structure, these sensors
constrain the definition of the inspection map, through the
following characteristics [16]:

• α - Field of View (FoV), represents the angular aperture
of the data captured by the sensor;

• (Ix , Iy) - data resolution, expresses the size of the cap-
tured data in the smallest addressable element;

• ρ =
Ix
Iy
- aspect ratio, represents the relation between the

width and height of the data captured by the sensor;
• fS - sampling frequency, represents the time expenditure
between two consecutive data collections.

When the UAV is moving at a given working distance (dw)
from the target, a sensor acquires data that covers a projected
area (Lx ×Ly) that depends on its field of view (α) and aspect
ratio (ρ), as can be seen in Fig. 2. This relation is expressed
in (1) [16]:

Lx = 2dw · tan
(α
2

)
, Ly =

Lx
ρ
. (1)

To ensure aminimum spacial resolution (R = max( IxLx ,
Iy
Ly
),

the maximum working distance (dmaxw ) must be as
follows (2) [16]:

dmax
w =

min(Ix , Iy)

2R · tan
(
α
2

) . (2)

To discretize the entire surface of the inspected model, ensur-
ing that the whole structure is covered, the discretization

FIGURE 2. Projected area (Lx × Ly ) covered by a sensor with α FoV at a
given working distance dw .

rate (Dr ) must be lower than or equal tomin(Lx ,Ly). After the
discretization is performed, each point represents an inspec-
tion point of the structure that the UAV must meet. The last
constraint that the inspection sensors influence is the maxi-
mum speed at which the UAV can navigate. This limitation
is related to the sampling frequency (fS ) of the sensor, given
that the UAV cannot move faster than the ability of the sensor
to gather the information in each inspection point. Given that,
the speed of the UAV must be limited according to (3) [16]:

vmax
= min(Lx ,Ly) · fS . (3)

Each inspection point has a correspondent viewpoint that
consists of the pose where the UAV must be located and
oriented to collect the required information of that inspection
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FIGURE 3. Viewpoints calculation: the dashed curve indicates a surface,
the red dots are the inspection points, the black arrows show the
direction of the normals of each inspection point, and the red arrows are
the viewpoints that are dw away from the inspected surface.

point. Each viewpoint is obtained according to the working
distance (dw) and to the orientation of the normal (n⃗, with
only the yaw component) relative to each inspection point.
Fig. 3 exhibits the method used to calculate each viewpoint.
The total inspection path, defined by the complete set of
viewpoints, is obtained by applying this method to the whole
3D surface of the inspected structure.

B. UAV ENERGY MODEL
The energy model relates the energy loss of each movement
of the UAV, which can be calculated according to (4):

Etotal = Ed + Ea, (4)

where the total energy loss (Etotal) corresponds to the sum of
the following components:

• Ed - displacement cost:
– Edxy - linear displacement on the xOy plane;
– Edz - linear displacement on the z axis;
– Edyaw - angular displacement on the z axis.

• Ea - acceleration cost:
– Eaxy - linear acceleration on the xOy plane;
– Eaz - linear acceleration on the z axis;
– Eayaw - angular acceleration on the z axis.

Regarding the displacement cost, the linear movement
according to the xOy plane and z axis was analysed, as well as
the angular motion along the z axis, that corresponds to yaw
in Euler angles. The change of direction of the UAV is related
with its acceleration and deceleration, and corresponds to
another significant factor of energy consumption. The accel-
eration costs that were analysed depend on the linear accel-
eration on both xOy plane and z axis, and also on angular
acceleration on the z axis (yaw). This cost model enables to
objectively quantify the cost of moving from a current pose to
another pose. Note that, for calculation purposes, the speed of
each movement of the UAV is considered constant, and that
each acceleration/deceleration is considered instantaneous.

1) DISPLACEMENT COST
The displacement cost is related with linear and angular
movements performed by the UAV, from a given pose pi to
another pose pi+1. Fig. 4 exhibits the displacement diagram
of all considered movements that a UAV can perform. 1dxy
corresponds to the displacement on the xOy plane, 1dz+ and

FIGURE 4. Displacement diagram: 1dxy corresponds to the displacement
on the xOy plane, 1dz+ and 1dz− corresponds to the ascending and
descending displacement on the z axis, respectively, and 1θyaw
corresponds to the rotation on the z axis.

1dz− corresponds to the ascending and descending displace-
ment on the z axis, respectively, and1θyaw corresponds to the
rotation on the z axis. The relation of these movements with
its displacement cost (Ed ) can be expressed according to (5):

Ed = Edxy + Edz + Edyaw , (5)

where Edxy corresponds to the linear displacement on the xOy
plane, Edz to the linear displacement on the z axis, and Edyaw
to the angular displacement on the z axis.

