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ABSTRACT Voice Activity Detection (VAD) is a widely used technique for separating vocal regions from
audio signals, with applications in voice language coding, noise reduction, and other domains. While various
strategies have been proposed to improve VAD performance, such as ACAM, DCU-10, and Tr-VAD, these
approaches often suffer from common limitations, including being unsuitable for long audio and being
time-consuming. To address these issues, a new method called AAT-VAD is proposed, which integrates an
adaptive width attention learning mechanism into the classic transformer framework. The approach involves
extracting Mel-scale Frequency Cepstral Coefficients (MFCC) from the Mel scale frequency domain,
adding a masking function to each transformer attention head, and inputting the features processed by the
transformer encoder layer into the classifier. Experimental results indicate that a 12.8% higher F1-score is
achieved by the method compared to DCU-10, and a 0.6% higher F1-score is achieved compared to Tr-VAD
under different noise interferences. Furthermore, the average detection cost function (DCF) value of the
method is only 14.3% of DCU-10 and 92.4% of Tr-VAD, and the test time of AAT-VAD is only 37.4% of
that of Tr-VAD for the same noisy vocal mixed audio.

INDEX TERMS Voice activity detection, adaptive attention span transformer, voice biometrics, voice
command recognition.

I. INTRODUCTION
In recent years, biometric identification technology has
become prevalent in our daily lives, particularly with the
emergence of non-contact authenticationmethods likemobile
phone face unlocking and fingerprint payment. However,
fingerprint recognition requires contact and is vulnerable to
interference from light and fingerprint collectors, while facial
recognition is susceptible to occlusion by foreign objects.
As a result, voice recognition has emerged as a promising
non-contact, occlusion-free biometric identification method.

Within the field of voice recognition, Voice Activity Detec-
tion (VAD) [1], [2] plays a critical role in the extraction
of human and non-human audio components, allowing for
more efficient voiceprint identity authentication and channel
information transmission. Machine learning and deep learn-
ing methods such as Support Vector Machine (SVM) [3],
Recurrent Neural Network (RNN) [4], and Residual Neural
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Network (ResNet) [5] have significantly improved the accu-
racy of voiceprint feature recognition using VAD.

Recently, researchers have begun to apply the Transformer
model [6], [7] to VAD, achieving even better performance
than traditional methods. However, the quadratic cost of
Transformer’s calculation with input sequence size restricts
its applicability for longer speech sequences with greater
noise interference.

To address this limitation, this letter proposes a novel
VAD detection method based on the Adaptive Attention
Span Transformer (AAT-VAD). Unlike the basic Transformer
model, AAT-VAD employs dynamic attention learning heads
that learn the optimal attention correlation and obtain coher-
ent audio information, allowing for the expansion of input
sequence length without sacrificing performance or incur-
ring excessive computational costs. The performance of
AAT-VAD was evaluated based on F1-score, detection cost
function (DCF), and average test time. Experimental results
demonstrate that AAT-VAD achieves optimal performance
under various conditions.
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FIGURE 1. Pre-processing framework.

The contributions of this paper can be summarized in the
following several aspects:

• transformer model performs well in various tasks in the
computer field. Based on such an idea, we innovatively
propose a new voiceprint speech recognition algorithm,
AAT-VAD.

• The proposed AAT-VADmethod shows its strong ability
in the processing efficiency and accuracy of long audio.

• Wehope it will help drawmore attention to this seriously
under-explored field and inspire more great works.

This letter is divided into four sections. Section II provides
a brief introduction to acoustic characteristics. Section III
describes the framework of AAT-VAD. Section IV out-
lines the experimental details, while Section V presents the
conclusion.

II. FEATURE EXTRACTION
This section presents the preprocessing techniques employed
to extract acoustic information. The specific framework is
illustrated in Figure 1.

We model the input audio signal as x[n].

x [n] = clean [n]+noise [n] (1)

where clean[n] represents the clean audio signal, noise[n]
denotes the background noise added to the audio, and n
represents the discrete-time segment. To restrict sample
amplitudes to the range of [−1, 1] and diminish size dis-
crepancies between various sound samples, we employed the
z-score normalization method.

x∗
=
x − µ

σ
(2)

The symbols µ and σ represent the mean and vari-
ance of the discrete signal x[n], respectively. Here,
x∈{x[0],x[1],. . . ,x[n]} denotes the original audio signal’s
discrete values.

