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ABSTRACT The process of functional annotation of human genetic variants is important for some sig-
nificant biomedical tasks like understanding functional genomics and gene-disease associations. Moreover,
genetic variants that lead to pathogenic mutations can have harmful consequences which may lead to certain
medical conditions or diseases. This paper investigates and presents two methodologies utilizing the Gene
Ontology (GO) for functional annotation of genetic variants (and human gene mutations): (1) using the
concept of term enrichment from the biological process taxonomy in the gene ontology, and (2) using the
concept of least common subsumer (LCS) within the gene ontology tree. The second methodology induces
themost significant and accurate functions for a given set of variants having one common aspect, e.g. specific
disease. This method is based on the structure of the directed acyclic graph of GO to induce and identify the
most significant LCS’s to be used for functionally annotating the variants under investigation. We applied
the methods on a large sets of genetic variants causing mutations. Our method can determine important
functions and with significance level of p<0.02, the outcomes and results of the method are biologically
significant. We found that certain ontology annotations are more related to mutations through certain genes
compared with normal bp functions (biological process terms) in GO; for example, one of these bp functions
is {GO:0031325; positive regulation of cellular metabolic process}. The results are basically important and
suggest that a mutation can be annotated with functions from the gene ontology, e.g. biological process
aspect, just like the genes. This outcome may contribute into a more complete understanding of mutation-
gene-disease relationships, mutation pathogenicity, and understanding disease mechanisms.

INDEX TERMS Genetic variants, gene mutations, functional annotation.

I. INTRODUCTION
The study of genetic variants and human gene mutations is
vital for several fields in bioinformatics like understanding
the various genetic disorders, role of molecular processes,
disease mechanisms, and gene-disease associations [1], [2],
[3], [4], [5]. Essentially, a genetic variation is a change
in the DNA sequence from the normal. Any change in
the DNA sequence is called genetic variation, or simply
variation; and that change may affect one gene, in which
case it is called mutation [4], [6]. If the sequence change
in the DNA is common in the population then we call it
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polymorphism [6], [7], [8]. The Single Nucleotide Polymor-
phism, or SNP, and is most common type of genetic varia-
tions, and is caused by only one change in one nucleotide
in the DNA sequence [7]. Sometimes, the sequence change
can be located in a coding region which may lead to a
change in the expression of the gene [4]. In this paper
we present a study and analysis of human genetic vari-
ations in the context of functional characterizations and
annotations within the Gene Ontology (GO). The presented
method finds the linkage between gene variants and gene
functional annotations to determine and identify highly sig-
nificant annotations, i.e., functions, from the biological pro-
cess taxonomy of the GO that characterize the target variants
in the gene.
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Typically, when the DNA sequence is changed, such a
change may impact a gene and cause some disease or med-
ical condition [6], [7], [9]. Medical disorders and diseases
caused from DNA sequence changes are collectively called
genetic disorders [6], [7]. If the functionality of the gene
is affected by a mutation in that gene, the resulting protein
coded by the gene will be unable to work properly. On the
other hand, a mutation is called neutral, or silent, mutation
if it does not affect the gene function. For example, the
mutation that does not alter the amino acid sequence of the
coded protein is a silentmutation [6]. Genetic diseases, based
on the size of the variation, are three major classes:–single-
gene, –chromosomal, and –multifactorial disorders [4], [6].
Amongst the most common genetic diseases are cystic fibro-
sis, sickle cell anemia, and homeochromatosis [7].
The research work and projects on genetic variants and

human gene mutations can be divided into the following
groups: (1) Extracting mutation-gene-disease relationships
from text and literature [5], [10]. (2) Mutation pathogenicity
prediction and classification [2], [4]. (3) Study of mutations
of a specific disease [4], [9], [11], [13]. (4) Mutation-disease
association extraction from biomedical literature, mainly
with NLP and machine learning approaches [10], [14], [15].
(5)Mutation functional analysis [2], [9], [16], [17], [18], [19].

