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ABSTRACT On-demand ridesharing services play a crucial part in the development of modern smart cities.
Unfortunately, despite their advantages, not many people opt to use them.We believe that increasing the user
satisfaction from the services will cause more people to utilize them. Sometimes, it is possible to increase
user satisfaction by providing accurate information related to the alternative modes of transportation, such
as a private taxi ride and public transportation. For example, a passenger may be more satisfied with a
shared-ride if she is told that a private taxi ride would have cost her 50% more. The challenge is thus to
decide which information should be revealed to the user in order to increase the user satisfaction. To address
this problem, we model our environment as a signaling game and analyze the perfect Bayesian equilibria for
three agents’ classes: 1) the honest agent model, in which the agent must only provide truthful information,
2) a no utility for lying model, in which the agent receives no utility if it elects to provide false information,
and 3) a penalized false information model, in which the agent is penalized for providing false information.
We show that in the honest agent model and in the no utility for lying model, the agent must reveal all the
information regarding the possible alternatives to the passenger. However, in the penalized false information
model, there are two types of equilibria, one in which she is truthful (but must keep silent sometimes), and
the other, in which the agent provides false information. The latter equilibrium type includes equilibria that
seem unreasonable. Therefore, we propose a novel criterion to filter out such equilibria, and demonstrate its
usefulness in another game.

INDEX TERMS Multi-agent systems, signaling games, information disclosure, perfect Bayesian
equilibrium criteria.

I. INTRODUCTION
More than 55% of the world’s population are currently living
in urban areas, a proportion that is expected to increase up
to 68% by 2050 [1]. Sustainable urbanization is a key to
successful future development of our society. A key inherent
goal of sustainable urbanization is an efficient usage of
transportation resources in order to reduce travel costs, avoid
congestion, and reduce greenhouse gas emissions.

While traditional services—including buses and taxis—
are well established, large potential lies in shared but
flexible urban transportation. On-demand ridesharing, where
the driver is not a passenger with a specific destination,
appears to gain popularity in recent years, and big ride-
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hailing services such as Uber and Lyft are already offering
such services. However, despite the popularity of Uber and
Lyft [2], their ridesharing services, which group together
multiple passengers (Uber-Pool and Lyft-Line), suffer from
low usage [3], [4].

In this paper we propose to increase the user satisfaction
from a given shared-ride, in order to encourage her to use
the service more often. That is, we attempt to use a form of
persuasive technology [5], not in order to convince users to
take a shared ride, but tomake them feel better with the choice
they have already made, and thus improve their attitude
towards ridesharing. It is well-known that one of the most
influencing factors for driving people to utilize a specific
service is to increase their satisfaction from the service (see
for example, [6]). Moreover, if people are satisfied and use
the service more often it will improve the quality of the
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service, such as the waiting time, cost, travel time, and
service availability, which in turn further increase the user
satisfaction.

Sometimes, it is possible to increase user satisfaction
by providing accurate information related to the alternative
modes of transportation, during the shared ride or imme-
diately after the passenger has completed it. Therefore,
we model our environment as a signaling game [7], which
models the decision of a rational agent whether to provide
the exact price (i.e., the cost or the travel time) of a possible
alternative mode of transportation, or not. In this game
there are three players: nature, the agent and the passenger.
Nature begins by randomly choosing a price from a given
distribution; this distribution is known both to the agent and
the passenger. The agent observes the price and decides
whether to disclose this price to the passenger, provide false
information, or keep silent. The passenger then determines
her current expectation over the price of the alternative. The
goal of the agent is to increase the passenger satisfaction, and
thus it would like the passenger to believe that the price of the
alternative is higher than the price of the shared-ride as much
as possible. We note that the agent may be a human being or
a computerized agent.

We use the standard solution concept of Perfect Bayesian
Equilibrium (PBE) [8], and analyze three agents’ models.
In the ‘honest agent’ (HA) model, the agent is not allowed to
report false information. In the ‘no utility for lying’ (NUFL)
model, the agent may provide false information, but she does
not receive any utility if she opts to do so. In the third
model, ‘penalized false information’ (PFI), the agent may
provide false information, but a penalty is imposed on her
for doing so. We show that in the HA and NUFL models,
the agent must reveal all the information regarding the price
of the possible alternative to the passenger (unless nature
selects the minimum possible value, in which the agent may
reveal the value, may keep silent, or may use any mixed
strategy of the two). However, in the PFI model, there are
two types of equilibria, one in which the agent is truthful
(but must keep silent for some values of nature), and the
other, in which she provides false information. The latter
equilibrium type includes equilibria that seem unreasonable.
Therefore, we propose a new criterion, the credible belief
criterion, to filter out such equilibria. Intuitively, the credible
belief criterion states that if the agent deviates, and plays an
off-the-path action, the user should not increase her belief
(over the prior distribution) in a selection of nature that would
cause the agent to lose more by deviating than her belief in
a selection of nature that would cause the agent to lose less
by deviating. We further demonstrate the usefulness of the
credible belief criterion in a signaling game in the context of
occupation and education.

The contributions of this paper are twofold:

• We model the information disclosure in the ridesharing
domain as a signaling game and determine the unique set
of Perfect Bayesian Equilibria (PBE) for three different
agent models.

• We introduce the credible belief criterion, which filters
unreasonable PBEs.

II. RELATED WORK
A. RIDESHARING
Most work on ridesharing has focused on the assignment
of passengers to vehicles. See the comprehensive surveys
by Parragh et al. [9], [10], and a recent survey by
Psaraftis et al. [11]. In particular, the dial-a-ride problem
(DARP) is traditionally distinguished from other problems of
ridesharing since transportation cost and user inconvenience
must be weighed against each other in order to provide an
appropriate solution. Therefore, the DARP typically includes
more quality constraints that aim at capturing the user’s
inconvenience. We refer to a recent survey on DARP by
Molenbruch et al. [12], which also makes this distinction.
In recent years there is an increasing body of works
that concentrate on the passenger’s satisfaction during the
assignment of passengers to vehicles [13], [14], [15]. Similar
to these works we are interested in the satisfaction of the
passenger, but instead of developing assignment algorithms
(e.g., [16]), we focus on the role of information disclosure as
a means to improve user satisfaction.

B. INFORMATION DISCLOSURE
There are other works in which an agent provides information
to a human user (in the context of the roads network) for
different purposes. For example, Azaria et al. [17], [18], [19]
develop agents that provide information or advice to a human
user in order to convince her to take a certain route. Several
other works have discussed the implications of information
disclosure on environmental factors, including traffic and
pollution [20], [21].

Bilgic andMooney [22] present methods for explaining the
decisions of a recommendation system to increase the user
satisfaction. In their context, user satisfaction is interpreted
only as an accurate estimation of the item quality.