The energy cost of each linear displacement component
can be calculated according to (6) [16]:

Edτ = Pdτ (vτ )
1dτ
vτ

, τ ∈ [xy, z+, z−]. (6)

The energy loss caused by the movement according to
the xOy plane (Edxy ) is related to its linear velocity (vxy),
its displacement (1dxy), and the power consumption as a
function of the linear velocity (Pdxy (vxy)).

The energy loss caused by the movement according to
the z axis (Edz ) depends on its direction, resulting in a
higher energy cost when the UAV is ascending (Edz+ ) than
when it is descending (Edz− ). This cost is related to the
ascending/descending velocity (vz+ and vz−), its displace-
ment, (1dz+ and 1dz− ), and the power consumption as a
function of the linear velocity (Pdz+ (vz+ ) andPdz− (vz− )). Note
that the total energy cost of the movement along the z axis
(Edz ) corresponds to (7):

Edz = Edz+ + Edz− . (7)

The energy cost of the angular displacement component
can be calculated according to (8) [16]:

Edyaw = Pdyaw (ωyaw)
1θyaw

ωyaw
. (8)

The energy loss caused by the rotation according to the z axis
(Edyaw ) is related to its angular velocity (ωyaw), its displace-
ment (1θyaw), and the power consumption as a function of
the angular velocity (Pdyaw (ωyaw)).
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FIGURE 5. Acceleration diagram: vl and al correspond to the velocity and
acceleration components on axis l = {x, y }, respectively.

2) ACCELERATION COST
The acceleration cost is related with the change of direction
of the UAV during its path. Given a current pose pi, a previous
pose pi−1, and the next pose pi+1, it is possible to detect
a change of direction and the correspondent acceleration or
deceleration by calculating the distance between the displace-
ment vectors ||

−−−−−→
pi − pi−1|| and ||

−−−−−→
pi+1 − pi||. Fig. 5 exhibits an

acceleration diagram for the considered changes of direction,
and the corresponding accelerations and decelerations. vl and
al correspond to the velocity and acceleration components on
axis l = {x, y}, respectively. Considering that the UAV has a
given speed vx > 0 and vy = 0 at the current pose, moving to
neighbour pose 2 means keeping its current movement, not
being necessary to accelerate or decelerate in the direction
of any axis (ax = ay = 0), which does not imply any
acceleration cost. On the other hand, moving to neighbour
pose 1 implies a change of direction, meaning that the UAV
has to decelerate in the x axis (ax < 0) and accelerate in the
y axis (ay > 0), which causes an energy loss. The relation
of these movements with its acceleration cost (Ea) can be
expressed according to (9):

Ea = Eaxy cos(φ)
2
+ Eaz sin(φ)

2
+ Eayaw , (9)

where Eaxy corresponds to the cost of the linear acceleration
on the xOy plane, Eaz to the cost of the linear acceleration
on the z axis, and Eayaw to the cost of the angular accel-
eration on the z axis. φ represents the difference on the
polar angle between two consecutive displacement vectors.
Its value allows to detect change of direction between the xOy
plane and the z axis. As cos(φ)2 + sin(φ)2 = 1, (9) represents
the relation between the acceleration along both directions.

The energy cost of each linear acceleration component
(Eaτ ) can be calculated according to (10) [16]:

Eaτ = Kτ · Paτ (vτ ) ·1taτ , τ ∈ [xy, z+, z−], (10)

whereKτ is a multiplication factor that depends on the change
of direction, Paτ (vτ ) is the power consumption as a function
of the velocity, and 1taτ is the time that it takes to acceler-
ate/decelerate until the desired velocity is reached.

When the UAV is moving in the xOy plane, it is possible
to detect changes of direction by calculating the difference of
the direction between two consecutive displacement vectors.

|θ | ∈ [0, π] represents that change on the direction of move-
ment in the xOy plane. The energy loss caused by the linear
acceleration/deceleration according to the xOy plane (Eaxy ) is
related to its power consumption as a function of the linear
velocity (Paxy (vxy)) and to the time that it takes to acceler-
ate/decelerate until the desired velocity is reached (1taxy ).
Kxy ∈ [0, 1] is a multiplication factor that assumes the values
presented in (11):

Kxy =



0, if θ = 0;

1, if
π

2
≤ |θ | ≤ π ;1 −

√
1 −

(
θ

π/2

)2
, if 0 < |θ | <

π

2
.