The work in this paper focuses identifying specific GO
annotations (functions) related to genetic variations by utiliz-
ing the functional gene annotations fromGO. In other words,
we investigate the linkages of gene mutations and gene func-
tional annotations as shown in Figure 1 and Figure 2; as pre-
viously presented in [19]. Therefore, functional annotations
have been assigned for variants from the biological process
bp taxonomy ofGO. For that, we presents twomethodologies
that utilize the gene ontology for functional annotation of
genetic variants and human gene mutations as follows: (1) the
first methodology uses the concept of term enrichment from
the biological process, bp, taxonomy in the gene ontology,
and (2) the second methodology uses the concept of least
common subsumer LCS within the gene ontology tree. The
second methodology induces the most significant and accu-
rate functions for a given set of variants having one common
aspect, e.g. specific disease. This methodology is based on
the structure of the directed acyclic graph (DAG) of the gene
ontology to identify and induce the most significant least
common subsumers to be used for functionally annotating the
variants under investigation. We conducted the evaluations
with a number of experimental settings to (1) investigate
the relationships between the mutations in a given gene gx
and the functional annotations of gx from bp taxonomy, and
(2) identify the significant bp functional annotations for gene
mutations. Further, we identified several bp functions that
if annotated (associated with) to some gene g then that
gene (g) shows more mutation associations compared with
other annotated genes with statistical significance (p<0.05).
To our knowledge, there are no studies or projects in the
bioinformatics literature for the annotation of mutations from
the gene ontology.

II. BACKGROUND AND RELATED WORK
The demand for more extensive research to explain and iden-
tify the variations and mutations in the genetic sequences
and associating (molecular or biological) functions with these
mutations stems from the need for more complete under-
standing of human diseases and medical conditions [5], [9],
[10], [11], [14], [15], [16]. Moreover, the need for studying
and understanding the variations in the genetic sequences
and their relationships with diseases was motivated by whole
genome sequencing [5], [10], [16], [18]. Further, investigat-
ing genetic variants andmutations regarding their (biological)
functions (or processes) is the least investigated dimension in
mutation and genetic variants studies.

One of the public archives and freely available databases
of variants and mutations is the ClinVar [2]. ClinVar contains
human gene variations and phenotypes archive with support-
ing evidences for over 125,000 variants and over 200,000
submitted interpretations [2]. It stores germline and somatic
variants of any type, size, or genomic location. The interpreta-
tions in ClinVar are mostly comprehensive and include struc-
tural variants that may consist of many genes (and involving
over 26000 genes); for variants that affect a single gene,
almost 5000 genes are represented in ClinVar [2].

In a comprehensive, and recent, genetic study, López-
Urrutia et al. reported the existence of a large number ofmuta-
tions that are still need to be further studied and analyzed for
their functions and describes it as a ‘very complex task [11].
In general, the research work in the domain of genetic vari-
ations and gene mutation date back to three decades ago [1],
[2], [3], [6], [15]. We can categorize the research work and
projects in this domain into the following five tasks:

– Mutation pathogenicity prediction and classifi-
cation [2], [4].

– Extraction of mutation-disease associations from
biomedical literature, mostly with Natural language process-
ing, NLP, and machine learning techniques [10], [14], [15].

– Analysis of genetic variants and mutations in the context
of specific diseases, e.g. Alzheimer, and Breast Cancer [4],
[9], [11], [13].

– Mutation-gene-disease association extraction from
biomedical text and literature [5], [10].

– Prediction and annotation of mutation functions and
other (functional) analyses of mutations and genetic varia-
tions [2], [9], [16], [17], [18], [19], [30].

The proposed methods contribute to (and can be classified
within) the functional analysis of mutations for the analysis
and understanding of disease-mutation relationships. In a
recent research, it has been found that most of the variants
tend to have more than just one impact or a single biological
consequence as it has commonly believed [13]. In analyz-
ing an entire genome, within projects of Whole Genome
Sequencing WGS, this fact appears the most.

In the past two decades, a large number of projects have
been proposed for the extraction of mutation-disease associ-
ations or mutation-gene-disease triplets from the biomedical
literature; see for example [1], [2], [3], [12], and [13].
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Calabrese et al. developed a tool called SNPs&GO for
predicting mutations using functional annotations from the
GO [16], [17]. In [14], Doughty et al. developed and pre-
sented a system, called EMU, for mutation-disease extrac-
tion from PubMed abstracts and focused on prostate and
breast cancer. The EMU tool uses a rule-based method
to find all genes associated with the extracted mutations.
The developers used the MutationFinder system to evaluate
their EMU system; and MutationFinder is another muta-
tions extraction tool [14]. They emphasize in their work that
personalized medicine research is very important in cancer
treatment, and mutation-disease relationship is crucial is this
direction [14].

