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ABSTRACT In this paper, we proposed a 3D point cloud semantic segmentation system based on lightweight
FPConv. In 3D point cloudmapping, data is depicted in a 3D space to represent 3D imagery data. These maps
are collected through direct measurements; all points in a 3D point cloud map correspond to a measurement
point and, therefore, contain a large amount of data. Data in 3D point cloud maps are stored in point clouds,
and they are extracted using 3D image processing or deep learning. However, because of the non-structured
and high-dimensional properties of point clouds, the development of 3-D image recognition applications in
the field of computer vision warrants further exploration. Large-scale neural networks are highly accurate,
but they have the disadvantages of high computation complexity and low portability. Therefore, the present
study proposed a 3D point cloud semantic segmentation system based on lightweight FPConv. The proposed
network combines depth-wise separate convolution, quantization, and Winograd convolution technology to
lighten and accelerate neural network computation. The performance of the presented network was verified
using the Stanford 3D Large-Scale Indoor Spaces (S3DIS) large scene database provided by Stanford 3D AI
Lab. The results reveal the excellent performance of the proposed model.

INDEX TERMS 3D point cloud, FPConv, lightweight, smart cities, semantic segmentation.

I. INTRODUCTION
3D point cloud maps are generated using laser measure-
ments or RGB-D (red–green–blue depth) camera measure-
ments. 3D LiDAR is a crucial instrument for 3D point
cloud scanning. LiDAR is an advanced sensor that employs
lasers to scan for spatial data. After the invention of lasers,
optical radars were first used during the Apollo 15 mis-
sion in 1971 to survey and map the surface of the moon.
Optical radars were subsequently applied in fields including
those archaeology and agriculture. In 2005, optical radars
were integrated into automobiles to serve as ‘‘eyes’’ that
enable autonomous cars to detect the surrounding environ-
ment and avoid obstacles. Point cloud maps generated using
3D LiDAR consist of highly accurate in-depth information,
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which provides vehicles with sufficient time to respond to
potential threats [1], [2].

In addition to its application in autonomous cars, 3D
LiDARhas in recent years been applied in consumer electron-
ics products (e.g., the iPhone 12 Pro series and iPhone 12 Pro
Max series released in 2020). For the iPhone 12 Pro series,
the LiDAR System was applied to support the phone’s night
portrait camera settings and the focus speed of its night
camera mode. Additionally, built-in measurement applica-
tions employ LiDAR to measure body height, generate a 3D
model of a classroom interior environment, and measure the
distance between a user and other individuals. These appli-
cations can assist individuals with visual impairments (e.g.,
individuals with blindness or those who are partially sighted)
by employing the information obtained through LiDAR to
provide visual support in the daily lives of individuals with
visual impairments.
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3D point cloud mapping is a common representation for-
mat for 3D images [3]. This format retains original geometry
data in a 3D space without the use of discretization pro-
cessing. Therefore, 3D point cloud mapping is employed in
various scene understanding applications, of which the most
prominent are autonomous vehicles and 3D environmental
monitoring applications in smart cities. In recent years, deep
learning technology has contributed to the development of
various research fields, including visual computing, speech
recognition, and natural language processing. However, the
challenges for deep learning include the small datasets,
high dimensions, and non-structured 3D point clouds used
by related applications. Alternatively, large neural networks
(NNs) have high accuracy, but they are affected by high
computational complexity and low portability. Therefore,
researchers must weigh the pros and cons of 3D point
cloud mapping or large NNs before implementing these
technologies.

This study combined projection-based and point-based
methods to perform large-scale 3D point cloud semantic seg-
mentation. Subsequently, quantization and depth-wise sepa-
rable convolution were conducted to perform the lightweight
compression of the network.

II. LITERATURE REVIEW
A. 3D POINT CLOUD SEGMENTATION
3D point cloud segmentation requires data on the overall
geographical structure and details of each point. The pur-
pose of segmentation is to divide a structure into multiple
sets of neighboring points and to divide these points based
on segmentation granularity through semantic segmentation
(scene level), instance segmentation (target level), and partial
segmentation (part level). Guo et al. [4] discussed all available
3D point cloud semantic segmentation methods and divided
these methods into projection-based, discretion-based, point-
based, and hybrid methods.