Grossman [23] studies markets in which sellers may opt to
reveal information to buyers in the form of a set of possible
values of their items. The sellers must include the value of
their item in the set of values revealed, or they may opt to
reveal an empty set. Grossman shows that the buyers will
always believe that the item’s value is the minimum value
in the set revealed by the seller, and only a seller with the
least valued item may opt to reveal an empty set. In our work,
we model our environment as a signaling game allowing
mixed strategies and continuous values, and we analyze it for
three agents’ classes.

C. SIGNALING GAMES
Signaling games are used to model problems in several
domains. For example, Noe [27] models financial decisions
of a firm (whether to use equity financing or debt financing)
as a signaling game. Bangerter et al. [29] model the job
market using signaling games, and analyze relationships
between applicants and organizations, among applicants,

VOLUME 11, 2023 32031



D. Zar et al.: Information Disclosure for Increasing User Satisfaction From a Shared Ride

TABLE 1. A comparison of related works on signaling games.

and among organizations. Rogers [28] model the interaction
between the legislatures and the court as a signaling game.
In this work, we use signaling games to model user
satisfaction in ridesharing problems, and we use the perfect
Bayesian equilibrium as the solution concept [8], [30], [31].
We also consider a refinement of the PBE, the intuitive
criterion introduced by Cho and Kreps [24], which filters
out PBEs where the user believes that the agent chose
an action that would certainly result in a loss. However,
there are cases in which this criterion is not adequate, and
additional refinements have been suggested. Banks and Sobel
define the divine criterion [26], a refinement of the intuitive
criterion, that compares the value for the agent with different
actions while taking into account the user’s actions. Cho
suggests [25] the forward induction equilibrium, which is
another refinement of the intuitive criterion. In this work,
we encounter PBEs that seem unreasonable, yet none of the
previously defined criteria filter them. Therefore, we define
the credible belief criterion, a novel criterion that filters out
these unreasonable equilibria. We further show that this new
criterion is useful in other signaling games.

D. PREVIOUSLY PUBLISHED RESULTS
In our previous work [32], we modeled our environment as a
signaling game and analyzed the perfect Bayesian equilibria
for only a single agent class, the honest agent model. In this
paper, we analyze two additional agents’ classes: a no utility
for lying model, and a penalized false information model.
In addition, in this paper, we propose a novel criterion to filter
out unreasonable equilibria, and demonstrate its usefulness in
another game.

III. PRELIMINARIES
Recall that we attempt to increase user satisfaction by
proving accurate information related to alternative modes of
transportation. Specifically, we assume that the passenger
has some estimate over the possible prices of the alternative
modes of transportation, while the agent has a more accurate
knowledge related to the prices. Therefore, we model our
setting with the following signaling game. We assume that
there is a given random variable X with a prior probability
distribution over the possible prices of a given alternative
mode of transportation. The possible values of X , denoted by
the set χ , are bounded within the range [min,max], where
min > 0. Without loss of generality, ∀x ∈ χ , Pr(X = x) >

0 for a discrete distribution, and ∀ϵ > 0,FX (x+ ϵ)−FX (x−

ϵ) > 0 for a continuous distribution. In addition, we assume
that min ∈ χ . For ease of notation, when a distribution is

FIGURE 1. A flowchart demonstrating the process of the signaling game.

concentrated at a single point, we state that the probability at
that point is 1, but do not state that the probability of any other
value of the random variable is 0.

The game is composed of three players: nature, player 1
(agent) and player 2 (passenger/user). It is assumed that both
players are familiar with the prior distribution over X . Nature
randomly chooses a number x according to the distribution
over X . The agent observes the number x and plays an action
a1 ∈ A1, where A1 is the set of possible actions for the agent.
We note that A1 depends on the environment, and it may also
depend on nature’s choice, x. We denote by [p, a′

1; (1−p), a′′

1]
a mixed strategy of playing a′

1 ∈ A1 with a probability of p
and a′′

1 ∈ A1 with a probability of (1 − p), where 0 ≤ p ≤ 1.
Intuitively, this action is a signal (message) sent to the user.
The user observes the agent’s action and plays an action
a2 ∈ A2 = [min,max]. See Figure 1 for a flowchart
demonstrating this process, and Table 2 for a list of symbols
used throughout the paper. We consider several models for
our environment.

IV. HONEST AGENT (HA) MODEL
We begin by considering an agent that is not allowed to
provide any false information. That is, the agent’s action is
either ϕ (quiet) or x (say), i.e, A1 = {ϕ, x}.

That is, we assume that the agent may not provide false
information. This is a reasonable assumption, since providing
false information is usually prohibited by the law, or may
harm the agent’s reputation. The user observes the agent’s
action and her action, denoted a2, is any number in the range
[min,max]. The user’s action essentially means setting her
estimate about the price of the alternative. In our setting,
the agent would like the user to think that the price of the
alternative is as high as possible, while the user would like to
know the real price. Therefore, we set the utility for the agent
to a2 and the utility of the user to −(a2 − x)2. Note that we
did not define the utility of the user to be simply −|a2 − x|,
since we want the utility to highly penalize a large deviation
from the true value.

We first note that if the agent plays a1 ̸= ϕ then the user
knows that a1 is nature’s choice. Thus, a rational user would
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TABLE 2. Table of symbols used throughout the paper.

play a2 = a1. On the other hand, if the agent plays a1 = ϕ

then the user would have some belief about the real price,
which can be the original distribution of nature, or any other
distribution. Clearly, the user’s best response is to play the
expectation of this belief. Formally,
Observation 1: Assume that the agent plays a1 = ϕ, and

let Y be a belief over x. That is, Y is a random variable with
a distribution over [min,max]. Then, argmaxa∈A2 E[−(a −

Y )2] = E[Y ].
Proof: Instead of maximizing E[−(a − Y )2] we can

minimize E[(a− Y )2]. In addition, E[(a− Y )2] = E[(a)2]−
2E[aY ]+E[Y 2] = (a)2−2aE[Y ]+E[Y 2]. By differentiating
we get that

d
da

(
(a)2 − 2aE[Y ] + E[Y 2]

)
= 2a− 2E[Y ].

The derivative is 0 when a = E[Y ] and the second derivative
is positive; this entails that

argmin
a∈A2

(
(a)2 − 2aE[Y ] + E[Y 2]

)
= E[Y ].

□
Now, informally, if nature chooses a ‘‘high’’ value of x, the

agent would like to disclose this value by playing a1 = x. One
may think that if nature chooses a ‘‘low’’ value of x, the agent
would like to hide this value by playing a1 = ϕ. However,
since the user adjusts her belief accordingly, she will play
E[X |a1 = ϕ]. Therefore, it would be more beneficial for the
agent to reveal also low values that are greater than E[X |a1 =

ϕ], which, in turn, will further reduce the new E[X |a1 = ϕ].
Indeed, Theorem 1 shows that a rational agent should always
disclose the true value of x, unless x = min. If x = min the
agent can play any action, i.e., ϕ, min or any mixture of ϕ

and min. We begin by applying the definition of PBE to our
signaling game.

