
Received 28 February 2023, accepted 19 March 2023, date of publication 28 March 2023, date of current version 4 April 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3262600

An Improved Black Widow Optimization
Algorithm for Engineering Constrained
Optimization Problems
DONGXING XU AND JIANCHUAN YIN
Naval Architecture and Shipping College, Guangdong Ocean University, Zhanjiang 524088, China
Guangdong Provincial Engineering Research Center for Ship Intelligence and Safety, Zhanjiang 524088, China

Corresponding author: Jianchuan Yin (yinjianchuan@gdou.edu.cn)

This work was supported in part by the National Natural Science Foundation of P. R. China under Grant 52271361 and Grant 52231014.

ABSTRACT In solving engineering constrained optimization problems, the conventional black widow opti-
mization algorithm (BWOA) has some shortcomings such as insufficient robustness and slow convergence
speed. Therefore, an improved black widow optimization algorithm (IBWOA) is proposed by combining
methods of double chaotic map, Cauchy center of gravity inverse difference mutation and golden sine
guidance strategy. Firstly, the quality of the initial population of the BWOA is improved based on the double
chaotic map; Secondly, in order to make full use of the difference information between the current and the
optimal position thus improve optimization accuracy, the golden sine algorithm (Gold-SA) is introduced
to update the position of the black widow individuals; Finally, the Cauchy barycenter reverse differential
mutation operator is employed to increase the diversity of the population, avoid local optimization thus
improve the global search ability of the algorithm. In addition, the global convergence characteristics of the
IBWOA are analyzed based on theMarkov process and the convergence probability reaches 1 for the globally
optimal solution. The performance of the proposed IBWOA was evaluated based on eight continuous
/ discrete hybrid engineering optimization problems and typical benchmark functions. The results show
that the improved BWOA can improve the search accuracy, convergence speed and robustness effectively
comparing with some other conventional optimization algorithms.

INDEX TERMS Black widow optimization algorithm, double chaotic map, golden sine algorithm (Gold-
SA), Cauchy barycentric reverse difference mutation operator, Markov chain, engineering optimization.

I. INTRODUCTION
In the field of real-world engineering technology, many
practical problems can be casted as constrained optimiza-
tion problems. Optimization is designed for solving real-
world engineering optimization problems, such as optimal
allocation of resources, job shop scheduling, systems with
the largest profits, and the design of complex engineering
systems that meet a set of constraints, etc. [1], [2], [3].
Algorithms for solving complex engineering optimization
problems can be divided into two categories: (1) deterministic
algorithms, such as steepest descent method, Newton method
and variable metric method, etc.; (2) non-deterministic algo-
rithms, such as particle swarm optimization, genetic algo-
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rithm, ant colony algorithm, etc. In real-world engineering
applications, almost all engineering problems contain nonlin-
earity and complex constraints. The objective function is usu-
ally discontinuous and non-differentiable. The deterministic
algorithms cannot ensure to find the optimal solution. For the
non-deterministic algorithms, it does not require the objective
function and constraint to be differentiable, and can obtain
the optimal solution with a high probability [4]. It avoids
the inherent defects of traditional numerical deterministic
optimizationmethods for solving complex optimization prob-
lems.

Meta-heuristic algorithms are a kind of non-deterministic
algorithms. Meta-heuristic algorithms are simple and flex-
ible. They have no derivation mechanism but possess the
ability to avoid local optimization. They can directly operate
on structural objects without the constraints of derivation
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and functional continuity. They can obtain the optimal solu-
tion with a high probability. Therefore, many algorithms
have been employed for solving engineering constrained
optimization problems, such as golden jackal optimization
algorithm [5], alpine skiing optimization [6], niche chimp
optimization algorithm [7], novel equilibrium optimizer of
Lévy flight and iterative cosine operator [8], improved chaotic
Harris hawks optimizer [9], boosting sparrow search algo-
rithm [10], etc.