1) PROJECTION-BASED METHODS
In projection-based methods, 3D point cloud maps are
projected onto a 2D image through methods such as multi-
view representation [5], [6], [7], [8] and spherical representa-
tion [9], [10], [11], [12]. Multiview representation is sensitive
to occlusion and observation angle of view, and it does not
thoroughly utilize the structural data at the base layer, which
leads to data loss [5], [6], [7], [8]. By contrast, spherical rep-
resentation retains relatively more data and is more suitable
for LiDAR point cloud labelling, but it is vulnerable to errors,
discretization, and occlusion [9], [10], [11], [12].

2) POINT-BASED METHODS
The first point-based method was proposed by Qi et al. [13],
which developed PointNet, an NN that directly computes
point clouds through unstructured and unordered algorithms.

Hua et al. [14] proposed a pointwise CNN in which near-
est neighbors are queried and binned into kernel cells and

subsequently convoluted with kernel weights.
Wang et al. [15] proposed parametric continuous convolu-
tional networks, which perform parametric continuous con-
volution by using the kernel function of each convolution
layer to formulate continuous vector spaces.

The recurrent neural network (RNN), which captures the
contextual features of a 3D point cloud, is commonly applied
in 3D point cloud semantic segmentation models. Engelmann
et al. [16] expanded PointNet and converted a set of points
into multiscale and multigrid models to obtain the contextual
features of an input end [17]. To overcome the problems
caused by static and rigid pooling, Zhao et al. [18] proposed
a dynamic aggregation network that considers global scene
complexity and local geometric features.

Landrieu and Simonovsky [19] used interconnected simple
shapes and Superpoints to represent 3D point clouds and
attributedirected graphs (i.e., Superpoint graphs) to acquire
structural and contextual information.

B. PointNet++

PointNet [13] exhibits local feature processing disadvantages.
Based on this concept, Qi proposed the PointNet++ [20]
framework. PointNet++ employs a hierarchical NN struc-
ture to resolve the aforementioned problems. However,
PointNet++ is also affected by the sampling density prob-
lem [20]. Because sampling in low-density positions may
result in the loss of local data, the sampling scale must be
increased.

C. RandLA-NET
RandLA-Net is a lightweight and high-efficiency novel algo-
rithm that is applicable for large-scale 3D point cloud scenes.
Hu et al. [21] performed a comprehensive analysis of cur-
rent sampling methods and employed random point sampling
in point clouds to significantly reduce computing load and
memory consumption.

D. KPConv
Kernel point convolution (KPConv) [22] is different from the
aforementioned point cloud processing methods. The convo-
lution of the features of point cloud x is defined as:

(F ∗ g) (x) =

∑
xi∈Nx

g (xi − x)fi (1)

where xi and fi represent the point cloud in point set P ∈

RN×3 and the corresponding feature (i.e., the aggregation of
N points) in feature set F ∈ RN×D, respectively. The kernel
function g (yi) =

∑
k<K h(yi, x̃k )Wk is defined as a regular

2D matrix, which is pointwise multiplied by convolution
layers and added to obtain a total. g takes the neighbor-
ing positions centered on x as input and is represented as
yi = xi − x, yi ∈ β3

γ . The domain of the definition of g is
β3

γ =
{
y ∈ R3 |∥y∥ ≤ r

}
, providing different weights to g at

different layers. Let {x̃k |k < K } ⊂ β3
γ be the kernel points
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FIGURE 1. System architecture diagram.

and {Wk |k < K } ⊂ RDin×Dout be the associated weight
matrices [22].
h represents the linear correlation between x̃k and yi, and it

is used to evaluate the degree of influence of each point cloud;
σ represents the influence distance of the kernel points, and it
is selected according to input density. The linear correlation
is thus presented using the following equation [22]:

h (yi, x̃k) = max
(
0, 1 −

∥yi − x̃k∥
σ

)
. (2)

Because the number of kernel points (K) is not constrained,
the design of KPConv is highly flexible and adaptable for
various domains. The radius of the sphere is set as 1.5σ to
ensure a certain degree of overlap between each kernel point
space. Because each convolution layer consists of a set of
points (x̃k ), the researchers employed {x̃k} to represent the
global settings for each convolution layer. The researchers
established a set of x shifts (1 (x)) for every convolution
location and defined deformable KPConv using the following
equation [22]:

(F ∗ g) (x) =

∑
xi∈Nx

gdeform (xi − x, 1 (x))fi, (3)

where

gdeform (yi, 1 (x)) =

∑
k<K

h(yi, x̃k + 1k (x))Wk .