Definition 1: A tuple of strategies and a belief, (σ1, σ2, µ2),
is said to be a perfect Bayesian equilibrium in our setting if
the following hold:

1) The strategy of player 1 is a best response strategy. That
is, given σ2 and x, deviating from σ1 does not increase
player 1’s utility.

2) The strategy of player 2 is a best response strategy. That
is, given a1, deviating from σ2 does not increase player
2’s expected utility according to her belief.

3) µ2 is a consistent belief. That is, µ2 is a distribution
over x given a1, which is consistent with σ1 (following
Bayes’ rule, where appropriate).

Theorem 1: A tuple of strategies and a belief, (σ1, σ2, µ2),
is a PBE if and only if:

• σ1(x) =

{
x : x > min
[p,min; (1 − p), ϕ], 0 ≤ p ≤ 1 : x = min

• σ2(a1) =

{
a1 : a1 ̸= ϕ

min : a1 = ϕ

• µ2(x = a1|a1 ̸= ϕ) = 1 and µ2(x = min|a1 = ϕ) = 1.
Proof: (⇐) Such a tuple is a PBE: σ1 is a best response

strategy, since the utility of player 1 is x if a1 = x and min
if a1 = ϕ. Thus, playing a1 = x is a weakly dominating
strategy. σ2 is a best response strategy, since it is the expected
value of the belief µ2, and thus it is a best response according
to Observation 1. Finally, µ2 is consistent: If a1 = ϕ and
according to σ1 player 1 plays ϕ with some probability
(greater than 0), then according to Bayes’ rule µ2(x =

min|a1 = ϕ) = 1. Otherwise, Bayes’ rule cannot be applied
(and it is thus not required). If a1 ̸= ϕ, then by definition
x = a1, and thus µ2(x = a1|a1 ̸= ϕ) = 1.
(⇒) Let (σ1, σ2, µ2) be a PBE. It holds that

µ2(x = a1|a1 ̸= ϕ) = 1 by Bayes’ rule, implying that if
a1 ̸= ϕ, σ2(a1) = a1. Therefore, when a1 = x the utility of
player 1 is x.
We now show that σ2(a1 = ϕ) = min. Assume by

contradiction that σ2(a1 = ϕ) ̸= min (or Pr(σ2(a1 = ϕ) =
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min) < 1), then E[σ2(ϕ)] = c > min. We now deduce the
strategy of player 1. There are three possible cases: if x > c,
then a1 = x is a strictly dominating strategy. If x < c, then
a1 = ϕ is a strictly dominating strategy. If x = c, there is no
advantage for either playing ϕ or x; both options give player
1 a utility of c, and thus she may use any strategy. That is

, σ1(x) =


x : x > c
ϕ : x < c
[p,min; (1 − p), ϕ], 0 ≤ p ≤ 1 : x = c.

Given this strategy, we need to apply Bayes’ rule to derive
µ2(x|a1 = ϕ). By σ1, it is possible that a1 = ϕ only if x ≤

c. That is, µ2(x > c|a1 = ϕ) = 0 and µ2(x ≤ c|a1 =

ϕ) = 1. Therefore, the expected value of the belief, c′ =

EX∼µ2(x|a1=ϕ)[X ], and according to Observation 1, σ2(ϕ) =

c′. However, c′ = EX∼µ2(x|a1=ϕ)[X ] ≤ E[X |X ≤ c] since
player 1 plays ϕ only when x < c and possibly also when
x = c. In addition, E[X |X ≤ c] < c, since c > min. That is,
E[σ2(ϕ)] = c′ < c, which is a contradiction. Therefore, the
strategy for player 2 in every PBE is determined. In addition,
since σ2(ϕ) = EX∼µ2(x|a1=ϕ)[X ] according to Observation 1,
then µ2(x|a1 = ϕ) = min, and the belief of player 2 in every
PBE is also determined.

We end the proof by showing that for x > min, σ1(x) = x.
Since σ2 is determined, the utility of player 1 ismin if a1 = ϕ

and x if a1 = x. Therefore, when x > min, playing a1 = x is
a strictly dominating strategy.

□

V. NO UTILITY FOR LYING (NUFL) MODEL
The following model is identical to the first model, except
that it allows the agent to provide false information; however,
the agent does not receive any utility if she opts to do so.
Formally, the agent’s action is either ϕ or any number in the
range [min,max] (which does not necessarily equal x), i.e.,
A1 = {ϕ} ∪ [min,max]. In this setting, the utility of the agent
is

u1(x, a1, a2) =

{
a2 : a1 ∈ {ϕ, x}
0 : otherwise.

The analysis of the possible PBE for the HA model
(Theorem 1) holds for the current model as well. However,
in the current model there are additional perfect Bayesian
equilibria. For example,

• σ1(x) = ϕ

• σ2(a1) =

{
min : a1 ̸= ϕ

E[X ] : a1 = ϕ

• µ2(x = min|a1 ̸= ϕ) = 1 and µ2(x|a1 = ϕ) = Pr(X =

x).
Note that the belief µ2 is consistent, since the agent plays
a1 ̸= ϕ with probability 0, and thus Bayes’ rule is not
violated. Indeed, the user believes that if the agent deviates
and plays a1 > min she does not provide the truthful value
of x. However, this belief is not reasonable, since the agent
does not have an incentive to do so, as it would result in the
lowest possible utility for her (zero). We thus use the intuitive

criterion [24] to filter the equilibria with non-reasonable
beliefs.

In order to define the intuitive criterion for our setting,
we first define the notion of a seemly deviation action.
Informally, an action is considered a seemly deviation if there
exists a situation in which the agent may expect to gain (or
not lose) from this deviation.
Definition 2: For nature’s choice x and strategy σ1, let a′

1
be an action such that Pr(σ1(x) = a′

1) = 0. We say that a′

1
is a seemly deviation for the agent, if there exist user actions
w, z ∈ A2 such that u1(x, a′

1,w) ≥ u1(x, σ1(x), z).
We note that in our NUFL model, if the agent’s strategy for
a given x is either ϕ or x, providing false information is
never a seemly deviation for the agent. The reason is that by
deviating, the agent will always receive an outcome of zero,
regardless of the user’s action, which is certainly less than the
agent’s payoff had she played her original strategy.

Recall that an action is considered an off-the-path action for
the agent if, according to a specific strategy, it should never be
played (regardless of nature’s choice of x). That is, an agent
action that the user does not expect to see.
Definition 3: Given a strategy for the agent, σ1, an agent

action, a ∈ A1 is off-the-path, if ∀x ∈ χ Pr(σ1(x) = a) = 0.
We can now define the intuitive criterion for our setting.