Alzheimer disease (AD) is one of the most studied dis-
eases in the domain of genomic analysis and genetic vari-
ations analysis; and one study found that AD relates to
about 30 million genetic variations (and that was one of
the most comprehensive studies Butkiewicz et al. [13]).
Also, they found that that a vast majority of the
investigated variants (∼94%) have two or more impacts or
biological consequences [13].

Wei et al. developed a tool, called GenNorm, for gene
mutations extraction from biomedical literature [10], [15].
Furthermore, the tmVar tool is another text-mining software
for extracting mutations from text [9]. Moreover, one of the
most comprehensive resources of cancer mutations is the
Catalogue Of Somatic Mutations In Cancer, COSMIC [22].
Generally, COSMIC, is considered the largest resource
(or one of the largest) in the world for somatic mutations
of human cancer [22]. Kordopati et al. presented a system
and a tool for building links between diseases and muta-
tions, called DES-Mutation [9]. The DES-Mutation also
links mutations from 27 databases and dictionaries based on
terms and phrases enriched in published mutation-disease
literature [9]. They analyzed information on mutations from
over 400000 Medline articles retrieved by searching for
mutations [9].

DiMex, as reported in [5], is a text mining system for
extracting triplets of mutations, genes and diseases {m, g, d}
from abstracts. It can also extract other mutation infor-
mation that can be useful for searching and display-
ing results more efficiently [5]. In another recent study,
Butkiewicz et al. [13] proposed a methodology for functional
annotation of genomic variants in the context of Alzheimer
disease sequencing project [13]. Moreover, a free web-based
system for functional annotation of genes and transcriptomic
data is presented by Araujo et al. and is based on sequence
homology search [18].

III. METHODOLOGY 1: FUNCTIONAL ANNOTATION
USING TERM/FUNCTION ENRICHMENT
The main contributions of this work are: (i) analyzing
and exploring the relationship between genetic variants and
gene functional annotations from the bp taxonomy; and
(ii) annotating genetic variants with functional bp annotations
from GO.

FIGURE 1. Illustration of mutation, gene, function relationships. Mutation
m1 is associated with two genes g1, g2, and five functions f 1 . . . f 5.
Function f 4 is associated with both genes g1 and g2.

FIGURE 2. This diagram depicts the relationships among three mutations,
two genes, and five functions. Both mutations m1 and m2 are related to
gene g1. Gene g1 is related/annotated with three functions f 1 . . . f 3. Also,
both genes, g1 and g2, are annotated with function f 3.

A. DATA SOURCES AND PERLIMINARY ANALYSIS
We used the following two sources of mutation data:ClinVar:
which is available within NCBI, and the HGMD: human
gene mutation database, [1, 2, 3]. For gene-disease associ-
ations, we used the Online Mendelian Inheritance in Man
OMIM [26]. For annotations, we utilized the Gene Ontol-
ogy as it is the main source and the most commonly used
database of functional annotations of all genetic data [17],
[18], [23]. Moreover, theGOA_human database is used in this
work for the functional annotations human genes [23]. {note:
GOA_human includes and maintains more than 600,000 gene
functional annotations).

B. GENETIC VARIANTS AND GENE ANNOTATIONS
ANALYSIS
For investigating the relationships between genetic variants
and functional annotations (from the bp taxonomy) we would
like to examine the functional (bp) annotations of genetic
variants by using gene–bp relationships with various types
of variants as depicted in figures 1 and 2. An example of the
relationship between a mutation and some (bp) functions is
presented in Figure 1 where the mutation m1 is associated
with five functions f1. . . f5 through two genes g1 and g2. One
can notice in this example that function f4 is associated with
both genes g1 and g2. An example with multiple mutations
is depicted in Figure 2. This example in Figure 2, from
our previous work [19], illustrates the relationships among
3 mutations, 2 genes and 5 functions where f3 is in common
among the three mutations.
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–Analyzing the functional (bp) annotations of the genes
with highest number of mutations: FromClinVar, we obtained
the complete information and interpretations of more
than 130000 variants associated with 7400 human genes.
We found amongst these, around 3230 genes are associated
with one variant, and more detail in the following:

In an initial step for understanding the relationships
between genetic variants and gene functional annotations,
we investigated the genes with the most genetic variants
against all human genome functional annotations GOA by
utilizing only the biological process (bp) and the molecular
function (mf ) annotations. From our previous studies in [19]
and [30], we extracted the genes with the highest number of
variants association from the ClinVar database [2], as shown
in Table 1. We started with each gene associated with at
least 1000 mutations for a total of 21 genes [2], [19]. For
example, the Breast cancer gene 2 (BRCA2 gene Id: 675)
found to be associated with 9631 variations; see Table 1.
Then we obtained from GOA [23] both the bp and mf func-
tional annotations of these 21 genes; Table 1. On average
these (highest variation-populated) 21 genes have 42.7 bp
functional annotations each (and 49.2 mf functional annota-
tions each). Compared to the average of all annotated human
genes, these findings are statistically significant with p<0.01
{notice that all annotated human genes have an average of
8.6 bp (and 9.2 mf) annotations as shown in Figure 3 (also
reported in Table 11 in Appendix) These results, therefore,
prove that when associated with more mutations, a gene tends
to have more (bp and mf) functional annotations; with this
difference are significant (p<0.01) compared with all other
bp annotated genes. By considering only the bp annotation,
there are in total 17717 human genes having bp annotations
(also in Table 11).
–Analyzing the genetic variants of genes having highest

number of functional annotations: We analyzed the genes
with the greatest number of bp annotations in the GOA as
shown in Table 2. Then we obtained all the variations of each
of these genes from ClinVar and the results are in shown
in Table 2.
From these result in Table 2, a strong correlation is

observed and detected between number of genetic variations
and number of functional annotations of genes. That is, these
20 genes (in Table 2) are having significantly higher than
average variations per gene (144 vs 26 avg. variations per
gene) of the reported variations on all genes (i.e., from all
variations reported in ClinVar and HGCD we found that on
average a gene is associated with ∼26 variants [2], [9]).

FIGURE 3. Illustrating the difference in the total number of annotations
per gene for the entire human genome (all human genes) versus the top
21 genes.

Such genes with significantly higher number of bp annota-
tions are associated with significantly more variations than
normal genes tends to be more multifunctional genes or
disease-related genes [19], [25], [30].

–Relating functional annotations with genetic variations
for eight sets of genes: we collected and compiled 8 gene
sets having same number of variants. We started with only
2 variants per gene in the first set, then 10 variants per gene in
the second set, and so on until the last set with ≥90 variants
per gene. Each set contains 100 genes, approximately. The
results are shown in Table 3 and illustrated in Figure 4.
This evaluation is to prove that as the number of variations
per gene increases, the number of functional annotations
increases (directly proportional). This evaluation involved
∼800 genes,∼18000 variations,∼17000 bp annotations, and
∼15500 mf annotations. These results are statistically signif-
icant (p<0.01). Moreover, the Pearson correlation with the
number of variations and bp andmf annotations are 0.977 and
0.982 respectively.