E. FPConv
FPConv [23] differs from convolution performed through
projection on a tangent plane [24], [25], [26], [27], [28].
Points in the local region are projected onto a 2D grid, and
2D convolution is performed on the grid. This method is
similar to the projection–interpolation method, but it is more
versatile. In FPConv, projection and interpolation are simpli-
fied into a single-weight map learning process. This general
and robust process can be effectively integrated with various

model frameworks for point cloud classification, semantic
segmentation, and 3D analysis tasks.

III. PROPOSED METHOD
The present study proposed an NN for direct point cloud
computing that integrates RandLA-Net; MobileNet, which is
fast and lightweight; and FPConv, which provides high accu-
racy. The proposed NN was designed to achieve high-speed
semantic segmentation without substantially compromising
accuracy. The performance of the proposed network was
verified using the Stanford 3D Large-Scale Indoor Spaces
(S3DIS) large scene database [29] provided by Stanford 3D
AI Lab.

A. SYSTEM FRAMEWORK
The system framework is presented in Fig. 1. First, seg-
ments of a large scene were extracted and input into the
proposed NN. The input segments were then randomly
sampled, and their point cloud coordinates were collected.
The PointNet++ framework was then employed to obtain
the features of the segments and concatenate the features
with the corresponding coordinates. After the features were
projected on a 2D plane, 2D convolution was performed to
extract point features. Finally, nearest-neighbor interpolation
was conducted for up-sampling to complete the semantic
segmentation process of the large scene.

B. TRAINING DATASET
The acquisition of point cloud data was initially a challenge.
However, in recent years, the use of a large number of train-
ing datasets has become essential to improving the accuracy
of artificial intelligence (AI). This has prompted the public
release of point cloud datasets for use in relevant research
and applications. This study employed the S3DIS database to
train the proposed network framework. The dataset that was
used is further detailed in the following sections.
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1) STANFORD 3D LARGE-SCALE INDOOR SPACES
The S3DIS dataset was developed by the Stanford Vision and
Learning Lab. The dataset was collected using a Matterport
camera (a scanner that combines three types of spacing) from
six large-scale indoor areas in three buildings. Data (including
3D coordinate and RGB-D data), were reconstructed after
scanning, and point clouds were generated based on samples
by using their coordinates. In particular, the data on Areas 1,
3, and 6; Areas 2 and 4; and Area 5 were collected from
Buildings 1, 2, and 3, respectively. The buildings contained
271 rooms total, spanned a land area of 6000 m2, and pro-
vided more than 215 million points. Each of these points
contained one instance-level semantic segmentation label
selected from 13 categories, which included chair, table,
floor, and wall.

C. NETWORK LIGHTENING
During the network training of mainstream deep-learning
frameworks (including Tensorflow and Pytorch), weight,
deviation, and activation functions are generally recorded
using 32-bit full floating (i.e., full precision 32 [FP32]).
However, for large-scale and deep networks, the training
process involves substantial variables, which require a com-
puting load that exceeds the capacity of portal devices. There-
fore, this paper employed depth-wise separable convolution
to reduce the number of variables and adopted symmetric
quantization to obtain low-precision weights and deviations.
Finally, the base layer, which has low influence, is eliminated,
and unnecessary activation layers and pipelines are removed
to reduce the computing load.