Informally, the criterion requires that given an off-the-path
action a, the user believes that nature’s choice of x is such that
a is a seemly deviation (unless a is not a seemly deviation for
all x).
Definition 4: APerfect Bayesian Equilibrium, (σ1, σ2, µ2),

is said to satisfy the intuitive criterion, if for all off-the-path
actions a ∈ A1, if there exists x ∈ X such that a is a seemly
deviation from σ1(x) then for all x ∈ X that a is not a seemly
deviation from σ1(x), µ2(x|a) = 0.
Clearly, in our NUFL model, a PBE that satisfies the intuitive
criterion cannot consist of a user’s belief that the agent
provides false information with a probability greater than 0.

Similarly to the HA model, we show that under the NUFL
model using the intuitive criterion, a rational agent should
always disclose the true value of x (unless x = min).
Theorem 2: A tuple of strategies and a belief, (σ1, σ2, µ2),

is a PBE that satisfies the intuitive criterion if and only if:

• σ1(x) =

{
x : x > min
[p,min; (1 − p), ϕ], 0 ≤ p ≤ 1 : x = min

• σ2(a1) =

{
a1 : a1 ̸= ϕ

min : a1 = ϕ

• µ2(x = a1|a1 ̸= ϕ) = 1 and µ2(x = min|a1 = ϕ) = 1.
Proof: (⇐) As shown in Theorem 1 such a tuple is a

PBE. It also satisfies the intuitive criterion: the only actions
that can be off-the-path are ϕ and min. Given each of these
actions, the user’s belief is that x = min. In both cases, if x =

min, the actions a = ϕ and a = min are seemly deviations.
(⇒) In any PBE the agent will never lie, since lying is

a strictly dominated strategy. Furthermore, since the PBE
satisfies the intuitive criterion, the user never believes that
the agent lies. Specifically, given an action a1 ̸= ϕ, if it
is possible to apply Bayes’ rule (i.e., the action is not
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off-the-path) then the user will not believe that the agent lies.
If the action a1 is off-the-path then the user can believe that
x = a1 (the agent told the truth). This is a seemly deviation,
since the user can play a2 = max (which will result in
u1 = max). However, the user cannot believe that x ̸= a1,
since it is not a seemly deviation. Overall, the agent never
lies and the user never believes that the agent lies and thus we
are back to the case of Theorem 1. □

VI. PENALIZED FALSE INFORMATION (PFI) MODEL
This model is identical to the NUFL model, except for the
utility of the agent when providing false information. Namely,
the agent is penalized by a fraction of a2 when she provides
false information. Formally, let 0 < f < 1, the utility of the
agent is

u1(x, a1, a2) =

{
a2 : a1 ∈ {ϕ, x}
f · a2 : otherwise.

Note that this formulation captures situations in which there
is a chance that the lie is revealed and then the utility is zero.
However, there is also a probability (f ) that the lie is not
revealed, and thus the agent’s expected utility, in case of a
lie, is f · a2. We assume that min < f · max (otherwise, the
PFImodel becomes identical to the NUFLmodel, because the
utility for the agent for providing false information is always
lower than her utility for playing a1 = x or a1 = ϕ).
Interestingly, under the PFI model a rational agent should

not always disclose the true value of x. Intuitively, if the user
always plays a2 = a1, the agent is better off by playing a1 that
is higher than x, such that f · a1 > x. We obtain two general
PBEs: one in which the agent is truthful (but sometimes
plays ϕ), and one in which the agent lies. Specifically, the
strategy of a truthful agent is to play ϕ on a set S (silent),
and otherwise to play x (the truth). In general, the agent will
remain silent except for some values that are slightly higher
than the expectation on the values in S. S cannot be empty,
i.e., the agent must keep silent for some values of x, but S
may include all values of x, i.e., the agent may always play
ϕ. The strategy of the non-truthful agent uses a partition of
the interval [min,max] to three sets: F (false), S (silent), and
T (truth). In general, the agent will lie, and she will say the
most beneficial lie, that is, the value that will maximize σ2.
However, in some cases the agent will say the truth. Let EF be
the maximum value of σ2. If σ2(x) is only slightly lower than
EF , that is σ2(x) ≥ f · EF , the agent can play x (the truth),
since she will not be penalized. The agent may play ϕ if σ2(ϕ)
equals f · EF . We useQ to indicate the set of lies used by the
agent, that is, the values that the agent uses when a1 ̸= x.
Note that in the current model the intuitive criterion cannot

be violated, since for nature’s choice x and a deviation a′

1,
u1(x, a′

1,max) > u1(x, σ1(x),min). That is, every deviation
of the agent is a seemly deviation. To simplify the exposition,
we concentrate on PBEs with pure strategies.

Before we formally describe the PBEs under the PFI
model, we show two lemmas that provide constraints on the
user’s strategy, sigma2, in a PBE.

Lemma 1: If (σ1, σ2, µ2) is a PBE then ∀x1, x2 ∈ X ,

σ2(σ1(x1)) ≥ f · σ2(σ1(x2)).
Proof: Assume by contradiction that for some x1, x2 it

holds that σ2(σ1(x1)) < f · σ2(σ1(x2)). Then, σ1 is not a
strategy of an equilibrium since the agent will benefit from
deviating from it and playing σ1(x2) given x1. □
As a corollary of Lemma 1 we can deduce that there exists
some c such that σ2(σ1(·)) ∈ [f · c, c].
Lemma 2: ∀x ∈ X, σ2(σ1(x)) ≥ σ2(ϕ).
Proof: Assume by contradiction that for some x it holds

that σ2(σ1(x)) < σ2(ϕ). Then, σ1 is not a strategy of an
equilibrium since the agent will benefit from deviating from
it and playing ϕ given x. □
We are now ready to formally describe the PBEs under the
PFI model.
Theorem 3: A tuple of strategies and a belief, (σ1, σ2, µ2),

is a PBE if and only if it is one of the following:
1) (truthful agent) Let S ⊆ [min,max] where S is non-

empty, such that if x /∈ S then E[X | X ∈ S] ≤ x ≤

E[X | X ∈ S]/f . For s ∈ S let Ys be a random variable
such that E[Ys] ≤ E[X | X ∈ S].

• σ1(x) =

{
ϕ : x ∈ S
x : otherwise

• σ2(a1) =


E[X | X ∈ S] : a1 = ϕ

a1 : a1 /∈ S ∪ {ϕ}

E[Ya1 ] : a1 ∈ S
• µ2(x = a1 | a1 /∈ S ∪ {ϕ}) = 1

µ2(x | a1 = ϕ) =


Pr(X = x)

Pr(σ1(X ) = ϕ)
: x ∈ S

0 : x /∈ S
µ2(x | a1 ∈ S) = Ya1 .

2) (non-truthful agent) Let F, S,T be a partition of
[min,max] where F is not empty. LetQ = {q1, . . . , qr }
for some natural number r, where qi ∈ [min,max] and
∀i ̸= j, qi ̸= qj. Let EF = E[X | X ∈ F ∪ (Q∩T )]. Let
F1,F2, . . . ,Fr be a partition of F, such that for all i ∈
{1, 2, . . . , r} it holds that E[X | X ∈ Fi ∪ ({qi}∩T )] =

EF . For each x ∈ T , f · EF ≤ x ≤ EF . For x /∈ T ∪Q,
let Yx be a random variable such that E[Yx] ≤ f · EF ,
and let Yϕ be also such a variable. If S is not empty,
then E[X | X ∈ S] = f · EF .