(11)

Figure 6 helps to explain the values that Kxy takes, where
θ = 0 is represented with the dark red arrow and corresponds
to no change of direction, 0 < |θ | < π

2 is represented in
light blue and corresponds to a smooth change of direction,
and π

2 ≤ |θ | ≤ π is represented in purple and corre-
sponds to a sharp change of direction. When θ = 0 there
is no acceleration in the xOy plane in the UAV movement
(axy = 0), so Kxy takes value 0. When π

2 ≤ |θ | ≤ π the UAV
has to decelerate and then accelerate (axy ̸= 0), as it has to
completely change its direction of movement, resulting inKxy

FIGURE 6. Different directions of movement in the xOy plane, according
to θ . θ = 0 is represented with the dark red arrow and corresponds to no
change of direction, 0 < |θ | < π

2 is represented in light blue and
corresponds to a smooth change of direction, while π

2 ≤ |θ | ≤ π is
represented in purple and corresponds to a sharp change of direction.
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equal to 1. When 0 < |θ | < π
2 , the UAV’s acceleration is an

increasing function of θ (axy ̸= 0). Kxy changes according to
the ellipsoidal function presented in (12), that depends on θ :(

θ

π/2

)2

+
(
Kxy − 1

)2
= 1. (12)

The acceleration/deceleration cost according to the
z axis (Eaz ) depends if the UAV is ascending (Eaz+ ) or
descending (Eaz− ). It is possible to detect changes of direction
by calculating the difference of the direction between two
consecutive displacement vectors. |φ| ∈ [0,π] represents that
change on the direction of movement in the z axis. The
acceleration cost is related to its power consumption as a
function of the linear velocity (Paz+ (vz+ ) and Paz− (vz− )) and
to the time that it takes to accelerate/decelerate until the
desired velocity is reached (1taz+ and 1taz− ). Kζ ∈ [0, 1],
ζ = {z+, z−}, is a multiplication factor that assumes the
values presented in (13):

Kζ =

{
0, if φ = 0;
1, if φ ̸= 0.

(13)

When φ = 0 there is no acceleration in the z axis in the UAV
movement (az = 0), so Kζ takes value 0. When φ ̸= 0 the
UAV has to accelerate/decelerate on the z axis (az ̸= 0),
resulting inKζ equal to 1. Note that the total energy cost given
by the acceleration along the z axis (Eaz ) corresponds to (14):

Eaz = Eaz+ + Eaz− . (14)

The energy cost of the angular acceleration component can
be calculated according to (15) [16]:

Eayaw = Kyaw · Payaw (ωyaw) ·1tayaw . (15)

It is possible to detect changes of angular directions by cal-
culating the difference of the angular direction between two
consecutive displacement vectors. |ψ | ∈ [0,π] represents that
change on the angular direction of movement in the z axis.
The energy loss caused by the angular acceleration according
to the z axis (Eayaw ) is related to its power consumption as a
function of the angular velocity (Payaw (ωyaw)) and to the time
that it takes to accelerate/decelerate until the desired angular
velocity is reached (1tayaw ). Kyaw ∈ [0, 1], is a multiplication
factor that assumes the values presented in (16):

Kyaw =

{
0, if ψ = 0;
1, if ψ ̸= 0.

(16)

When ψ = 0 there is no angular acceleration in the UAV
movement according to the z axis (ayaw = 0), so Kyaw takes
value 0. When ψ ̸= 0 the UAV has to accelerate/decelerate
on the z axis (ayaw ̸= 0), resulting in Kyaw equal to 1.

C. INSPECTION PATH PLANNING ALGORITHM
Given a set of viewpoints and the UAV energy model that
relates the energy loss of moving from a viewpoint to another,
it is possible to develop an algorithm that generates a path
for the UAV to inspect a structure, optimizing its energy

loss. This problem was formulated as a new variant of the
Travelling Salesman Problem that is defined as ATSP-PL
(Asymmetric Travelling Salesman Problem, with Precedence
Loss). The Asymmetric classification is due to the fact that
the cost of moving from viewpoint pi to viewpoint pi+1 is
not necessarily the same of moving from viewpoint pi+1 to
viewpoint pi. The Precedence Loss designation is related with
the fact that the cost of moving from the current viewpoint
(pi) to the next viewpoint (pi+1) depends on the previous
viewpoint (pi−1), given the significant difference that the
acceleration cost implies in the calculation of the total energy
loss.