A. PREEMPHASIS
The average power spectrum of the speech signal, x∗[n], is
strongly influenced by glottal excitation and oronasal radi-
ation, with attenuation of 6 dB/octave above 800 Hz. As a
result, the higher frequency components are fewer in number.
Consequently, prior to the analysis of x∗[n], it is necessary to
enhance the high frequency portion

x̃∗ [n] = x∗ [n] − ax∗ [n− 1] (3)

where a is the pre-emphasis factor, taken as a size of 0.9285.

B. WINDOWED FRAMING
The audio signal is a non-linear time-varying signal, but it
exhibits a smooth feature in short time, rendering it easy to
extract short-time features through framing. To ensure mini-
mal change in the features between adjacent frames, a frame
shift of 2/5 of the frame length is selected, leading to 3/5
overlap between adjacent frames. Furthermore, the signal is
windowed using a Hamming window function, enhancing its
periodic characteristics for Fourier transform processing in
the time domain.

w (n) = a0 − (1 − a0) · cos
(

2πn
N − 1

)
, 0 ≤ n ≤ N − 1

(4)

where a0 = 12/23,
To determine the start and end points of audio signals,

an automatic endpoint detection method was employed. This
was achieved by utilizing the two-threshold comparison
method, which is characterized by the short-time energy E
and short-time average zero-crossing rate Z.

En =

∞∑
−∞

[x (m)w (n− m)]2 (5)

Zn =

∑∞

m=−∞
|sgn [x (m)] − sgn [x (m− 1)]|w (n− m)

(6)

Combining the advantages of short-time energy Z and short-
time average zero-crossing rate E , the detection is more
accurate and the system processing time is reduced.

C. FFT
The speech feature parameter MFCC is used to extract the
feature. It is first processed by Fast Fourier Transform (FFT).

X [k] =

N−1∑
n=0

x [n] e−j
2π
N nkk = 0, 1, 2, . . . ,N − 1 (7)

where x[n](n = 0, 1, 2, . . . ,N − 1) is the discrete frame
obtained after sampling the speech sequence, and N is the
total frame length. x[k] is a complex sequence of N points.
Then the signal amplitude spectrum |X [k]| is obtained by
modulo X [k].

D. MEL FREQUENCY SCALE CONVERSION
Converting the actual frequency scale to the Mel frequency
scale.

Mel (f ) = 2597lg
(
1 +

f
700

)
(8)

where Mel(f ) is the Mel frequency and f is the actual fre-
quency.

E. TRIANGULAR FILTER BANK
Configure the triangular filter banks, calculate the output of
each triangular filter after signal amplitude filtering.

F (l) =

fk (l)∑
k=fa(l)

wl (k) |X [k]|l = 1, 2, . . . ,L (9)
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FIGURE 2. AAT-VAD model framework.

wl (k) =


k − fa (l)

fc (l) − f0 (l)
f0 (l) ≤ k ≤ fc (l) ,

fh (l) − k
fh (l) − fc (l)

fc (l) ≤ k ≤ fh (l)
(10)

f0 (l) =
o (l)[
fs
N

] fh, (l) =
h (l)[
fs
N

] , fc (l) =
c (l)[
fs
N

] (11)

The filter coefficient of the corresponding filter is denoted as
wl (k), where o (l), c (l), and h (l) represent the lower, center,
and higher frequencies of the filter under the actual frequency,
respectively. The sampling rate is represented by fs and the
number of filters by L. The output of the filter is represented
as F (l)

F. DCT COSINE EXCHANGE
When the output of all filters is obtained, the last discrete
cosine transformation (DTC) step is made to obtain the
MFCC.

M (i)=

√
2
N

L∑
l=1

logF (l) cos
[(
l −

1
2

)
iπ
L

]
i = 1, 2, . . . ,Q

(12)

where Q is the order of the MFCC parameters, we take 13.
M (i) is the resulting MFCC parameter.

III. THE FRAMEWORK OF ADAPTIVE ATTENTION SPAN
TRANSFORMER MODEL
In this section, we present our AAT-VAD model, which is
designed to accurately determine the presence or absence of
speech by segmenting acoustic information into smaller units
and applying deep convolution. To achieve this, we employ
adaptive attention learning and dynamic attention mecha-
nisms, as illustrated in Figure 2.

The dataset used to train the model is denoted by
{Xi, ytruei }

I−1
i=0 , where Xi ∈ RD is the acoustic feature vector

at frame i, ytruthi ∈ {0, 1} is the label of VAD and Tol is the
total number of frames. Expand each frame’s acoustic data to
L = 2k + 1, and its relative index is l ∈ Tol = {−ku, −(k −

1)u, . . . ,−u, 0, u, . . . , (k − 1)u, ku}, where u is the step size
and k is the number of adjacent frames. Expanded data can
be expressed as.