-Functional Annotation of Genetic Variants Using
Term/Function Enrichment

In this evaluation, the biological process taxonomy is
employed to determine and assign functional annotations
to genetic variants as follows. For a given variant vi from
ClinVar , we wish to determine the most significant bp
annotation (function) from bp taxonomy in GO. For that,
we extracted from ClinVar the set of all genes associated
with vi (we call it set Gi). Next, we identified the enriched
bp functions for all the genes in the set Gi. We used the
GoTermFinder tool [8] on the genes Gi to identify GO bp
term enrichment with 1% significant level. For example, the
variant/mutation m.1555A>G (ClinVar Id: 9628) is a single
nucleotide variant associated with two genes MT-RNR1 and
MT-CO1. It is reported in ClinVar with one of the deaf-
ness conditions (i.e., Deafness, nonsyndromic sensorineural,
mitochondrial). In the literature, this medical condition was
reported and confirmed by a study in [24] to be associ-
ated with purine regulation. As shown in Table 4; having
our method (independently) annotated this (m.1555A>G)
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mutation with {purine-containing compound metabolic
process; GO:0072521} indicates that the annotation of vari-
ant by our method is biologically significant [19]. In another
example, the variant NM_001672.2(ASIP):c.∗25A>G (Clin-
Var Id: 9308) is a single nucleotide variant in ClinVar reported
as associatedwith the two genesAHCYandASIP. In theGOA
database, these two genes are associated with 14 bp annota-
tions from the bp taxonomy. GOTermFinder identified one
bp annotation (Behavior: GO:0007610) which is biologically
significant for this mutation; see Table 5. Moreover, with
this methodology, more functional bp annotations for ClinVar

TABLE 1. The top 21 genes with the most number of variations
(column 2). Each associated with at least 1000 mutations; src: ClinVar.

FIGURE 4. Illustration of mean number of annotations from bp and mf
for each of the eight gene sets.

TABLE 2. The top 20 human genes having the highest number of bp
annotations along with the number of variants per gene. That is, for each
gene from the top 20 genes having the most bp annotations, we extracted
number of variations (from ClinVar/hgmd).

TABLE 3. Details of the eight gene groups; Each group contains 100
genes approximately (note: all genes in each group have the same
number of variations).

mutations have been identified and are shown in Table 6.
These results are biologically significant for functional bp
annotations of variants from ClinVar.

IV. METHODOLOGY 2: FUNCTIONAL ANNOTATION
USING TREE STRUCTURE AND LCS
This methodology focuses on genetic variations that lead
to and cause mutations which can be pathogenic and have
harmful consequences. Themethodology induces and assigns
one or more functions to a given mutation or set of mutations
having one aspect in common such as a disease. Such a
method like this is significant for some related problems like
mutation pathogenicity prediction and gene-disease associ-
ation discovery [2], [7], [9], [16], [17] as explained earlier.
Basically, the method relies on the bp taxonomy [23] to
assign functions (functional annotations) to a given mutation
as follows.
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TABLE 4. Identifying the GO bp annotation term with p<0.02 for the
mutation m.1555A>G (ClinVar variation Id: 9628) using the
GOTermFinder.

TABLE 5. The GOTermFinder identified the gene ontology bp annotation
term with p<0.02 for the mutation{ClinVar Id 9308,
NM_001672.3(ASIP):c.∗25A>G}.

A. FUNCTIONAL ANNOTATION WITH LCS
Given a set Sm of mutations having one aspect in com-
mon, we wish to determine the most significant bp function
(or functions) relevant to these mutations in set Sm. We used
the Gene Ontology (GO) since it is the most widely uti-
lized (and most comprehensive) resource for functionally
annotation of genomic data, e.g. genes, RNA [17], [23].
GO is comprised of three taxonomies Cellular Compo-
nent (cc), Biological Process (bp), and Molecular Function
(mf); and typically the bp is the mostly used for func-
tional annotation [17]. The mutations in the set Sm, have
one aspect in common such as some disease Di. That is,
in the set Sm, each mutation mi ∈ Sm is found to be
(and reported as) pathogenic for some disease Di. Next,
we extract the set Gi of all the genes of each mutation mi:
Gi = {gx |gx is a gene with mutation mi}. As mentioned
earlier, we utilized the GOA_human data for the bp functions
of genes (functional annotation information). That is, from
the GOA_human database [23] we obtain all the functional
annotations, from the bp taxonomy only, for all genes in Gi
and we call it set P. That is

P = {p1,...,pn} (1)

such that pj is a bp function annotating one gene in set Gi.
Now, we would like to determine the most significant such
pj function from among all the functions in the set P. Then,
from the bp taxonomy, which is a (tree-like)Directed Acyclic
Graph, DAG, we want to identify each least common sub-
sumer (LCS) that subsumes two or more functions pi ∈ P.
As shown in Fig. 5, each function (or bp term) is a node

in the bp taxonomy tree; see figures 5 and 7, [23]. One of
the goals of the proposed method is to identify the most sig-
nificant least common subsumers (LCS’s) that subsume most
function nodes associated with a (target) mutation or a set of