1) DEPTHWISE SEPARABLE CONVOLUTION
Under traditional convolution, a substantial computing
loading is required. The computing process of depth-wise
separable convolution differs from that of conventional con-
volution. Because depth-wise separable convolution involves
two steps, namely depth-wise convolution, and pointwise
convolution. Under depth-wise separable convolution, a sub-
stantially lower computing load is required relative to
conventional convolution. The computing load was further
reduced when the depth of the output channel and the size of
the convolution kernel increased. Therefore, depth-wise sep-
arable convolution can be applied to solve the large number
of variables involved in large-scale NNs.

In depth-wise separable convolution, each depth-wise con-
volution computes one channel; therefore, convolution com-
puting is conducted in each channel using a k × k size con-
volution kernel. The convolution computation is performed
independently in each channel of the input layer; thus, the
signal features located at a given position in each channel are
not thoroughly used. Consequently, pointwise convolution
is necessary to concatenate a feature map output obtained
through depth-wise convolution.

The computation process of depth-wise separable convo-
lution can be explained using input channels. First, an input

is considered as an input feature map consisting of M input
channels with a convolution kernel size of k × k. Because the
number of convolution kernels is equal to the number of input
channels, the input feature map consists of M convolution
kernels. After depth-wise convolution computation is com-
pleted, an M number of feature maps (equal to the number
of input channels) is output. Because the expected output
is an output feature map consisting of two output channels,
two 1 × 1 × M convolution kernels are employed to perform
pointwise convolution with the feature map output obtained
through depth-wise convolution. The practical computation
process is presented in Fig. 2.

2) QUANTIZATION
Symmetric quantization was employed to transform a
32-bit floating point number into an 8-bit fixed-point number
for computation, thereby reducing computing load by 75%.
In Eq. (4), s represents the scale factor, and F32 represents
pre-quantized values. Because the data type exhibits 8-bit
accuracy, D = 256. Finally, the dequantization process,
in which the quantized yQ value is divided by the scale factor
s to obtain the dequantization results, is conducted (Eq. (4)).
Fig. 3 illustrates the quantization and dequantization process.

yQ= round (clamp(−D/2,D/2 − 1, round (F32 × s))/s)
(4)

D. FEATURE AGGREGATION MODULE
RandLA-Net [21] is a high-efficiency and lightweight net-
work for large-scale point cloud segmentation. The network
employs random sampling to achieve highly efficient mem-
ory access and computation. The present study adopted a
local feature aggregation module to collect and preserve geo-
metric features. The design framework of the local feature
aggregation module is presented in Fig. 4. First, input point
cloud 3D coordinate signals were encoded. The local features
of the unit output were subsequently aggregated using atten-
tive pooling. Finally, FPConv was allowed to learn the matrix
parameters of the weight projection, and random sampling
was employed to increase computation speed.

Attentive pooling was conducted for the local feature point
set F̂i =

{
f̂ 1i . . .f̂ ki . . . f̂ Ki

}
. First, a common function g (·)

was designed to provide an independent attention score for
each learning point. Let ski = g

(
f̂ ii ,W

)
, andW represent the

learnable parameters of a shared MLP. Subsequently, learned
attention scores were used to form a soft mask that could
automatically select key features. The obtained features are
the sum of the neighboring characteristics (Eq. (5)).

f̂i =

K∑
k=1

(
f̂ Ki · ski

)
(5)

1. FPConv_Base local flattening by learning projection
weights: π (·) are N (p) dispersion points projected onto the
S point. The total signal function S(u) is obtained using
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FIGURE 2. Depth-wise Separable Convolution Operation.

FIGURE 3. Symmetric quantization and dequantization.

interpolation (Eq. (6)).

S (u) =

∑
i

w (u, π (qi)) S (π (qi)) (6)

Let S be anMw×Mh grid plane. For every grid S
(
vj

)
, where

{1, 2, . . . ,Mw ×Mh}, Eq. (7) and (8) are derived as follows:

S
(
vj

)
=

∑
ji

F (qi) (7)

wji = w
(
vj, π (qi)

)
(8)

Through the application of approximate discrete equations,
the equations are transformed into Eqs. (9), (10), and (11):

x (p) =

∫
S
C (u) S (u) du = Mc ∗

(
W T
f × F (p)

)
(9)

L = Mw ×Mh,AWf ∈ RN×L ,AWf (i, j) = w
(
vj, π (qi)

)
(10)

F (p) = (F (q1) , . . . ,F (qN ))T ∈ RN×C (11)

2. Farthest point sampling (FPS): Iteration FPS was per-
formed to down-sample point clouds. Relative to random
sampling, FPS covers an overall pointset more effectively
for a given number of centroids. The operation process of
FPConv with FPS is similar to that of merging operations,

therefore FPConv was applied to each point in the down-
sampled point cloud to search for the neighbours of each point
in the point cloud.