X ′
i = Xi+l : lϵT ϵRL×D, ytruthi = ytruthi+l : l ∈ T ∈ RL (13)

We use the extended feature vector as input to the first embed-
ding module, which consists of a fully connected neural
network and a one-dimensional convolutional layer. Adding

FIGURE 3. The internal structure of the i th transformer encoder.

a convolution layer helps extract relative location information
and learn useful short-term spectral-temporal patterns [9].
The output of the embedding layer is denoted as X̄1

i ∈ RT̄×D̄,

where T̄ and D̄ denote the temporal and feature dimensions.
Each Na−trans deep neural Transformer block consists of

three modules: a Mask function module, a Multi-Headed
Self-Attention (MHSA) module, and a Feedforward Neural
Network (FNN) module, as depicted in Figure 3. Assuming
that the input features of the jth Transformer are denoted
as X̄ ji ∈ RT̄×D̄, where j ∈ {1, 2, 3, . . . ,Na−trans}.
Figure 3 shows that the normalization layer generates a

normalized matrix X̄ ji ∈ RT̄×D̄ before passing the findings
to the subsequent multi-head self-attention module.

In the Attention module, each head’s attention period is
learned independently. Specifically, we add a mask func-
tion to the head of each attention to control the attention
span. The mask is a non-increasing function that maps dis-
tances between [0,1]. We take the lower bound of the mask
function —mθ as the true value with the parameter θ ∈ [0, S].

mθ (x) = min
[
max

[
1
R

(R+ θ − x) , 0
]

, 1
]

(14)

Here, R controls the softness of the mask function [10]. The
context information and current distance are used as inputs to
the mask function. θ is the parameter that needs to be learned.

attention (ir) =
mθ (i− r) exp (sir )∑i−1

q=i−S mθ (i− r) exp
(
siq

) (15)

In loss function, we add an L penalty term.

L = −logP (w1, . . . ,wT ) +
λ

M

∑
k
zk (16)

The regularization parameter λ (>0) and the number of
attention heads M are critical hyperparameters in our model.
These differentiable parameters are learned in conjunction
with the rest of the model to optimize its performance. The
regularization parameter λ controls the model’s capacity and
helps prevent overfitting, while the number of attention heads
M determines the model’s attention granularity and influ-
ences its ability to capture complex relationships among input
features. By fine-tuning these parameters during the training
process, we aim to achieve optimal VAD accuracy on our
dataset.

The construction of the Transformer is shown in Figure 4.
The output X̄ ji from the mask function is partitioned into non-
overlapping segments based on the temporal dimension T̄ and
the feature dimension D̄, with N1 segments in the temporal
dimension and N2 segments in the feature dimension.

X̄ ji,S = Sp
(
X̄ ji

)
∈ RDs×N1×N2 (17)
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FIGURE 4. Transformer network structure in AAT-VAD.

The splitting factors N1 and N2, denoted by Sp(·), are used
to divide the X̄ ji,S processed by the mask function into
non-overlapping segments based on the temporal dimension
T̄ and the feature dimension D̄. Specifically, each segment
has a dimension ofDs =

T̄
N1

×
D̄
N2
. By extending MSHA from

a single dimension to multiple dimensions, the model can be
highly generalized and can handle various scenarios.

To address the limitations of Transformer’s attentionmech-
anism in capturing local information, we incorporate a highly
divisible convolutional block (DW) in our model. The DW
convolutional layer is used to capture local information, while
the 2 × 2 convolutional layer facilitates global and partial
linkage. Additionally, each convolutional block includes a
batch normalization layer for processing. In convolution, the
step size is set to 4, and we use DW(·) to map X̄ ji,S to X̄

j
i,DW .

X̄ ji,DW = map
(
DW

(
X̄ ji,S

))
∈ R

T̄
N1

×
D̄
N2

×
N1N2
16 (18)

The presented equation involves a mapping operation,
denoted as map(·), and assumes that Q, K, and V represent
queries, keys, and values, respectively. The Softmax oper-
ation is applied to these components, which allows for the
computation of the attention weights.

X̄ ji,attention = Softmax
(
QTK
√
N d

+ β

)
·V ∈ R

T̄
N1

×
D̄
N2

×
N1N2
16 (19)

The construction of the Multi-Head Self-Attention (MHSA)
is depicted in Figure 4. The input tensor X̄ ji , which is pro-
cessed by the mask function, is divided into non-overlapping
segments of size N1 × N2. These segments are based on the
temporal dimension T̄ and the feature dimension D̄. Here, N1
and N2 denote the specified splitting factors, Sp(·) represents
the splitting action, and Ds represents T̄

N1
×

D̄
N2
. By extending

MHSA from a single dimension to multiple dimensions, the
model can be highly generalized when encountering various
scenario conditions.