Algorithm 1 Functional Annotation of Mutations
Purpose: to annotate the mutations mi ∈ M with the bp function(s)
in the output set L.
Input: A set of n mutations m1, . . . , mn with a common aspect A1,
and a significance threshold thr(default thr = 1.0).
{∗∗∗ note: the aspect A1 can be a disease or a medical condition,

e.g. Alzheimer disease AD}
Output: Set L of the k most significant LCSs from the

bp taxonomy that represents the significant
functions of the input mutations: L = {p1, ., pk }.

Algorithm:
1. Let G be the set of all genes of the input n mutations:

G = {g1, . . . , gn}.
2. Let L be the set of significant functions (initially empty L = ∅)
3. For every gene gi ∈ G extract all the bp annotations of gi from

GOA_Human database into the set P: P = {p1, . . . , pk }
4. For every function node pi ∈ P do the following:

4.1 Calculate the significance s(pi) of node pi according to
Equation (2).

4.2 If s(pi) ≥ thr then add the function node pi to the output
set

L: L = L ∪ {pi}
5. Output L.

mutations. In other words, we are interested in identifying the
most significant LCS as it will be the most-likely cause of the
disease associated with the mutations under investigation; i.e.
the set Sm. For each LCS we calculate the significance level
as follows:

Significance level of node n : s(n)

=
# of subsumed terms

total # of function terms
(2)

where # denotes the number (or count); for example, # of
subsumed terms (in eq. 2) is the count of terms submsumed
by node n. Therefore, a node in the (bp taxonomy) tree
gets more significance as it subsumes more functions. Thus,
significance level of the root is 1 as it subsumes all the nodes
in the tree. Also notice that the nominator and denominator
in Equation (2) are based on the functions from the set P in
Equation (1) above. A small section of the bp taxonomy tree
(from the GO) is shown in Fig. 5. For example, Fig. 6 shows
a hierarchy of four significance levels and 7 bp functions,
f1 . . . f7, from the bp taxonomy. These functions fi are divided
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TABLE 6. A sample of variations from ClinVar along with their annotated bp terms from the Gene Ontology. The functional annotations (column 4) are
biologically significant.

FIGURE 5. Illustration of the bp function terms from (a portion of) the
Biological Process aspect of the Gene Ontology (GO); source:
EMBL QuickGO.

into four significance levels {0.4, 0.6, 0.8, 1.0}. The two
functions f1 and f2 are the most significant, Fig. 6. Moreover,
Fig. 7 presents an illustrations with eight functions (8 nodes).
In part (a) the annotated functions (nodes) are 5, 6, and 8 and
are highlighted in yellow; whereas part (b) shows the results
(significance levels) in three significance levels {1.0, 0.33,
and 0.66}; for example, Themetabolic process GO : 0008152
(node 3) subsumes two nodes (nodes 5 and 8) out of three
and so its significance is 0.66 (= 2/3 as shown in the figure.
Algorithm 1 presents the details of the process as follows

This algorithm summarizes the technique for identifying
the most accurate and relevant functions for annotating a
mutation or a set of mutations associated with a given disease
or medical condition. Notice that the algorithm can identify
more than one LCS if thr (the threshold) is less than 1.0; and
for thr = 1.0 there will be only one LCS that subsumes all
the functions in the set P (line 3 of the algorithm).

FIGURE 6. This figure illustrates four levels of significance with sets of
functions from lcs’s.