Since the 1970s, a great variety of natural inspired
optimization approaches, like swarm intelligent algo-
rithms, have been widely used in the field of nat-
ural scientific and engineering constrained optimiza-
tion [11], [12], [13], [14], [15], [16], [17], [18], [19], [20].
Meta-heuristic algorithms mainly fall into two categories:
(1) optimization algorithms that imitate the evolutionary
characteristics and living habits of biological systems, such as
genetic algorithm (GA) [21], differential evolution algorithm
(DE) [22], particle swarm optimization algorithm (PSO) [23],
grey wolf optimization algorithm (GWO) [24], moth-flame
optimization algorithm (MFO) [25], seagull optimization
algorithm (SOA) [26], beetle swarm optimization algorithm
(BSO) [27], whale optimization algorithm (WOA) [28], tuni-
cate swarm algorithm (TSA) [29], grasshopper optimiza-
tion algorithm (GOA) [30], ant colony optimization algo-
rithm (ACO) [31], salp swarm algorithm (SSA) [32], drag-
onfly algorithm (DA) [33], coyote optimization algorithm
(COA) [34], bat-inspired algorithm(BA) [35], artificial bee
colony optimization algorithm (ABC) [36], shuffled frog
leaping algorithm (SFL) [37], and lion swarm optimization
(LSO) [38], etc.; (2) optimization algorithms inspired by
different physical laws and plant growth laws, such as arti-
ficial algae algorithm (AAA) [39], flower pollination algo-
rithm(FPA) [40], simulated annealing algorithm(SA) [41],
gravitational search algorithm(GSA) [42], central force opti-
mization algorithm (CFO) [43], electromagnetism-likemech-
anism algorithm(EM) [44], artificial physics optimization
algorithm(APO) [45], transient search optimization algo-
rithm (TSO) [46] and atom search optimization algorithm
(ASO) [47].

In addition, the meta-heuristic algorithms based on swarm
intelligence strategy is more exploratory, when compared
with the algorithms based on a single solution (e.g., Sim-
ulated Annealing Algorithm [41], Beetle Antennae Search
Algorithm [48], etc.). Multiple search individuals can share
information about the search space to avoid falling into a
local optimization solution. In addition, the search process
of meta-heuristic algorithms can be divided into two stages:
exploration stage and exploitation stage [49]. The exploration
stage refers to the exploring of possible areas in the search
space as widely as possible. The exploitation stage refers
to the local search about the possible areas identified in the
exploration stage.

In order to achieve the balance between explo-
ration and exploitation and improve the search abil-

ity of the algorithms, the improved optimization algo-
rithms based on different hybrid strategies were proposed
[50], [51], [52], [53], [54], [55]. The meta-heuristics algo-
rithms with hybrid strategies can achieve the balance between
exploration and exploitation [56]. From another point of view,
individuals realize exploration and exploitation through three
steps in each iteration: social cooperation, self-adaptation and
competition [57]. The model parameters are generally deter-
mined by experience. Convergence depends on the model
parameters. Therefore, the convergence study is crucial in
meta-heuristic algorithms. The commonly used methods for
convergence analysis of meta-heuristic algorithms include
Markov chain, martingale theory [58] and stochastic func-
tional theory [59]. Markov theory is a stochastic process of
universal significance, which has been applied to algorithms
of particle swarm optimization [60], artificial bee colony [61],
chicken swarm [62], bat algorithm [63] and multivariant
optimization [64].

Inspired by the different action strategies of spiders dur-
ing courtship, A. F. Peña-Delgado, et al. [65] proposed
black widow optimization algorithm (BWOA), a novel meta-
heuristic optimization algorithm with compact structure. It is
used to solve selective harmonic elimination (SHE) equa-
tions. The optimization results show that BWOA is reli-
able and competitive comparing with other meta-heuristic
algorithms [65]. However, its application in other fields is
rarely reported. There’s no optimization algorithm which is
suitable for all optimization problems [66]. In other words,
a specific meta-heuristic algorithm may achieve ideal results
on one set of problems, while may perform unsatisfactory
on another set of problems. The development of new meta-
heuristic optimization algorithms is still a research hotspot.
Although many meta-heuristic algorithms have been pro-
posed, the improvement of their performance is still a chal-
lenging task. Like other meta- heuristic algorithms, BWOA
also has the defects of insufficient robustness and low conver-
gence speed in solving engineering constrained optimization
problems [67].

Following this trend, the conventional BWOA is improved
and the key contributions of the resulted improved BWOA
(IBWOA) can be defined as follows: 1) the quality of the
initial population of the IBWOA is improved by the double
chaotic map; 2) the golden sine guidance strategy is employed
to improve the position updating mode of IBWOA; 3) the
Cauchy barycenter reverse differential mutation operator is
used to improve the diversity of the population and improve
the global search ability of the algorithm; 4) the global con-
vergence characteristics of the IBWOA are analyzed based on
Markov process. The convergence probability of 1 is achieved
for the globally optimal solution.