• σ1(x) =


qi : x ∈ Fi for some i
x : x ∈ T
ϕ : x ∈ S

• σ2(a1) =


a1 : a1 ∈ T \Q
f · EF : a1 = ϕ and S ̸= ∅

EF : a1 ∈ Q
E[Ya1 ] : otherwise

• µ2(x = a1 | a1 ∈ T \Q) = 1
µ2(x | a1 = qi) =

Pr(X = x)
Pr(X ∈ Fi ∪ ({qi} ∩ T ))

: x ∈ Fi ∪ ({qi} ∩ T )

0 : otherwise
µ2(x | a1 /∈ T ∪ Q or (a1 = ϕ and S = ∅)) =

Pr(Ya1 = x).
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If S ̸= ∅ then

µ2(x | a1 = ϕ) =


Pr(X = x)

Pr(σ1(X ) = ϕ)
: x ∈ S

0 : x /∈ S.
Proof: We begin with the truthful agent case.

(⇐) Let (σ1, σ2, µ2) be a tuple of strategy and belief that
satisfies the conditions of the truthful agent. µ2 satisfies
Bayes’ rule:

• If a1 /∈ S ∪ {ϕ}, according to σ1, a1 = x; therefore,
by Bayes’ rule: µ2(x = a1 | a1 /∈ S ∪ {ϕ}) = 1.

• If a1 = ϕ, according to σ1 and Bayes’ rule:
µ2(x | a1 = ϕ) =

Pr(X=x)Pr(a1=ϕ|x)
Pr(σ1(X )=ϕ) =

Pr(X = x)
Pr(σ1(X ) = ϕ)

: x ∈ S

0 : x /∈ S.

• If a1 ∈ S then the agent’s action is off-the-path, and thus
mu2 is not required to follow Bayes’ rule.

Given σ1 and µ2, the strategy of the user, σ2, is a best
response, since it is the expectation over the user’s belief
regarding x (according to Observation 1). Finally, given
σ2 and µ2, the agent does not have an incentive to deviate
from σ1:

• If x ∈ S, the agent strategy is σ1(x) = ϕ, and the utility is
E[X | X ∈ S]. If the agent deviates and plays x instead,
her utility is E[Yx] which is at most E[X | X ∈ S]. If the
agent plays any other action a1 /∈ {x, ϕ} then her utility
is f ·σ2(a1). However, the maximum value of σ2 is E[X |

X ∈ S]/f , which is obtained when a1 = max(A1 \ (S ∪

{ϕ})). Therefore, there is no action that provides higher
utility for the agent.

• If x /∈ S, the agent strategy is σ1(x) = x, and the utility
is x. By definition, x ≥ E[X | X ∈ S]. If the agent
deviates and plays ϕ instead, her utility is E[X | X ∈ S].
If the agent plays any other action her maximal utility is
f · E[X | X ∈ S]/f . Therefore, there is no action that
provides higher utility for the agent.

(⇒) Let (σ1, σ2, µ2) be a tuple of strategies and belief in
PBE, and assume that ∀x, σ1(x) ∈ {ϕ, x}. That is, there exists
a set S = {x : σ1(x) = ϕ}, where for x /∈ S, σ1(x) = x.
Applying Bayes’ rule entails that: µ2(x | a1 = ϕ) =
Pr(σ1(X )=ϕ|X=x)·Pr(X=x)

Pr(σ1(X )=ϕ) . That is, if x ∈ S, µ2(x | a1 = ϕ) =

Pr(X=x)
Pr(σ1(X )=ϕ) , and 0 otherwise. For s ∈ S define Ys = µ2(x |

a1 = s). For any other a1, σ1(x) = x, therefore, (according
to Bayes’ rule): µ2(x = a1 | a1 /∈ S ∪ {ϕ}) = 1. Since the
user plays the expectation on her belief, the user’s strategy in
a PBE must match the σ2 defined above. It remains to show
that for every s ∈ S it holds that E[Ys] ≤ E[X | X ∈ S]. For
x ∈ S, σ1(x) = ϕ. Therefore, since the strategies are in PBE,
u1(x, ϕ, σ2(ϕ) ≥ u1(x, a1, σ2(a1) for every a1 (otherwise the
agent would have an incentive to deviate). Hence, we can set
a1 = x, and obtain E[X | X ∈ S] ≥ E[Yx].

We now consider the non-truthful agent case.
(⇐) Let (σ1, σ2, µ2) be a tuple of strategy and belief that

satisfies the conditions of the non-truthful agent. µ2 satisfies
Bayes’ rule:

• If a1 ∈ T \ Q according to σ1, a1 = x; therefore,
by Bayes’ rule: µ2(x = a1|a1 ∈ T \Q) = 1.

• If S ̸= ∅ and a1 = ϕ, according to σ1 and Bayes’
rule: µ2(x | a1 = ϕ) =

Pr(X=x)Pr(a1=ϕ|x)
Pr(σ1(X )=ϕ) =

Pr(X = x)
Pr(σ1(X ) = ϕ)

: x ∈ S

0 : x /∈ S.

• If a1 = qi (for some i), according to σ1 and Bayes’ rule:
µ2(x | a1 = qi) =

Pr(X=x)Pr(a1=qi|x)
Pr(σ1(X )=qi)

=
Pr(X = x)

Pr(X ∈ Fi ∪ ({qi} ∩ T ))
: x ∈ Fi ∪ ({qi} ∩ T )

0 : otherwise.

• Otherwise (i.e., a1 ∈ (S ∪ F) \Q), the agent’s action is
off-the-path, and thusµ2 is not required to followBayes’
rule.

Given σ1 and µ2, the strategy of the user, σ2, is a best
response, since it is the expectation over the user’s belief
regarding x. Finally, given σ2 and µ2, the agent does not have
an incentive to deviate from σ1:

• If x ∈ Fi for some i, the agent strategy is σ1(x) = qi,
and the utility is f · EF . Note that maxx σ2(x) =

EF ; therefore, there is no other non-truthful action that
provides higher utility for the agent. In addition, if the
agent deviates and plays x instead, her utility is E[Yx] ≤

f · EF . Similarly, playing ϕ results in a utility of at most
f ·EF . Therefore, there is no action that provides higher
utility for the agent.

• If x ∈ T , the agent strategy is σ1(x) = x, and the utility
is either EF or x, which is at least f · EF . If the agent
deviates and plays ϕ instead, her utility is at most f ·

EF . Any other action is non-truthful and thus results in
a utility at most f ·EF . Therefore, there is no action that
provides higher utility for the agent.