B. EXPERIMENTS AND RESULTS WITH LCS
Firstly, the mutation data in our experiments were retrieved
from ClinVar hosted within NCBI [1], [2], [3]. As in the
first methodology, we used GO as the main functional anno-
tations source in this approach [17], [18], [23]. For gene-
disease association information we relied on OMIM [26];
and we used the GOA_human [23] database for all
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FIGURE 7. A simple illustration of methodology 2. (a) A section of the bp taxonomy with eight nodes. The
functions/nodes of interest are highlighted with the yellow nodes (i.e., nodes 5, 6, 8). Node 1 (GO:0008150
biological process) is the lcs for all three of them with significance level = 1.0; Node 3 subsumes two nodes (5 and
8) so, its sig. level = 2/3 = 0.66. Node 2 has sig. level = 1/3 = 0.33 because it subsumes only one node (6). Both
nodes 4 and 7 are also like node 2 with sig. level = 0.33. This way we have three levels of significance {0.33, 0.66,
1.0}. (b) Node 1 (GO:0008150; biological process) is the most significant lcs at the default threshold thr=1.0. At thr
≥ 0.66, we get two nodes: node 5 (GO:0008152; metabolic process) and node 1.

FIGURE 8. Illustration of the most significant LCS of all 96 bp functional
annotations of the mutations of Alzheimer disease.

functional annotations of human genes [23]. Table 7 contains
the mutations, genes, and the associated conditions as were
retrieved from the ClinVar [1], [2], [3]. The attention in
our experiments was focused on the pathogenic mutations
(more than 82000 pathogenic mutations involving more than
9200 genes), Table 7.

1) ALZHEIMER DISEASE (AD)
In examining the Alzheimer Disease, we found six genes
associated with it in OMIM (Table 8). We determined a total
of 96 bp functions annotating the six AD genes as per the
databases of OMIM and the GOA_human. Considering the
subtree (from the bp taxonomy) the includes all these (96)
bp functions, we found that the bp function {GO:0031325;
positive regulation of cellular metabolic process} to be the

TABLE 7. The mutations we studied from ClinVar; more than 155,000
mutations involving more than 18,000 genes.

TABLE 8. The top genes associated with Alzheimer disease; source OMIM
Morbidmap.

most significant LCS for all these 96 bp annotations/functions
with significance level = 0.64 and thr = 0.60 as shown
in Fig. 8. For thr = 1.0 we seek a bp function that subsumes
all these 96 which found to be only the root {GO:0008150;
biological process}.

2) HEREDITARY NONPOLYPOSIS COLON CANCER(HNPCC)
The most significant functions that characterize of muta-
tions reported as pathogenic for HNPCC disease found by
our method are three functions {meiotic cell cycle process,
meiotic mismatch repair, and interstrand cross-link repair}.
Table 9 contains these results along with the eight genes
reported for these mutations; also in Table 9.
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TABLE 9. The most significant bp functions for six sets of mutations with certain diseases or medical conditions.

TABLE 10. The results of the method with the outcomes verified from the biomedical literature.

3) FAMILIAL CANCER OF BREAST (FCOB)
There are 4059 variants total reported with the 35 genes of the
Familial cancer of breast disease (FCOB). Of the 35 disease
genes, 11 genes are reported with variants pathogenic to
FMOC, and these 11 genes have 601 pathogenic variants
reported. The first 3 genes are: PALB2, CHEK2, PALB2, and
are related to (and reported with) pathogenic variants; namely
with 232, 126, and 72 pathogenic variants respectively. The
functions that are essentially the most significant LCS’s are
reported in Table 9. These functions are induced from the bp
subtree subsuming more than 400 function nodes to achieve
majority threshold with thr ≥ 0.66.

4) PRIMARY PULMONARY HYPERTENSION
The 388 mutations of this disease were examined by our
method with one aspect: Primary pulmonary hypertension.
As shown in Table 9, there are 11 genes reported with these
pathogenic mutation. Our method was able to induce three
functions characterizing these mutations: positive regulation
of BMP signaling pathway, heart morphogenesis, and endo-
cardial cushion development.

5) NOONAN SYNDROME 1
We investigated with our proposed method 36 pathogenic
mutations reported with one shared aspect, Noonan
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syndrome 1. The method was able to annotate these
mutations with one function: positive regulation of glu-
cose transmembrane transport; and this fact is reported
and validated in the (biomedical) literature in PubMed
(PMID:23010278).

6) BREAST OVARIAN CANCER SYNDROME
Two functions characterize the mutations that are reported
pathogenic to the breast and ovarian cancer and are shown
in Table 9. The table also contains the 10 genes with which
the mutations are reported, Table 9.