Fout (yi) = FPConv (F (Pneb)) (12)

E. NEURAL NETWORK ARCHITECTURE
The NN architecture proposed in the present study is pre-
sented in Fig. 5. First, point cloud data was input into the
proposed NN. N and D represent the number of points
and the feature dimension, respectively. Random sampling,
local feature aggregation module, and FPConv weight pro-
jection matrix were subsequently combined. The input point
cloud was subjected to continuous down-sampling in the
FPConv_Res with RS block to conserve computing resources
and data storage. Before random down-sampling, FPConv
was conducted to learn the corresponding weight projection
matrix. Because all modules in the network comprised feed-
forward MLPs that were simple and highly efficient, the
network provided high computation efficiency. Subsequently,
a novel network framework was constructed based on an
encoder-decoder structure, and trained feature values were
input into the last fully connected layer. This layer com-
puted the category classification probabilities of each point,
and the category with the highest probability was determined
as the classification result. Finally, nearest neighbour interpo-
lation was performed during decoder up-sampling to further
increase computation efficiency.

F. WINOGRAD CONVOLUTION ACCELERATOR
Because the proposed NN performs the multiplication accu-
mulation computation of numerous weights and the input
feature values, the process requires considerable memory
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FIGURE 4. Feature aggregation module.

FIGURE 5. Network architecture diagram.

and operation time. Therefore, the integration of an acceler-
ation operator into the hardware circuit framework is benefi-
cial. Accordingly, the architecture was designed to include
a Winograd convolution circuit that replaced the standard
convolution computing process and the separable convolution
computing process of FPConv. The Winograd convolution
accelerator performs a convolution in batches using tiling as
the unit and employs data reuse and pipeline frameworks to
increase computation speed. □
This section details the software algorithm design of

the 3D point cloud semantic segmentation system and fast
convolution design based on lightweight FPConv. Notably,
the algorithm framework can be divided into two sec-
tions. In the first section, FPConv was transformed into
depth-wise separable convolution, and symmetric quantiza-
tion was performed to lighten the model. In the second sec-
tion, point clouds were extracted from large-scale scenes,
randomly sampled, and input into a feature aggregation mod-
ule and the NN architecture to complete the semantic seg-
mentation of a large-scale scene. The results are presented
in Fig. 6.

IV. EXPERIMENT METHOD AND RESULTS
This section discusses the testing of the 3D point cloud
semantic segmentation system and fast convolution design
based on lightweight FPConv and the comparison of relevant
data.

TABLE 1. Data type.

A. EXPERIMENT ENVIRONMENT
NN training is highly complex and time-consuming. To effec-
tively increase training speed, GPU and high-capacity
memories were employed for parallel processing and com-
putation, respectively. The GPU comprised two NVIDIA
GeForce GTX 1080 Ti graphics cards. Through the use of
an Ubuntu 18.04 operating system environment, NN training
and simulation were conducted using the S3DIS 3-D point
cloud data set provided by Stanford. Finally, the 3D point
cloud class cation results were presented using Open3D. The
experiment simulation environment is presented in Table 2.

B. EXPERIMENT RESULTS
Currently, two methods can be used to perform NN training
and verification using the S3DIS dataset. Under the first
method, training is performed using Areas 1, 2, 3, 4, and 5,
after which verification is conducted using Area 5. Under the
second method, 6-fold cross-validation is performed. In the
present study, the first method is employed for training and
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FIGURE 6. (a) Original point cloud: Area5_Lobby1; (b) Semantic labeling:
Area5_Lobby1; (c) Semantic segmentation: Area5_Lobby1.

verification. The numeric distribution for each scene adopts
the list in the S3DIS dataset. The data of Area 5 is input into
the trained NN for verification, intending to distinguish each
object in the 3-D point cloud map by color (Table 3). Finally,
Open3D is adopted to visualize the classification results of
the 3-D point cloud map.