• If x ∈ S, the agent strategy is σ1(x) = ϕ, and the utility
is f · EF . If the agent deviates and plays x instead, her
utility is E[Yx] which is at most f ·EF . Any other action
is non-truthful and thus results in a utility at most f ·EF .
Therefore, there is no action that provides higher utility
for the agent.

(⇒) Let (σ1, σ2, µ2) be a tuple of strategies and belief in
PBE, and assume that there exists x such that σ1(x) /∈ {x, ϕ}.
Let F = {x : σ1(x) /∈ {x, ϕ}}. Let S = {x : σ1(x) =

ϕ} and T = {x : σ1(x) = x}. Clearly, F , S and T are
a partition of [min,max]. Let Q = {σ1(x) : x ∈ F}

and r = |Q|. Denote the members of Q as q1, . . . , qr ,
and for i ∈ [r] let Fi = {x ∈ F : σ1(x) = qi}.
Assume towards contradiction that there exist x1, x2 ∈ F such
that u1(x1, σ1(x1), σ2(σ1(x1))) > u2(x2, σ1(x2), σ2(σ1(x2))).
Then, the agent should deviate by playing σ1(x1) when x =

x2, which is a contradiction to (σ1, σ2, µ2) being a PBE.
Therefore, in equilibrium, all x ∈ F must lead to the same
utility for the agent, and the user’s action must be the same
for any q ∈ Q; denote this action by EF . That is, the utility
of the agent is f · EF . Similarly, if S is not empty, then
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σ2(ϕ) = f · EF , otherwise the agent should deviate and play
some q ∈ Q if σ2(ϕ) < f · EF , or play ϕ instead of lying
if σ2(ϕ) > f · EF . Following the above arguments regarding
σ1 and sinceµ2 must followBayes’ rule when it is applicable,
we obtain that µ2(x = a1 | a1 ∈ T \ Q) = 1, µ2(x | a1 =

qi) =


Pr(X = x)

Pr(X ∈ Fi ∪ ({qi} ∩ T ))
: x ∈ Fi ∪ ({qi} ∩ T )

0 : otherwise
,

and if S ̸= ∅ then µ2(x | a1 = ϕ) =
Pr(X = x)

Pr(σ1(X ) = ϕ)
: x ∈ S

0 : x /∈ S
. Since the user must play

the expected value of her belief, for any qi, σ2(qi) =∑
x∈[min,max] x · µ2(x|a1 = qi) =

∑
x∈[min,max] x · Pr(X =

x | X ∈ Fi ∪ ({qi} ∩ T ) = E[X |X ∈ Fi ∪ ({qi} ∩ T )] = EF .
That is, EF = E[X | X ∈ F ∪ (Q ∩ T )]. Overall, the strategy
of the agent in a PBE must match the σ1 defined above.
For an off-the-path action a1, that is a1 /∈ T ∪Q, or a1 = ϕ

and S = ∅, the belief is a random variable; we denote this
variable as Ya1 . Since σ2(a1) = E[Ya1 ], then E[Ya1 ] ≤ f ·EF .
Otherwise, if E[Ya1 ] > f ·EF the agent will have an incentive
to deviate and play a1. Specifically, if E[Yϕ] > f · EF , the
agent will benefit from playing ϕ when x ∈ F , and if for
some a ∈ [min,max] E[Ya] > f · EF , the agent will benefit
from playing awhen x = a. Overall, the belief of the user and
her strategy in a PBE must match µ2 and σ2 defined above,
respectively.

□

VII. CREDIBLE BELIEF CRITERION
The PBEs in which the agent of the PFI model is non-
truthful include equilibria that seem unreasonable. Consider
the following PBE: the agent always plays a1 =

min+max
2 .

First note that the agent always lies, unless x =
min+max

2 .
Therefore, EF = E[X ] and her utility will be f ·E[X ] (unless
x =

min+max
2 ), while a truthful agent obtains a utility of E[X ].

Suppose that x = max, the agent will still play a1 =
min+max

2
since playing max or even ϕ would cause the user to update
her belief such that the expectation of X under this belief
is less than f · EF , which will result in a lower utility for
the agent. However, while the user’s belief does not violate
Bayes’ rule or the intuitive criterion, there is no justification
for it, except for allowing this PBE.

We therefore propose a new filtering criterion, by applying
a restriction on the belief of the user. Namely, we propose
the credible belief criterion, which intuitively states that if
the agent deviates, and plays an off-the-path action, the user
should not increase her belief (over the prior distribution)
in a selection of nature that would cause the agent to lose
more by deviating than her belief in a selection of nature
that would cause the agent to lose less by deviating. For
the previous example, suppose that σ2(max) = min, which
implies that µ2(x = min|a1 = max) = 1. However,
u1(min,max,min) = f · min and u1(min, min+max2 ,EF ) =

f · EF so u1(min, min+max2 ,EF ) − u1(min,max,min) = f ·

EF − f · min. On the other hand, u1(max, min+max2 ,EF ) −

u1(max,max,min) = f ·EF −min; therefore, the agent loses

more from deviating and playing a1 = max when x = min
than when x = max, but the user increased her belief (over
the prior) for x = min and decreased it for x = max.
For the definition of the credible belief criterion, we use

the following notation. Given a PBE, let

l(x, a1) = u1(x, σ1(x), σ2(σ1(x))) − u1(x, a1, σ2(a1)).

Intuitively, l(x, a1) is the loss in utility of the agent when
nature chose x and the agent deviates and plays a1 (instead
of σ1(x)).
Definition 5: A tuple of strategies and a belief (σ1, σ2, µ2)

that form a PBE, is said to violate the credible belief
criterion if there exists an off-the-path action a1 and x1, x2 ∈

[min,max] such that l(x1, a1) ≤ l(x2, a1) but Pr(X = x2) ·

µ2(x = x1 | a1) < Pr(X = x1) · µ2(x = x2 | a1).
Intuitively, we would have liked to write the last inequality
in Definition 5 as µ2(x=x1|a1)

µ2(x=x2|a1)
<

Pr(X=x1)
Pr(X=x2)

or µ2(x=x1|a1)
Pr(X=x1)

<
µ2(x=x2|a1)
Pr(X=x2)

; however, since the denominators may be zero,
we use the equivalent inequality Pr(X = x2) · µ2(x = x1 |

a1) < Pr(X = x1) · µ2(x = x2 | a1).
The following theorem describes the PBEs under the PFI

model that satisfy the credible belief criterion (based on the
PBEs that appear in Theorem 3).
Theorem 4: A tuple of strategies and a belief (σ1, σ2, µ2)

is a PBE that satisfies the credible belief criterion, if it takes
the form of case (1) in Theorem 3 (truthful agent) with the
following restrictions on µ2(x | a1) for an off-the-path action
a1, which, in turn, restrict Ya1 :
1) ∀x1, x2 ∈ S \ {a1},Pr(X = x2) · µ2(X = x1 | a1) =