C. DISCUSSION AND ANALYSIS
By assigning one bp function term (or more) for gene muta-
tions from the bp taxonomy, we essentially characterize
their functional consequences. This will basically lead to an
increased and a more complete understanding of the muta-
tion pathogenicity and their relationship with genes and dis-
eases. We identified published reports and research articles
in PubMed to verify the results as shown in Table 10. Also,
we were able to verify the results in Table 9 by examining the
biomedical literature seeking for experimental evidences and
functional information of these mutations. These results indi-
cate that we can further our knowledge about pathogenicity
of mutations by investigating the specific functional conse-
quences of these mutations.

V. DISCUSSION AND CONCLUSIONS
The annotation and functional characterization of all human
genes has been an active area of research in the biomedi-
cal domain for the past two decades. Then recently, more
interest is being shifted towards functional annotation of
gene mutations and genetic variations [13], [16], [18], [20].
As biological sequences, or part of sequences, genetic vari-
ants and mutations have roles in the total molecular functions
of the sequences. Further, the functional characterizations of
genetic variants are important for research projects related to
genetic diseases and functional genomics [18]. In general,
a human gene with multiple functions tends to have more
mutations associated with it than normal. This is intuitive
since a multifunctional gene is most likely a disease-gene,
and thus a highly studied gene, and therefore, more mutations
reported for it than the normal [25]. However, this relation-
ship has never been studied within the context of genetic

variations. Thus, the results and outcomes of this work can
connect mutations with gene functions computationally using
the publicly available genes, the gene ontology, mutations,
and gene variation databases [1], [2], [3], [7], [17], [23], [26].
This research produced a number of relationships connect-
ing mutations with functional pb annotations with statistical
significance (p < 0.05); see for example experiment 3. For
example, it has been reported in Section IV above that the
FCOB disease is annotated with more than 450 bp annotation
(Table 9) and one of the statistically significant functional
annotations is the Cellular Response to DNA damage stim-
ulus. Searching the literature shows that it has been already
reported that FCOB (aka familial breast cancer) is intimately
related to DNA damage response [27]. Another example,
it has been found that Noonan syndrome 1 makes patients
more sensitive to glucose which is shown by our method as
in Table 10 [28].
Trembath and Harrison reported that in Pulmonary arte-

rial hypertension (PAH), raised pulmonary artery pressures
lead to progressive right heart hypertrophy and eventual fail-
ure [29]. This validates the finding of the proposed method
(last row in Table 10) that the bp annotation term Heart
mophongenesis (GO:0003007) is significant for disease Pri-
mary Pulmonary Hypertension (PPH) [29].

VI. CONCLUSION
In this paper, we presented an analysis of genetic vari-
ants in relationship with biological process annotations from
the Gene Ontology; also explored the relationships between
genetic variations and bp annotations for some diseases and
genes. We also reported results of the analysis which are
considered interesting and important. Moreover, a method is
presented for functional annotations of mutations and genetic
variants from the bp taxonomy of the gene ontology. To the
best of our knowledge there are no such work or projects in
the literature that analyzes mutations for functional annota-
tions from the gene ontology (we only found the work of
Capriotti et al [17] which uses gene annotations as features in
the prediction of disease association of a given variation [17]).

In the overall results and experimental analysis of this
work, we found a clear connection in relating mutations with
functional annotations, and the relationship is statistically
significant especially in experiment 3 (where we used Man-
Whitey statistical significance test with p < 0.0001). Hence,

TABLE 11. Details of the GOA human database [17].
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TABLE 12. The full details of the variations reported in Table 6 with their annotated bp terms from the Gene Ontology. ∗∗∗note: this table is only for
reviewing and may not be included in the final version of this paper.

this work contributes to annotation of gene variants using the
gene ontology as the source of functional information [23].
We also showed that genes with the most mutations are
also among the highest in number of functional bp anno-
tations associated with them. Further, genes with the most
bp functions are also among the highest in having variations
associated with them. We also showed that for a given vari-
ation, the assigned bp functions and annotations, by the pro-
posed method, are biologically significant. These outcomes
and results collectively shall augment our knowledge and
understanding of gene variants and gene-mutation- disease
relationships and mechanisms.

APPENDIX
See Tables 11 and 12.
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