The algorithm developed in this research, named EEPPA
(Energy Efficient Path Planning Algorithm), proposes a
method to solve this novel TSP formulation (the ATSP-PL),
and is divided into two main procedures:

• Spiral Procedure - a greedy and time efficient method,
specially suited to cover regular shaped structures, such
as cylinders or cubes;

• ATSP Solver followed by a Local Search Procedure -
the original ATSP-PL problem is relaxed and solved as a
traditional ATSP, followed by a Local Search Procedure
that adapts the obtained solution to take into account the
Precedence Loss property.

1) ATSP-PL FORMULATION
As in the classical TSP, the solution of the ATSP-PL consists
of a sequence of viewpoints organized by its order of inspec-
tion. The first viewpoint is the only viewpoint whose position
in the sequence is previously known, as it is user defined.
Each solution sequence has an associated total energy cost
and total linear displacement. While performing the path,
the UAV has to meet all viewpoints exactly once, with the
objective of minimizing the energy loss during the execution
of the complete path. With this information it is possible to
modulate this problem as follows [24]:

xij =

{
1, if the path goes from viewpoint i to j,
0, otherwise,

(17)
N∑
i=1,
i̸=j

xij = 1, ∀j = 1, · · · ,N , (18)

N∑
j=1,
j̸=i

xij = 1, ∀i = 1, · · · ,N , (19)

∑
i∈Q

∑
j̸=i,
j∈Q

xij ≤ |Q| − 1, ∀Q ⊆ {1, · · · ,N }, |Q| ≥ 2, (20)

where N is the total number of viewpoints. The constraint
presented in (20) ensures that no sub-sequences (Q) are
formed, resulting in a single sequence of viewpoints [24].
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The objective function is the following:

min
N∑
k=1

N∑
i=1,
i̸=k

N∑
j=1,
j̸=k,
j̸=i

xij · ckij, (21)

where ckij is the energy cost of moving from viewpoint i
to j, given a previous viewpoint k . Note that the constraints
presented in (17) to (20) are equivalent to the standard ATSP
formulation, while only the objective function, presented
in (21), has been altered to fit the ATSP-PL formulation.
This new formulation minimizes the cost of moving from
the current viewpoint to the next viewpoint, given a previous
viewpoint, justifying the Precedence Loss designation.

2) EEPPA - ENERGY EFFICIENT PATH PLANNING ALGORITHM
The developed EEPPA algorithm, whose flowchart is pre-
sented in Fig. 7, takes as input the map of viewpoints of the
inspected structure and the energy model of the UAV, and
outputs the inspection path as a sequence of viewpoints. The
map of viewpoints comprises all inspection poses that the
UAV must meet, while the energy model enables to calculate
the energy consumption of moving from one pose to the
following one, which not only iteratively assists on selecting

FIGURE 7. Flowchart of the EEPPA algorithm: constructive heuristics
represented in blue, improvement heuristics represented in red, and ATSP
Solver heuristic represented in green.

the subsequent viewpoint, but also allows to determine the
total energy loss of the path produced. The inspected structure
can be divided into sub-structures to allow the application
of different methods that may fit better depending on the
shape of the sub-structure to be inspected. This division is
performed in the first stage of the algorithm (represented with
the blue diamond in Fig. 7) recurring to model fitting and
segmentation algorithms [25], capable of detecting objects
with regular shapes, such as cylinders or cubes, allowing to
divide the complete structure into regular shaped and com-
plex shaped sub-structures.

The path planning for the regular shaped sub-structures is
generated with the Spiral Procedure method (represented in
blue on the left side of Fig. 7), due to its ability to achieve
a feasible solution in a short computation time. This greedy
method is led by a simple dispatching rule with a considerable
cost-benefit ratio between the quality of the solution and the
time spent to achieve it. The flowchart of Spiral Procedure
method is presented in Fig. 8. The Spiral Procedure method
is similar to a cheapest neighbour approach. A solution is
generated by iteratively selecting the least expensive neigh-
bour viewpoint to move to, according to the energy loss. Each
viewpoint neighbourhood is defined by the euclidean distance
within a subset of viewpoints with similar height. When all
the viewpoints of that subset are selected, the last viewpoint’s
neighbourhood is expanded to the next subset of viewpoints,
and this process is repeated until all viewpoints have been
covered.