Pr(X = x1) · µ2(X = x2 | a1).
2) ∀x1 ∈ S, x2 /∈ S,Pr(X = x2) · µ2(X = x1 | a1) ≥

Pr(X = x1) · µ2(X = x2 | a1).
3) ∀x1, x2 /∈ S, where x1 < x2, Pr(X = x2) · µ2(X = x1 |

a1) ≥ Pr(X = x1) · µ2(X = x2 | a1).
4) ∀x ∈ S,Pr(X = x) · µ2(X = a1 | a1) ≥ Pr(X =

a1) · µ2(X = x | a1),
or if it takes the form of case (2) in Theorem 3 (non-truthful

agent) with the following restrictions onµ2(x | a1) for an off-
the-path action a1, which, in turn, restrict Ya1 :
1) ∀x ∈ F ∪ S ∪ T \ {a1},Pr(X = x) · µ2(X = a1 | a1) ≥

Pr(X = a1) · µ2(X = x | a1).
2) ∀x1, x2 ∈ F ∪S \{a1},Pr(X = x2) ·µ2(X = x1 | a1) =

Pr(X = x1) · µ2(X = x2 | a1).
3) ∀x1 ∈ F ∪ S, x2 ∈ T ,Pr(X = x2) · µ2(X = x1 | a1) ≥

Pr(X = x1) · µ2(X = x2 | a1).
4) ∀x1, x2 ∈ T \Q, where x1 < x2, Pr(X = x2) · µ2(X =

x1 | a1) ≥ Pr(X = x1) · µ2(X = x2 | a1).
5) ∀x1 ∈ T \Q, x2 ∈ Q,Pr(X = x2) · µ2(X = x1 | a1) ≥

Pr(X = x1) · µ2(X = x2 | a1).
6) ∀x1, x2 ∈ Q,Pr(X = x2) · µ2(X = x1 | a1) = Pr(X =

x1) · µ2(X = x2 | a1).
Proof: We begin by showing that there exists at least

one instance that follows the form of case (1) in Theorem 3
that satisfies the above restrictions. Specifically, ∀x /∈ S,
we may set µ2(X = x | a1) = 0 and ∀x ∈ S, we may
set µ2(X = x | a1) =

Pr(X=x)
Pr(X∈S) . By doing so all the

above restrictions are satisfied. Furthermore, in this case
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E[Ya1 ] = E[X | X ∈ S], which satisfies the
restriction on Ya1 in Theorem 3. This implies that
the additional set of restrictions on µ2(x | a1)
does not nullify the PBE of the form of case (1)
in Theorem 3.

Next, we show that any PBE that takes the form of case
(1) in Theorem 3 and satisfies the above restrictions, satisfies
the credible belief criterion. We note that the credible belief
criterion is only applicable to the user’s belief for the agent’s
off-the-path actions, i.e., µ2(x | a1). Therefore, we only
consider the case that a1 ∈ S. We consider the following
different cases for x: x = a1, x ∈ S \{a1}, and x /∈ S. We note
the following:

• l(x = a1, a1) < l(x ∈ S, a1) < l(x /∈ S, a1), since
E[X | X ∈ S]−E[Ya1 ] < E[X | X ∈ S]− f ·E[Ya1 ] and
for all x /∈ S,E[X | X ∈ S]− f ·E[Ya1 ] < x− f ·E[Ya1 ].

• for x1, x2 /∈ S, where x1 < x2, l(x1, a1) < l(x2, a1).
We show that for any x1, x2, if l(x1, a1) ≤ l(x2, a1) then

Pr(X = x2)·µ2(x = x1 | a1) ≥ Pr(X = x1)·µ2(x = x2 | a1).
There are five possible cases:

• x1, x2 ∈ S \ {a1}, the credible belief criterion is satisfied
by restriction (1).

• x1 ∈ S \ {a1}, x2 /∈ S, the credible belief criterion is
satisfied by restriction (2).

• x1, x2 /∈ S and x1 < x2, the credible belief criterion is
satisfied by restriction (3).

• x1 = a1, x2 ∈ S, the credible belief criterion is satisfied
by restriction (4).

• x1 = a1, x2 /∈ S, the credible belief criterion is satisfied
by restriction (2).

Next, we show that any PBE that takes the form of case
(2) in Theorem 3 and satisfies the above restrictions, satisfies
the credible belief criterion. Recall that since a1 is an off-
the-path action, a1 ∈ F ∪ S. We show that for any x1, x2,
if l(x1, a1) ≤ l(x2, a1) then Pr(X = x2) · µ2(x = x1 | a1) ≥

Pr(X = x1) · µ2(x = x2 | a1). There are six possible cases:
• x1 = a1, x2 ∈ F ∪ S ∪ T \ {a1}, the credible belief
criterion is satisfied by restriction (1).

• x1, x2 ∈ F ∪ S \ {a1}, the credible belief criterion is
satisfied by restriction (2).

• x1 ∈ F ∪ S \ {a1}, x2 ∈ T , the credible belief criterion is
satisfied by restriction (3).

• x1, x2 ∈ T \ Q, the credible belief criterion is satisfied
by restriction (4).

• x1 ∈ T \ Q, x2 ∈ Q, the credible belief criterion is
satisfied by restriction (5).

• x1, x2 ∈ Q, the credible belief criterion is satisfied by
restriction (6).

We proceed by proving that the credible belief criterion is
not satisfied in any other case. We first show that in case (1)
of Theorem 3 (truthful agent) where the above restrictions are
violated, the credible belief criterion does not hold.

• If restriction (1) is violated, then there exist x1, x2 ∈ S \

{a1} such that Pr(X = x2) · µ2(X = x1 | a1) < Pr(X =

x1) · µ2(X = x2 | a1). But since l(x1, a1) = l(x2, a1),
this violates the credible belief criterion.

• If restriction (2) is violated, then there exist x1 ∈ S, x2 /∈

S such that Pr(X = x2) · µ2(X = x1 | a1) < Pr(X =

x1) · µ2(X = x2 | a1). But since l(x1, a1) < l(x2, a1),
this violates the credible belief criterion.

• If restriction (3) is violated, then there exist x1, x2 /∈ S,
such that Pr(X = x2) · µ2(X = x1 | a1) < Pr(X =

x1) · µ2(X = x2 | a1). But since l(x1, a1) < l(x2, a1),
this violates the credible belief criterion.

• If restriction (4) is violated, then there exist x ∈ S such
that Pr(X = x) · µ2(X = a1 | a1) < Pr(X = a1) ·

µ2(X = x | a1). But since l(x, a1) < l(a1, a1), this
violates the credible belief criterion.

Finally, we show that in case (2) of Theorem 3 (non-
truthful agent), where the above restrictions are violated, the
credible belief criterion does not hold.