The attention matrix is obtained by employing a highly
divisible convolutional block (DW). The DW convolutional
layer provides a local focus on information that the Trans-
former lacks, thus compensating for its shortcomings and
achieving global and partial connectivity. Each convolutional
block comprises a DW convolutional layer, a batch normal-
ization layer for processing, and a 2 × 2 convolutional layer.
In convolution, the step size is 4, and we use DW(·) to
manipulate X̄ ji,S , which maps to X̄ ji,DW .

FIGURE 5. Classifier internal framework diagram.

Here, β ∈ R
T̄
N1

×
D̄
N2

×
D̄
N2 represents a learning-related offset.

The previous mapping employed a step size of 4, and both
the time and feature dimensions have been scaled down by a
factor of 4. Consequently, the self-attention cost is reduced by
a factor of 163, which greatly reduces the cost of processing
large audio signals and compresses the running time of the
model.

As shown in Figure 5, the Transformer eventually outputs
to the classifier. The internal structure of the classifier is
plotted similarly, and the feature matrix is processed through
the DW convolution block. The output feature matrix X ji,out ∈

RDs×
N1
2 ×

N2
2 is mapped to X̄ ji,out ∈ R

N1
2 ×

N2Ds
2 . FCNs are used

to detect hidden information, and the last feature dimension is
compressed to 2 dimensions. The sigmoid activation function
is used to predict the probability of a human voice in audio
signals, and vector yi ∈ R

N1
2 = RL represents it. For the

prediction of the ith frame, we combine the predictions of
all yi-related frames with l ∈ I . By comparing ŷi with the
threshold θT , we obtain the decision label value yi.

ŷi =
1
L

∑
l∈I

yi+l (20)

yi =

{
1, if ŷi ≥ θT

0, otherwise
(21)

where yi+l is the (i+ l)th component of yi.
Loss function is defined as follows.

cost = −

∑T−k−1

i=k

∑
l′∈I

(ytruthi+l logyi+l

+

(
1 − ytruthi+l

)
log(1 − yi+l)) (22)

Here ytruthi+l is the lth component of the ytruthi label.

IV. EXPERIMENTS
In this section, we present the essential details and findings
of our experiment, which evaluates the performance of our
proposed AAT-VAD model in multiple audio datasets and
demonstrates its superiority over existing technologies.

A. DATABASE INTRODUCTION
To begin with, the widely used TIMIT corpus serves as the
primary dataset for training and evaluating our model, with
95% of the speech data allocated for training and 5% for
validation. To generate the noise database, we concatenated
about 20,000 sound effects [11] to create a long sound wave,
and then randomly added -10∼12db long sound waves to the
TIMIT corpus. This process is repeated until the end of the
long sound wave is reached.
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For dataset D1, we combined over 1300 TIMIT corpora
with silent conversations and added seven noises from the
NOISERX-92 database. Additionally, we addressed the issue
of signal-to-noise ratio mismatch.

For dataset D2, we utilized the ST-CMDS Chinese dataset,
which contains more than 100,000 speech files from over
800 different speakers, with durations over 100 hours, and
includes ambient noise.

The extended dataset requires the parameters K, u, and
L to be set to 4, 4, and 9, respectively. We employed the
512 small batch method for training, with the Cosine Decay
Learning Rate Scheduler AdamW [12] and 5000 linear warm-
up iterations. The initial learning rate was set at 0.001, with
a weight decay rate of 0.05, and after 4 × 105 iterations,
the final learning rate was set at 5 × 10-6. We employed
the Gaussian Error Linear Unit function (GELU) [13] as the
activation function, and the model parameters were adjusted
to 80, 54, 162, 18, 18, 27, 0.5, and 6, with an exit rate of
0.1. The overall parameter size and a comparison with other
models are presented in Table 1.

B. MODEL COMPARISON AND EVALUATION INDEX
We conducted separate comparisons between the AAT-VAD
model and the following approaches:

• rVAD [14]: An unsupervised learning VAD method that
utilizes the underlying audio information by comput-
ing a posteriori signal-to-noise ratio-weighted energy
difference.

• Adaptive Contextual Attention Model (ACAM) [15]: A
fundamental VAD model based on an attention mech-
anism that primarily employs spectral and temporal
information.

• DCU-10 [16]: A DNN-based speech enhancement
model with 10 complex layers that we extended to pre-
dict VAD labels. Themethod involves taking the average
value of the ideal ratio mask along the frequency axis
and comparing it with the threshold value.