A different approach is used for the inspection of a
sub-structure with a complex shape. By relaxing the Prece-
dence Loss property of the ATSP-PL, it is possible to formu-
late and solve this problem as a traditional ATSP (represented
with the green background on the right side of Fig. 7). As the
ATSP is a well-known problem, using one of the several
optimized open source solvers is the most suitable option.
The selected open source ATSP Solver was the OR-Tools
from Google Developers [26], in particular the Routing algo-
rithm. This solver allows to select the greedy algorithm that
generates the initial solution, and the metaheuristic algorithm
capable of improving it. Its input is a cost matrix with a size
of N × N (N represents the number of viewpoints in the
inspection map), in which each cell has the energy cost of
moving from one viewpoint to another. For the purpose of
this problem, the Savings algorithm [27] was selected for the
initial solution algorithm, and the Guided Local Search for
the metaheuristic. This metaheuristic is generally the most
efficient metaheuristic for routing problems [26], as it enables
the solver to escape from a local minimum, proceeding with
the search for better solutions. To adapt and improve the
solution obtained with the ATSP Solver for the ATSP-PL
formulation, a Local Searchmethod is applied (represented in
red on the right side of Fig. 7). The flowchart of this method
is presented in Fig. 9. The local search is a well-known
approach that is able to enhance a solution by search-
ing for an improving one within its neighbourhood. In the
developed Local Search method, two different approaches
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FIGURE 8. Flowchart of the Spiral Procedure method.

were followed. One is based on the Relocate algorithm [28],
and consists of swapping pairs of viewpoints of a sequence
within a defined neighbourhood (represented on the left side
of Fig. 9). The other is based on the 2-Opt algorithm [29],
[30], and consists in flipping the order of a sub-sequence
between two viewpoints within a defined neighbourhood
(represented on the right side of Fig. 9). Fig. 10 exhibits an
example of a flipped sub-sequence (3, 6).

This Local Search method will be continuously seeking for
an enhanced solution, as long as each of its approaches is able
to find an improving solution at each iteration.

IV. SIMULATION SCENARIO RESULTS
The EEPPA algorithm was applied in the Gazebo simulator,
which allows to replicate real environment conditions and
to represent the UAV and its sensors with realistic mod-
els, as well as a structure to be inspected. This section
displays the generated map of viewpoints and the obtained
path of inspection, presenting the correspondent energy

FIGURE 9. Flowchart of the Local Search method, which includes the
swap of pairs of viewpoints (on the left side), and the swap of
sub-sequences of viewpoints (on the right side).

FIGURE 10. Example of a flipped sub-sequence (3, 6).

consumption, total displacement and time spent during the
inspection. By processing the data collected during the exe-
cution of the inspection path, it is possible to reconstruct the
structure’s model and to map the confidence on the quality
of the data at each location. The results obtained in the
conducted simulation were performed on a computer with the
following specifications:

• CPU - Intel® Core™ i7 7700HQQuad-Core, 2.80 GHz;
• GPU - Nvidia GeForce GTX 1050 4GB GDDR5;
• RAM - 16GB DDR4 SDRAM.
The UAV model used in the simulator corresponds to the

IRIS quadrotor controlled by an ArduPilot autopilot, powered
by a 3S LiPo battery (5.5 Ah) [16]. For the inspection map
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definition, the considered sensors were a monocular camera
and a 3D LiDAR, with the following characteristics:

• Monocular Camera - Mako G-125 - Frame Rate:
30 Hz, Resolution: 1292 x 964 pixels, Field of View:
80◦ horizontal;

• LiDAR - VLP-16 - Frame Rate: 10 Hz, Resolution:
1875 x 16 channels, Range: 100 m, Accuracy: 0,03 m,
Field of View: 360◦ horizontal and 30◦ vertical.

Given these sensors’ characteristics it is possible to establish
the values of each inspection parameter, which are presented
in Table 1.

TABLE 1. Defined values for the inspection parameters.

For the purpose of this demonstration, the selected struc-
ture to be inspected consists of an offshore wind turbine,
whose model is depicted in Fig. 11. This model consists of
the WindFloat design [31], that has a column height of 95 m
and a blade length of 82 m. Different tests were performed
with two different blades configurations, shown in Fig. 11b)
and Fig. 11c). The top figure corresponds to the horizontal
configuration, and the bottom one to the vertical configura-
tion. Given the previously defined parameters and this wind
turbinemodel, it is possible to generate the map of viewpoints
of the structure’s surface, for the UAV inspection. Fig. 12
exhibits the sequence of operations to obtain the map of
viewpoints for the horizontal configuration. Fig. 12a) shows a
section of the wind turbine model, while Fig. 12b) depicts the
correspondent inspection points of its surface (colored dots),

FIGURE 11. Wind turbine model: a) Windfloat, b) Horizontal blade
configuration, c) Vertical blade configuration.