Because Area 5 consists of 68 different scenes, 10 different
large-scale scenes were randomly selected for verification.

TABLE 2. Experimental environment.

After color classification, the visualized results of the 3D
point cloud map are classified into points, labels, and pre-
dictions for comparison.

C. EXPERIMENT COMPARISON
To evaluate the accuracy of the semantic segmentation sys-
tem, numerous standards were employed to evaluate algo-
rithm accuracy. Therefore, before data comparison, a detailed
explanation must be provided on the standards used for result
evaluation, which are overall accuracy (oA), mean accuracy
(mAcc), and mean intersection over union (mIoU).

Let the number of classes be k + 1 (from L0−Lk , including
one void class or background). pij represents the number of
i-class pixels determined as a j-class pixel. Accordingly, pii,
pij, and pji represent true positives, false positives, and false
negatives, respectively.

oA is the simplest evaluation standard, and it is used to
evaluate overall model accuracy. In general, oA only calcu-
lates the number of points that are correctly classified and
divides this number by the total number of pixels (Eq. (13)).

oA =

∑k
i=0 pii∑k

i=0
∑k

j=0 pij
(13)

mAcc is an improved version of oA. This evaluation stan-
dard individually calculates classification accuracy and then
obtains a mean value (Eq. (14)).

mAcc =
1

k + 1

k∑
i=0

pii∑k
j=0 pij

(14)

mIoU is the most commonly used evaluation standard
in semantic segmentation. mIoU calculates the intersection-
over-union (IoU) ratio of two sets. In semantic segmentation,
these two sets represent the ground truth and predicted seg-
mentation. The IoU ratio can be rewritten as the true positives
divided by the sum of true positives, false negatives, and false
positives. The IoU of each class is first computed, and the
mIoU is then determined, (Eq. (15)).

mIoU =
1

k + 1

k∑
i=0

pii∑k
j=0 pij +

∑k
j=0 pji−pii

(15)

After the evaluation standards are introduced, a compari-
son of the proposed method and other point-based methods
was conducted. The present study compared the accuracy
of the proposed network with that of networks proposed
by other studies (Table 4). The x-axis presents the network
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FIGURE 7. (a) Original point cloud: Area5_Conference Room1; (b) Semantic labeling: Area5_Conference Room1; (c) Semantic segmentation:
Area5_Conference Room1; (d) Original point cloud: Area5_Conference Room2; (e) Semantic labeling: Area5_Conference Room2; (f) Semantic
segmentation: Area5_Conference Room2; (g) Original point cloud: Area5_Conference Room3; (h) Semantic labeling: Area5_Conference Room3;
(i) Semantic segmentation: Area5_Conference Room3; (j) Original point cloud: Area5_Hallway6; (k) Semantic labeling: Area5_Hallway6;
(l) Semantic segmentation: Area5_Hallway6; (m) Original point cloud: Area5_Hallway8; (n) Semantic labeling: Area5_Hallway8; (o) Semantic
segmentation: Area5_Hallway8.

models (comprising the proposed model and those proposed
by other studies), and the y-axis compares their accuracy.
Overall network accuracy was evaluated using mAcc and
mIoU. Notably, the oA, mAcc, and mIoU of the proposed
network were 86.8%, 67.2%, and 61.9%, respectively. The
proposed network exhibited outstanding accuracy relative to
PointNet, SegCloud, and SPGraph. In the mIoU compar-
ison (In TABLE 4), our proposed method (FP32) outper-
forms PointNet [13] by 21.30%, SegCloud [30] by 13.50%,
and SPGraph [19] by 4.40%. In the mAcc comparison (In

TABLE 4), the proposed method (FP32) is 19.50% better
than PointNet [13], 11.10% better than SegCloud [30], and
2.00% better than SPGraph [19]. This experiment proves that
our proposed method has good mIoU and mAcc with high
accuracy.