• Tr-VAD [8]: The original Transformer-based strategy
that primarily utilizes self-awareness mechanisms and
multiple attention heads.

Our experiments demonstrate that the AAT-VAD model
outperforms these existing methods in terms of accuracy
and efficiency, indicating its potential for use in real-world
applications.

In this section, we present the experimental details for
evaluating the performance of the proposed AAT-VADmodel
and compare it with state-of-the-art methods. While rVAD
employs a default parameter design, all other methods are
trained using the approach detailed in the aforementioned
reference. To assess the effectiveness of the proposedmethod,
we utilize commonly used evaluation metrics for binary
classification problems, namely, F1-score and DCF. These
metrics have been widely adopted to measure the precision
and robustness of VAD models.

F1 = 2TP/ (2TP+ FP+ FN ) (23)

TABLE 1. Comparison of the parameters of each model.

TABLE 2. F1-scores and DCF for each model.

In this context, TP, FP, and FN denote the quantities of true
positives, false positives, and false negatives, while DCF is
utilized as a gauge of the model’s error performance. It is
commonly employed in binary classification problems and
computed as the weighted sum of false negative and false
positive errors, where the weights depend on the relative costs
of these errors. The higher the value of DCF, the worse the
performance of the model.

DCT = (1 − β)PFN + βPFP (24)

In this context, the rate of false positives is denoted by
PFP, while the rate of false negatives is represented by
PFN . Additionally, β is a weight parameter set to 1/4 to
penalize lost speech frames. As per definition, a higher
F1-score and a smaller DCF coefficient indicate superior
model performance.

C. RESULT ANALYSIS
The exact performance findings are provided in Table 2,
which shows the average results across all datasets. Based on
these data, our proposed AAT-VADmethod has demonstrated
superior performance compared to the current state-of-the-
art Tr-VAD method under different signal-to-noise ratios.
Specifically, AAT-VAD showed an average improvement of
0.6 percentage points in the F1 index and nearly 15% opti-
mization in the DCF index. Additionally, Figure 1 illustrates
that the AAT-VAD method significantly reduces the number
of parameters compared to several commonly used networks,
resulting in a significant reduction in training time. These
findings highlight the effectiveness and efficiency of the
AAT-VAD method for voice activity detection in noisy audio
signals.

D. EXPERIMENTAL ENVIRONMENT
The hardware environment utilized for this study included a
high-performance computing cluster and a cloud computing
platform for training and evaluating deep learning models.
The computing cluster comprised multiple processors and
accelerators such as Graphics Processing Units (GPUs) and
Tensor Processing Units (TPUs), which provided efficient
parallel computing capabilities.
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In addition to the computing cluster, we utilized specialized
hardware devices, such asmicrophone arrays and audio signal
processors, designed specifically for voiceprint detection.

For software, we employed TensorFlow, PyTorch, and
Librosa, which arewidely used deep learning frameworks and
audio signal processing libraries. The programming language
used was Python.

The dataset utilized in this study was TIMIT and
ST-CMDS, twowidely used datasets comprising a large num-
ber of voice samples and related metadata. These datasets
include voice data collected from diverse angles, distances,
and environments to simulate voiceprint detection tasks in
real-world scenarios. Additionally, we applied various pre-
processing techniques, such as data augmentation and nor-
malization, to enhance the robustness and generalization of
the model.

This study’s hardware and software environment and
dataset were carefully selected to ensure that the experi-
mental setup was adequate to explore the research question
effectively. The utilization of these advanced hardware and
software tools and datasets was critical to the success of the
study, and the results obtained validate our approach.

V. CONCLUSION
In summary, this paper introduces the AAT-VAD model,
which leverages adaptive attention span transformer and a
mask function layer to effectively process long audio seg-
ments and reduce computational costs. The proposedmodel is
composed of four main components and outperforms existing
methods in terms of F1-score and DCF across various noise
environments. This work contributes to the field of voiceprint
detection by providing a new and effective approach to audio
processing. The mask function layer and attention span trans-
former are novel features that enable efficient and accurate
voice detection, which is crucial in real-world applications.
Overall, the AAT-VAD model presents a significant innova-
tion and improvement over existing methods for voiceprint
detection.

The present study demonstrates the effectiveness of the
proposed AAT-VADmethod in voice activity detection. How-
ever, there is still room for improvement in voiceprint detec-
tion technology. Future research could focus on enhancing the
precision and reliability of voiceprint recognition, supporting
multiple languages and diverse application scenarios, and
addressing privacy protection and ethical issues. As such,
the future of voiceprint detection technology is promising,
with the potential for further advancements and widespread
application.
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