FIGURE 12. Sequence of operations to obtain the map of viewpoints:
a) wind turbine model, b) discretized inspection surface (Dr = 2 m),
represented by the colored dots, c) the correspondent viewpoint of each
inspection point (dw = 5 m), represented by the red arrows, d) the wind
turbine model and the correspondent viewpoints map, represented by
red arrows.

with a discretization rate (Dr ) of 2 m. Fig. 12c) shows the
viewpoints obtained (red arrows) for each inspection point,
for a working distance (dw) of 5 m. Fig. 12d) depicts the same
viewpoints map and the correspondent wind turbine model.
The number of viewpoints generated to inspect this wind
turbine model is close to 1300. This procedure is analogous
for both vertical and horizontal blade configuration, and for
any other structure to be inspected.

A. PATH FOR THE INSPECTION OF THE STRUCTURE
Given the map of viewpoints of the structure and the energy
model of the UAV, it is possible to apply the developed path
planning algorithm. The results obtained by the EEPPA algo-
rithm are compared with the results obtained with two distinct
algorithms, OR-Tools and Cheapest Neighbour (CN). The
OR-Tools corresponds to the previously mentioned ATSP
solver [26], that obtains a solution based on the relaxation
of the original problem (does not consider the accelera-
tion cost of the UAV, that corresponds to the Precedence
Loss characteristic of the ATSP-PL problem formulation).
The Cheapest Neighbour algorithm is a greedy approach
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FIGURE 13. Paths obtained for the inspection of the wind turbine. Paths are represented by the green line and each viewpoint is represented by a red
arrow: a) Vertical configuration - CN, b) Vertical configuration - OR-Tools, c) Vertical configuration - EEPPA, d) Horizontal configuration - CN, e) Horizontal
configuration - OR-Tools, f) e) Horizontal configuration - EEPPA.

that generates a solution by iteratively selecting the least
expensive neighbour viewpoint to move to, according to the
energy loss. Each viewpoint neighbourhood is defined by
the euclidean distance. Fig. 13 depicts the paths obtained for
both wind turbine configurations, with the EEPPA, CN and
OR-Tools algorithms. The paths generated are represented
by the green line and each viewpoint is represented by a
red arrow. By analysing this figure it is noticeable that the
paths generated by EEPPA are more sequenced and with
smoother movements, while the paths generated by CN and
OR-Tools present rougher movements and a less sequential
path. The inspection of both wind turbine configurations was
performed by the UAV in the simulation environment, where
the paths generated by EEPPA algorithm were followed.1

Tables 2 and 3 present a summary of the values obtained

1Videos of both inspection paths available at https://youtu.be/ZK6-
UtJwNns (horizontal configuration) and https://youtu.be/on-gqbnurrM (ver-
tical configuration), displayed with ten times of the real speed. The wind
turbine model is represented in grey and the UAV in yellow. On the left it is
visible the images captures by the camera. The point cloud obtained by the
LiDAR are represented by the white dots. The red arrows represent the pose
(position and orientation) of the UAV at each instance of the inspection.

TABLE 2. Summary of the values obtained in the simulation scenario for
the path of the vertical configuration of the wind turbine, regarding
energy loss, displacement and time spent during the inspection.

in the simulation scenario for the paths with the vertical
and horizontal configurations, respectively, regarding energy
loss, displacement and time spent during the inspection.

For the vertical configuration, the EEPPA algorithm
resulted in a improvement of 27.4% regarding the CN, and
of 26.6% regarding the OR-Tools. For the horizontal config-
uration, the improvement regarding the CN and the OR-Tools
are of 28.3% and 24.8%, respectively. The difference in the
energy loss between the paths obtained with the two wind
turbine configurations can be explained by the orientation
of the blades. In the vertical configuration one of the blades
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TABLE 3. Summary of the values obtained in the simulation scenario for
the path of the horizontal configuration of the wind turbine, regarding
energy loss, displacement and time spent during the inspection.

is positioned perpendicularly to the ground, whereas in the
horizontal configuration one of the blades is positioned in
parallel. The horizontal blade allows the UAV to travel in a
straight line more often, not having the necessity to change its
direction of movement multiple times, resulting in a smoother
path. The vertical blade forces the UAV to successively
accelerate and decelerate during its inspection, increasing its
energy loss. The paths generated by EEPPA not only allowed
a higher energy efficiency, which is the mains goal, but also to
achieve faster and shorter paths. This can be explained by the
fact that the EEPPA generates smoother and more sequenced
paths, avoiding longer distances between two consecutive
viewpoints.