The experiments of eight continuous / discrete mixed engi-
neering optimization problems (e.g., pressure vessel design,
welding beam design, tension/compression spring design,
etc.) have been conducted and the performance of IBWOA
has been evaluated and analyzed.

VOLUME 11, 2023 32477



D. Xu, J. Yin: IBWOA for Engineering Constrained Optimization Problems

The rest of this paper is organized as follows. Section II
gives brief definition of constrained optimization problems.
The basic concepts and principles of BWOA are described
in Section III. The improved BWOA with hybrid strategies
is proposed in Section IV. Section V discusses the global
convergence characteristics of IBWOA based on the Markov
process. Section VI presents the experimental results of typi-
cal benchmark functions and engineering optimization prob-
lems. Finally, Section VII concludes the study and provides
the future direction.

II. CONSTRAINED OPTIMIZATION PROBLEMS AND
RELATED DESCRIPTIONS
Constrained optimization problems (COPs) can generally be
described as follows [68], [69], [70]:

min
X∈�

f (X )X = (x1, x2, · · · xm)

s.t.


gi(X ) ≤ 0 i = 1, 2, · · · , n
hj(X ) = 0 j = 1, 2, · · · , q
x lowerk ≤ xk ≤ xupk k = 1, 2, · · ·m

(1)

where f (X ) is the objective function; X ⊂ � ⊆ S, X is the
solution vector, and S is an m-dimensional rectangle space in
Rm defined by the parametric constraints; � is the feasible
regions which is expressed as:

�=
{
X |gi(X ) ≤ 0,i = 1, 2, · · · , n; hj(X )= 0, j= 1, 2,· · · , q

}
where gi(X ) and hj(X ) are inequality constraints and equality
constraints respectively; x lowerk and xupk are the upper and
lower bounds of xk respectively.
The main purpose of constrained optimization is to search

the optimal feasible solution under specific constraints.Meta-
heuristic algorithm is a global optimization method, which
can solve unconstrained optimization problems. Therefore,
it is necessary to use constraint processing technology to
transform constrained optimization into unconstrained prob-
lems. At present, commonly used constraint processing tech-
nologies include: (1) penalty functions, (2) multi-objective
methods, (3) special representations and operators, (4) repair
algorithms, (5) separation of objectives and constraints, (6)
hybrid methods [68]. In this paper, penalty function method
is used to transform constrained optimization into uncon-
strained optimization problem. The expression equation is as
follows:

F(X ) = f (X ) + P(X )

s.t.P(X ) =

n∑
i=1

αi × max(0, gi(X ))

+

q∑
j=1

ρj × max(0,
∣∣hj(X )∣∣ − ζ ) (2)

where F(X ) is the fitness function; P(X ) is the penalty term
for violating the constraint conditions; αi and ρj are the
constraint penalty factors respectively; and ζ is the positive
tolerance value.

III. THE STANDARD BLACK WIDOW OPTIMIZATION
ALGORITHM
The black widow spider is a poisonous spider found from
western Canada to southern Mexico. Because only female
ones of the type are poisonous, it was named ‘‘black widow’’.
Spiders of this type feed on insects such as cockroaches, bee-
tles and butterflies. They weave webs among trees and inhabit
forests and swamps. Male spiders judge the mating status of
females by sex pheromones. Because females perform can-
nibalism, males are not interested in hungry or malnourished
females. In the conventional BWOA, mathematical models
of individual position updating are established depending
on different courting strategies and sex pheromone rates of
spiders. The standard BWOA algorithm is as follows.

A. MOVEMENT BEHAVIOR
The courtship behavior of black widow spiders on their
webs is modeled as linear and spiral movement behavior,
as described in Eq. (3):

x⃗i(t + 1) =

{
x⃗∗(t) − mx⃗r1 (t) if rand ≤ 0.3
x⃗∗(t) − cos(2πβ)x⃗i(t) in other case

(3)

where x⃗i(t+1) is the new position of the i-th spider, indicating
the movement of the i-th spider; x⃗∗(t) represents the best
search individual in the last iteration; variablem is a floating-
point number randomly generated in the interval [0.4, 0.9];
r1 is a random integer generated in the range [1, PopSize];
x⃗r1 (t) represents the r1 search individual selected, and i ̸=

r1;β is defined as a random float number in the interval
[−1.0, 1.0]; x⃗i(t) represents the current search individual;
P opSize represents the size of the search agent population;
Furthermore, parameters m and β can enable the algorithm
to achieve better exploration and exploitation in the iterative
process [65].