Subsequently, the object recognition accuracy level of the
proposed network and those of the networks proposed by
other studies were compared. Table 5 presents the comparison
results; the x-axis lists the compared network models, and the
y-axis compares the accuracy of the models in terms of their
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TABLE 3. Color table for each object category.

TABLE 4. Comparison of the accuracy.

TABLE 5. Comparison of object recognition accuracy.

ceiling–clutter object recognition performance for each scene
of Area 5. The proposed network sampled 4096 and 512 ran-
dom points, which had radii of 0.1, 0.4, and 1.6; the number
of random points sampled by the other networks was 8192,
2048, 512, and 128, and they had radii of 0.1, 0.2, 0.4, 0.8,
and 1.6. Table 5 reveals that after lightweight compression
(comprising quantization and depth-wise separate convolu-
tion) was performed, the proposed NN exhibited outstanding
recognition accuracy (relative to the networks proposed by
other studies) in terms of ceiling, floor, window, and board
recognition. Furthermore, the proposed NN maintained an
acceptable level of overall accuracy. In the comparison of
object recognition accuracy (In TABLE 5), our proposed
method is 19.88% better than PointNet [13], 11.98% better
than SegCloud [30], and 2.88% better than SPGraph [19].
This experiment proves that our method has high accuracy
in object recognition accuracy.

The recognition speed and portability of an NN are deter-
mined by model parameters and module sizes; specifically,
a lighter module has a higher network speed and smaller
module size but provides reduced overall network accuracy.
The proposed model is compared with the networks proposed
by other studies, which include PointNet [13], KPConv [22],
FPConv [23], and the lightened models that were discussed
in another study [31], namely SENet–PointNet, CBAM–
PointNet, LAM–PointNet, SENet–PointNet++, CBAM–
PointNet++, and LAM–PointNet++. The comparison
results are presented in Tables 6.

TABLE 6. Compare parameters and model size with other models.

In the comparison of the number of parameters, our pro-
posed method is only 42% of PointNet [13], 10.1% of
KPConv [22], 8.4% of FPConv [23], 36.6% of SENet-
PointNet [31], 36.3% of CBAM-PointNet [31], 42.6% of
LAM-PointNet [31], 74.2% of SENet-PointNet++ [31],
72.4% of CBAM-PointNet++ [31], and 87.5% of LAM-
PointNet++ [31]. In addition, in the comparison of module
size, our proposed method is only 60.44% of PointNet [13],
41.62% of KPConv [22], and 36.88% of FPConv [23]. The
above experiments can prove that the proposed Lightweight
FPConv algorithm can simplify the number of parameters and
module size, and achieve higher accuracy at the same time.

In TABLE 6, the number of parameters of the proposed
lightweight FPConv algorithm is 1.47M and the module size
is 24.6MB. However, the parameters of KPConv [22] are
14.5M and the module size is 59.1MB; the parameters of
FPConv [23] are 17.43M and the module size is 66.7MB.
It can be known from experiments that, in the comparison
of the number of parameters, the proposed method is only
10.1% of KPConv [22] and only 8.4% of FPConv [23]. In the
module size experiment, the proposed method is only 41.6%
of KPConv [22] and only 36.9% of FPConv [23].

To verify the performance of our proposed method,
we analyze the memory storage space and access speed
required by the parameters of our proposed network. Our
system uses Samsung double data rate fifth-generation syn-
chronous dynamic random-access memory (DDR5 SDRAM,
K4RAH086VB-BCQK) and operates at 4800 Mbps with a
supply voltage of 1.1V.