Fig. 14 shows an example of the improvement generated by
the Local Search method in the EEPPA algorithm. Fig. 14a)
shows a segment of the path generated by the OR-Tools ATSP
Solver, that is optimized to only reduce the displacement cost.
Fig. 14b) shows the path obtained for the same path segment
after applying the Local Search method, that also takes into
account the acceleration cost. Although this change increases
the total displacement, the loop generated by the Local Search
decreases the number of changes in direction, which smooths
the movement of the UAV and decreases the energy loss that
this segment of the path would produce.

FIGURE 14. Improvement produced by Local Search method: a) before
Local Search, b) after Local Search. The path and its direction is
represented by the green line and arrows, respectively. Each viewpoint is
represented by a red arrow.

B. 3D MODEL RECONSTRUCTION
During the inspection of the wind turbine in the simulation
scenario, the UAV was equipped with a LiDAR sensor which

FIGURE 15. Obtained point cloud of the reconstructed wind turbine
model (vertical configuration).

is able to collect a 3D point cloud of the surrounding envi-
ronment. With a point cloud registration method, it is possi-
ble to concatenate successive point clouds collected at each
instance, reconstructing the entire structure of inspection,
which results in a complete representation of the wind turbine
surface. The used method consists in pre-aligning each point
cloud based on the relative position between the UAV and
the turbine (given by a RTK GNSS sensor), and then fine
tuning the alignment with the ICP algorithm [32], [33], [34],
[35]. This 3D reconstruction allows to identify deviations on
the blades or tower, or even detect if any part is missing or
damaged. Fig. 15 depicts the point cloud of the reconstructed
model of the inspected wind turbine, for the vertical blade
configuration.2 A confidence parameter is assigned to each
inspection point, allowing to create a confidence map of the
inspection data. This confidence parameter is related with
the fitting ratio returned by the ICP algorithm, that depends
on the pre-alignment given by the relative position between
the UAV and the wind turbine obtained by the RTK sensor.
This confidence map identifies the certainty on the location
of the collected data for the reconstructed model, mapping
the areas with less reliable information that may need to be
double checked. Figure 16 displays the confidence map of
the inspection of the wind turbine for the vertical configu-
ration. The green dots represent the poses with the highest
confidence in the quality of the collected data, whereas red
dots represent the poses with the lowest confidence in the data
that was collected.

2Video of the iterative model reconstruction of the wind turbine model
(vertical configuration) available at https://youtu.be/xHD4EB6HuDc
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FIGURE 16. Confidence map of the model reconstruction: a) Front view,
b) Side view. Green dots represent the poses with the highest confidence
in the quality of the collected data, whereas red dots represent the poses
with the lowest confidence in the collected data.

V. REAL SCENARIO RESULTS
The developed algorithm for inspection path planning was
also tested in a real scenario. The used aerial robot is INESC
TEC’s CROW (Copter Robot for OffshoreWind-farms) UAV.
This UAV is based on a quadcopter frame (with a wingspan
of 0.7 m, and a maximum payload of 2 Kg) with a PixHawk
controller running the ArduPilot software. Its navigation sys-
tem is composed of a GNSS/RTK sensor, that has a position-
ing accuracy of 2.5 m and of 0.025 m when paired with a
base station. It has an onboard processing unit (Raspberry
Pi 4B 8Gb). CROW is supplied by a 6S LiPo battery of
14 Ah, which enables a total flight time of at least 25 minutes
(depending on the payload). The values defined for the linear
and angular speeds of the UAV during the inspection are the
same used in the simulation experiments. For the inspection
map definition, the considered sensors were a monocular
camera and a 3D LiDAR, with the following characteristics:

• Monocular Camera - TIS-DFM-37UX273-ML Frame
Rate: 5 Hz, Resolution: 1440 × 1080 pixels, Field of
View: 90◦ horizontal;

• LiDAR - OS1-64 - Frame Rate: 10 Hz, Resolution:
1024 × 64 channels, Range: 120 m, Accuracy: 0,05 m,
Field of View: 360◦ horizontal and 45◦ vertical.

These sensors allow the UAV to gather high quality informa-
tion about the inspected structure. Figure 17 depicts CROW
with the described sensors attached.

The structure inspected in this experiment was a 25 m
high illumination tower of the football field of the Faculty
of Sport of the University of Porto (FADEUP), depicted in
Fig. 18. Given that a 3D model of the illumination tower was
not available, a coarse sketch of its surface was obtained by
collecting several point clouds at distinct points of the struc-
ture, recurring to the LiDAR mentioned above. To approx-
imate this experience to the problem of inspecting a larger
structure (as the wind turbine model used in the simulation
experiments) the discretization rate was considerably reduced
to increase the number of inspection points, also resulting in
the increase of the total number of viewpoints. In particular,

FIGURE 17. CROW UAV and its sensors payload: a monocular camera and
a 3D LiDAR.