B. PHEROMONE
Pheromone plays a very important role in the courtship pro-
cess of black widow spiders. In order to avoid the risk of
mating with female spiders who may be hungry, male spiders
prefer to avoid cannibalism rather than look for more fertile
female spiders. male spiders do not like female spiders with a
low pheromone content. In this study, the pheromone content
value of black widow spiders is defined in Eq. (4) [65]:

pheromone(i) =
fitnessmax − fitness(i)
fitnessmax − fitnessmin

(4)

where fitnessmax and fitnessmin are the best and worst fitness
values (fitness refers to fitness function values) in the current
iteration respectively; fitness(i) is the current fitness value
of the i-th spider. The pheromone vector is the normalized
fitness value in the interval [0,1].

Female spiders with low pheromone levels represent hun-
gry cannibals. If these female spiders exist, they will not be
selected, but will be replaced by another one. Therefore, if a
pheromone value is equal to or less than 0.3, the spiders’
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TABLE 1. The pseudocode of the standard BWOA.

strategy can be expressed in Eq. (5):

x⃗i(t) = x⃗∗(t) +
1
2
[x⃗r1 (t) − (−1)σ ∗ x⃗r2 (t)] (5)

where x⃗i(t) is the updated position of the i-th spider with a low
pheromone content; x⃗∗(t) represents the optimal position of
the population in the last iteration; r1 and r2 are random inte-
gers in the interval [1, PopSize], and r1 ̸= r2;x⃗r1 (t) and x⃗r2(t)
represent the selected individuals r1 and r2 respectively; σ is
{0,1} binary random number. To sum up, BWOA can obtain
competitive results with low optimization parameters [65].
The implementation process is shown in Table 1.

IV. THE IMPROVED BLACK WIDOW OPTIMIZATION
ALGORITHM
In view of the shortcomings of the above standard BWOA,
such as insufficient robustness and slow convergence speed,
an improved BWOA is proposed. The latter incorporates
double chaotic map, golden sine search strategy and Cauchy
barycenter reverse differential mutation operator, which can
effectively avoid the premature convergence of the original
BWOA and consequently improve the optimization level of
the algorithm.

A. POPULATION INITIALIZATION THROUGH DOUBLE
CHAOTIC MAP
The initial diversity of the population can effectively expand
the search range of the algorithm and improve the opti-
mization level and convergence speed of the algorithm [71],

FIGURE 1. Bifurcation diagram and sequence distribution of chaotic map.

[72]. In the standard BWOA, the random initial popula-
tion position would cause the uneven position distribution
of black widows, which will affect the development ability
of the algorithm. Chaotic motion map can trace all stages
through a process without repetition in a certain range, so it
has the strengths of randomness, regularity and ergodicity,
and can effectively make up for the defects of a random
initialization method [73], [74]. At present, many scholars
apply conventional chaotic map models like logistic map and
sine map to the population initialization of the optimization
algorithm, thus avoiding the shortcomings of random popu-
lation initialization and speeding up the convergence of the
algorithm [75], [76]. It can be seen from Fig. 1 that the
value frequency is not homogenous over the range [0,1] for
logistic and sine maps. The nonuniform traversal of logistic
map or sine map will reduce the optimization efficiency
of the algorithm. It is unfavorable to identify the optimal
position, especially when the global optimal position is not
at either end of the search range. Therefore, a new double
chaotic map strategy is adopted [77], which is modeled by
Eq. (6). It can be seen from Fig. 1 that the initial particles
generated through double chaotic map have better diversity
and are more evenly distributed in the search space, which
can improve the optimization efficiency of the algorithm.

xk+1 = u · xk (1 − xk )

yk+1 =
ω

4
sin(π · yk )

zk+1 = mod(xk+1 + yk+1, 1)

(6)

where xk , yk and zk comprise the k-th chaotic number; ω ∈

(0, 4] and u = 4, and mod () is the remainder function.
Because 0, 0.25, 0.5, 0.75, and 1 are breakpoints in the defini-
tion domain, these values are not processed during mapping.
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Therefore, x, y, z ∈ (0, 1), x0 /∈ {0, 0.25, 0.5, 0.75, 1}. The
initial position of a black widow individual is indicated by
{zk+1} through linear transformation, as shown in Eq. (7).

x⃗i = lbi + (ubi − lbi) × zk+1 (7)

where ubi and lbi are the upper and lower boundaries of the
search space respectively.