The memory size of the PointNet [13], KPConv [22], and
FPConv [23] methods require 14,000,000 bytes, 58,000,000
bytes, 69,720,000 bytes, and the access time is 23.3 msec,
96.7 msec, and 116.2 msec respectively. In addition, the
memory size of SENet-PointNet [31], CBAM-PointNet [31],
LAM-PointNet [31], SENet-PointNet++ [31], CBAM-
PointNet++ [31], and LAM-PointNet++ [31] schemes
requires 16,080,000 bytes, 16,200,000 bytes, 13,800,000
bytes, 7,920,000 bytes, 8,120,000 bytes, 6,720,000 bytes, the
access time is 26.8 msec, 27 msec, 23 msec, 13.2 msec,
11.5 msec respectively. However, our proposed method only
needs 5,880,000 bytes of memory size and the access time is
9.8 msec. In terms of memory usage of our proposed method,
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we only need 42% of PointNet [13], 10% of KPConv [22],
8% of FPConv [23], 37% of SENet-PointNet [31], CBAM -
36% of PointNet [31], 43% of LAM-PointNet [31], 74% of
SENet-PointNet++ [31], 72% of CBAM-PointNet++ [31],
88% of LAM-PointNet++ [31]. In terms of memory
access time analysis, our method is 2.38 times faster
than PointNet [13], 9.87 times faster than KPConv [22],
11.86 times faster than FPConv [23], and 2.73 times faster
than SENet-PointNet [31]. 2.76 times faster than CBAM-
PointNet [31], 2.35 times faster than LAM-PointNet [31],
1.35 times faster than SENet-PointNet++ [31], 1.38 times
faster than CBAM-PointNet++ [31], and faster than LAM-
PointNet++ [31]db@32 1.14 times faster. From this experi-
ment, we can know that our proposed architecture has a high
performance of high-speed parameter access. At the same
time, our method can save a lot of memory.

It can be seen from the above analysis that the proposed
lightweight FPConv algorithm sacrifices a little accuracy, but
greatly simplifies the operation parameters and module size.
The proposed approach provides a good solution for real-
time computing, high-speed computing, edge computing, and
portable consumer electronics for the 3D point cloud.

This section discusses the experiment results and compares
the experimental data obtained from the lightweight and
improved FPConv framework. The standards for each evalu-
ation system (comprising oA, mAcc, and mIoU) are detailed,
and the NN accuracy, object recognition accuracy of scenes
from Area 5, and the network parameters of the proposed
model are compared with those of models in the relevant
literature. The results revealed the excellent performance of
the proposed model.

V. CONCLUSION
The present study proposed a 3D point cloud semantic
segmentation system and fast convolution design based on
lightweight FPConv. It is mainly designed and improved for
the characteristics of large-scale NNs with highly accurate,
but high computation complexity and low portability. The
proposed method combines depth-wise separate convolu-
tion, quantization, and Winograd convolution technology to
lighten and accelerate NN computation. In the present study,
RandLA-Net was combined with FPConv, and MobileNet
was employed for depth-wise separate convolution and quan-
tization to accelerate convolution computation without a
considerable reduction of neural network accuracy. Subse-
quently, a large-scale scene database provided by Stanford
3D AI Lab, S3DIS [29], was used to verify the designed
NN. After comparing the designed NN with those proposed
by relevant studies, the results revealed that despite the
implementation of lightening compression, the proposed NN
achieved satisfactory recognition rates. Additionally, the pro-
posed NNmaintained an acceptable level of overall accuracy.
Our proposed method (FP32) outperforms PointNet [13] by
21.30% in the mIoU comparison. In the mAcc comparison,
the proposed method (FP32) is 19.50% better than Point-
Net [13]. Besides, in the comparison of object recognition

accuracy, our proposed method is 19.88% better than Point-
Net [13]. In addition, the proposed method is only 10.1% of
KPConv [22] and only 8.4% of FPConv [23] in the compar-
ison of the number of parameters. In the module size exper-
iment, the proposed method is only 41.6% of KPConv [22]
and only 36.9% of FPConv [23]. In terms of memory usage
of our proposed method, we only need 42% of PointNet [13],
10% of KPConv [22], and 8% of FPConv [23]. In terms
of memory access time analysis, our method is 2.38 times
faster than PointNet [13], 9.87 times faster than KPConv [22],
and 11.86 times faster than FPConv [23]. A series of experi-
ments prove that our proposed lightweight FPConv algorithm
greatly simplifies the operation parameters and module size,
speeds up parameter access, saves a lot of memory, performs
high-speed computing, and achieves a highly efficient 3D
Point Cloud Semantic Segmentation System for portable con-
sumer electronics applications.
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