FIGURE 18. Inspected structure: illumination tower of FADEUP’s football
field.

the discretization rate (Dr ) was set to 0.2 m horizontally and
0.5 m vertically, which resulted in about 800 viewpoints. The
discretized inspection surface of the illumination tower is
depicted in Fig. 19a). The working distance (dw) was set to
3 m, which allowed to obtain the map of viewpoints exhibited
in Fig. 19b). Note that the irregularity and roughness of the
obtained viewpoints map is due to the coarse sketch used as
model of the illumination tower. Similarly to the simulation
scenario, the results obtained by the EEPPA algorithm were
compared with the results obtained with the OR-Tools and
the CN algorithms. Due to the regular shape of the structure
used in these tests, the results obtained when applying only
the Spiral Procedure algorithm were also analysed. The path
obtained with the EEPPA algorithm for the inspection of the
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FIGURE 19. Path obtained to inspected the illumination tower: a) Discretized inspection surface (Dr = 0.2 m horizontal and 0.5 m vertical), b) Viewpoints
map (dw = 3 m), c) CN inspection path, d) OR-Tools inspection path, e) Spiral Procedure inspection path, and f) EEPPA inspection path.

TABLE 4. Summary of the values obtained in the real scenario for the
paths of the illumination tower, regarding energy loss, displacement
and time spent during the inspection.

FIGURE 20. UAV inspection: a) CROW inspecting the illumination tower,
b) sample of collected data with the visual camera, c) sample of collected
data with the 3D LiDAR.

illumination tower is displayed in Fig. 19f), whereas the paths
obtained with the CN, OR-Tools and Spiral Procedure are
depicted in Fig. 19c), Fig. 19d) and Fig. 19e), respectively.
Table 4 presents a summary of the values obtained in this

FIGURE 21. Reconstruction of the illumination tower using point clouds.

real scenario, for the paths generated for the inspection of the
illumination tower, regarding energy loss, displacement and
time spent during the inspection.

The EEPPA algorithm resulted in an improvement of
20.7%, of 8.7% and of 4.6%, when compared with the OR-
Tools, CN and Spiral Procedure algorithms, respectively.
Although the total displacement generated by the path of
EEPPA is considerable higher than the displacement of CN
and OR-Tools, the energy loss is considerably lower. This
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can be explained once again by the fact that EEPPA is an
algorithm focused on minimizing the energy consumption
during the inspection, instead of the total displacement. The
path generated by EEPPA is smoother and more sequen-
tial, preventing the UAV from successively accelerating and
decelerating its movement. Due to the regular shape of the
illumination tower, the results obtained with EEPPA are sim-
ilar to the ones obtained with only the Spiral Procedure. The
main explanation for these results is related with the fact that
EEPPA algorithm applies the Spiral Procedure to produce the
path for the inspection of the column, only differing in
the method used to generate the path to inspect the lamps on
the top of the column. Nevertheless, even this small difference
in the path generated for the lamps resulted in a more energy
efficient path.

Fig 20 depicts CROWduring an inspection of the illumina-
tion tower, and a sample of the collected data. By registering
the point cloud collected during the inspection it was possible
to reconstruct the illumination tower module that is depicted
in Fig. 21.

VI. CONCLUSION
This work presented an energy oriented path planning algo-
rithm that minimizes the energy loss of a UAV during the
inspection of a structure. The surface of a given model to
be inspected was discretized, allowing to obtain an inspec-
tion map. This map is composed of a set of viewpoints
that depend on the structure surface shape, and also on the
sensors’ characteristics. To optimize the path to be performed
in terms of energy loss, a complete energy model of the
UAV was defined. This model considers the energy con-
sumption of distinct components, such as displacement and
acceleration, related with the changes of direction of the
movement of the UAV. With the list of viewpoints and the
energy model defined, it was possible to solve the path plan-
ning problem with the developed algorithm, named EEPPA.
The experiments performed in both simulation and real sce-
narios allowed to validate the developed algorithm, which
obtained improvements over 24% and 8%, respectively, when
compared with other methods. The simulated experiments
were performed with realistic models of wind turbines and
a UAV, while the real experiments were performed with a
real UAV and an illumination tower. The collected inspection
data, in particular the point cloud, allowed to perform model
reconstructions of the inspected structures, as well as creating
a confidence map that relates the confidence on the data
collected in each viewpoint with its localization.
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