• If restriction (1) is violated, then there exist x ∈ F ∪

S ∪ T \ {a1} such that Pr(X = x) · µ2(X = a1 | a1) <

Pr(X = a1) · µ2(X = x | a1). But since l(x, a1) <

l(a1, a1), this violates the credible belief criterion.
• If restriction (2) is violated, then there exist x1, x2 ∈ F ∪

S \ {a1} such that Pr(X = x2) · µ2(X = x1 | a1) <

Pr(X = x1) · µ2(X = x2 | a1). But since l(x1, a1) =

l(x2, a1), this violates the credible belief criterion.
• If restriction (3) is violated, then there exist x1 ∈ F ∪S \

{a1}, x2 ∈ T such that Pr(X = x2) · µ2(X = x1 | a1) <

Pr(X = x1) · µ2(X = x2 | a1). But since l(x1, a1) <

l(x2, a1), this violates the credible belief criterion.
• If restriction (4) is violated, then there exist x1, x2 ∈

T \ Q, where x1 < x2, such that Pr(X = x2) · µ2(X =

x1 | a1) < Pr(X = x1) · µ2(X = x2 | a1). But since
l(x1, a1) < l(x2, a1), this violates the credible belief
criterion.

• If restriction (5) is violated, then there exist x1 ∈ T \

Q, x2 ∈ Q such that Pr(X = x2) · µ2(X = x1 | a1) <

Pr(X = x1) · µ2(X = x2 | a1). But since l(x1, a1) <

l(x2, a1), this violates the credible belief criterion.
• If restriction (6) is violated, then there exist x1, x2 ∈ Q
such that Pr(X = x2) · µ2(X = x1 | a1) < Pr(X =

x1) · µ2(X = x2 | a1). But since l(x1, a1) = l(x2, a1),
this violates the credible belief criterion.

□
Finally, we show another signaling game in which the

credible belief criterion is useful. In this game there are two
players: a worker and an employer. There are three types of
workers: spiritual, social, and analytical. The worker type is
drawn from a uniform distribution known to the employer;
the worker is familiar with her type. The worker has to
choose which education to acquire: spiritual education, social
education or analytical education. The education is visible
to the employer and thus, serves as a signal. Education
that matches the worker’s type is obtained for free, but she
must pay 1 for education that does not match her type.
After acquiring her education, the worker is assigned, by the
employer, to one of three jobs: spiritual job, social job,
or analytical job. The worker obtains a reward of 1 for
spiritual job, 2 for social job, and 3 for analytical job,
regardless of her type and education. The employer’s utility
is 1 if the worker’s job matches her type, and −1 otherwise.
Formally, the game is defined as follows:
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TABLE 3. A comparison of our agent models.

• Types = {sp, so, an} where ∀x ∈ Types, Pr(X = x) =

1/3
• A1 = {sped , soed , aned }
• A2 = {spj, soj, anj}
• u1(x, a1, a2) = reward(a2) − payment(x, a1), where:

– reward(a2) =


1 : a2 = spj
2 : a2 = soj
3 : a2 = anj

– payment(x, a1) =

{
0 : x = a1
1 : x ̸= a1

• u2(x, a1, a2) =

{
1 : x = a2
0 : x ̸= a2

One of the PBEs in this game is the following:
• σ1(x) = sped

• σ2(a1) =

{
soj : a1 = sped
spj : otherwise

• µ2(X | a1 = sped ) =


1/3 : x = sp
1/3 : x = so
1/3 : x = an

• µ2(X | a1 ̸= sped ) =


1 : x = sp
0 : x = so
0 : x = an

This tuple is a PBE. The worker does not benefit from
deviating: if the worker is of a spiritual type, she will only lose
from choosing any other education. If the worker is of a social
or analytical type, and she chooses any other education, the
employer will assign her to a spiritual job, which will result
in a lower or equal utility. The employer also does not benefit
from deviating: if the worker played sped , according to the
employer’s belief, all types are equally likely, so the employer
does not benefit from deviating. If the worker played soed or
aned , according to the employer’s belief, the worker’s type
is sp, so she must play spj. Finally, the belief is consistent:
for a1 = sped the belief is same as the original distribution,
which is consistent with Bayes’ rule since σ1(X ) = sped with
probability of 1. For a1 ̸= sped , which is off-the-path, any
belief is consistent.

Indeed, this PBE is unreasonable. For example, if the
worker chose to acquire analytical education, it is more likely
that her type is analytical, but the employer believes that the
worker is of a spiritual type. The intuitive criterion does not
filter this PBE, because it is always possible for the employer
to play a2 = anj, in which case the worker will not lose.

However, the credible belief criterion filters this PBE: for
the off-the-path action aned , the worker loses more if her type
is an than if her typewere sp; however, the employer increases
her belief over the prior more for x = sp than for x = an.
More formally, if a1 = aned , and x1 = an, x2 = sp, it holds
that l(x1, a1) < l(x2, a1), but

µ2(x1|a1)
Pr(X=x1)

<
µ2(x2|a1)
Pr(X=x2)

.

We note that there is a PBE in this game that satisfies the
credible belief criterion:

• σ1(x) =

{
soed : x = so
aned : otherwise

• σ2(a1) =


soj : a1 = soed
anj : a1 = aned
spj : a1 = sped

• µ2(X = sp | a1 = sped ) = 1
• µ2(X = so | a1 = soed ) = 1

• µ2(X = an | a1 = aned ) =


1/2 : x = sp
0 : x = so
1/2 : x = an

This is a PBE since no player can benefit from deviating
and the employer’s belief is consistent.Moreover, the credible
belief is satisfied since for the only off-the-path action a1 =

sped , the belief is higher than the prior only for x = sp, and
as required, this is the x with the lowest loss: l(sp, sped ) = 1,
l(so, sped ) = 2 and l(an, sped ) = 3.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we took a first step towards the analysis of
information disclosure for increasing user satisfaction from
a shared ride. We modeled our environment as a signaling
game and analyzed the perfect Bayesian equilibria for three
agents’ classes: an honest agent model, a no utility for lying
model, and a penalized false information model. We showed
that in the honest agent model and in the no utility for lying
model, the agent must reveal all the information regarding
the possible alternatives to the passenger. However, in the
penalized false information model, there are two types of
equilibria, one in which she is truthful (but must keep silent
sometimes), and the other, in which the agent provides false
information. The latter equilibrium type includes equilibria
that seem unreasonable. Therefore, we proposed a novel
criterion to filter out such equilibria. After filtering out the
unreasonable equilibria, we can conclude from the theoretical
analysis that in all three agent models, the agent should
never provide any false information. Table 3 summarizes the
properties of each agent model and the solution concepts that
we use.
In future work, we intend to extend our theoretical analysis

to additional domains for demonstrating the usefulness of the
credible belief criterion. In addition, we would like to gather
data of humans interacting with each other in the ridesharing
scenario described in this paper and according to each of the
agent models studied. It will be interesting to investigate (for
each agentmodel) whether humans play according to the PBE
strategies.
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