B. THE GOLDEN SINE GUIDANCE STRATEGY
In order to make full use of the difference information
between the spider and the optimal position to gradually
approach the optimal solution, the golden sine guidance strat-
egy is introduced to avoid the premature convergence of the
original algorithm thus improve the optimization efficiency
of the algorithm. The movement of spiders on their web is
divided into linear movement and spiral movement. After
obtaining information from a possible mate, a black spider
moves to the best position x⃗∗(t) through spiral movement. The
optimal position is the guiding coordinates in the process of
spiral motion.

Although it can accelerate the convergence speed of the
optimization algorithm at later stages, this strategy tends to
make the spider individuals gather rapidly in the search space.
It will result in the reduction of population diversity. The
probability of falling into local optimization will increase
significantly. Therefore, this paper introduces the golden sine
algorithm (Golden-SA) to improve spiders’ movement strat-
egy. Comparedwith other meta-heuristic algorithms, Golden-
SA uses the golden section coefficient in the process of
location updating to explore a search space [78]. It improves
the optimization accuracy.

The golden sine search strategy is expressed as fol-
lows [78]:


x t+1
i =x ti × |sin(R1)|+ R2 × sin(R1) ×

∣∣λ1 × Pt∗− λ2 × x ti
∣∣

λ1= a+ (1 − τ ) × b
λ2= (1 − τ ) × a+ τ × b
τ =

√
5 − 1/2

(8)

wherePt∗ is the historical best position and x
t
i is the position of

the i-th individual at the t-th iteration; R1 and R2 are random
numbers; Moreover, R1 ∈ [0, 2π ] indicates the distance that
the i-th individual moves, while R2 ∈ [0, π] indicates the
direction of the i-th individual’s position updating; τ is the
golden section number. In Gold-SA, initial default values for
a and b are considered to be −π and π , respectively. λ1 and
λ2 are two coefficients obtained after introducing the golden
section coefficient. The values of λ1 and λ2 are updated as the
objective function value changes. These coefficients narrow
the search space and allow the current value to approach
the target value. After incorporating the golden sine search
algorithm, the position updating equation of the black widow

spider during its movement on the web is as follows:

x⃗i(t + 1)


x⃗∗(t) − mx⃗r1 (t) if rand ≤ 0.3
⇀x i(t) × |sin(R1)| + R2 × sin(R1) × · · ·

|λ1 × x⃗∗(t) − λ2 × x⃗i(t)| in other cases

(9)

It can be seen from Eq. (9) that when i-th spider moves to
the prospective mate’s position on the web, it will exchange
information with the optimal individual every time the posi-
tion is updated. Each spider individual can fully appreciate
the difference between itself and the optimal individual.

In addition, the distance and direction of the spider individ-
ual’s movement can be controlled by adjusting parametersR1,
R2, λ1 and λ2. The search space can be gradually reduced.
The convergence speed and optimization efficiency of the
algorithm can be improved significantly [78].

C. CAUCHY BARYCENTER REVERSE DIFFERENTIAL
MUTATION OPERATOR
The population diversity in the BWOA will decrease sharply
at each later stage of iteration. In order to improve the popu-
lation diversity, expand the search space and prevent the algo-
rithm falling into local optimization, this paper introduces the
Cauchy barycenter reverse differential mutation strategy to
generate mutated spiders. The reverse mutation of center of
gravity [79] is expressed like this: Let (x1j, x2j, ..., xNj) be
the value of N spiders in the j-th dimension, the number of
the population be N and the number of the dimensions be D.
Then the center of gravity of the spider population in the j-th
dimension is described by Eq. (10). The center of gravity of
the population is Zg = (Z1, Z2, . . . , Zj,. . . , ZD).

Zj =
x1j + x2j + · · · + xNj

N
(10)

Let the position of the i-th spider xi = (xi1, xi2,. . . , xij, . . . ,
xiD), then the reverse solution of the center of gravity of the
j-th dimension corresponding to the i-th spider is as follows:

xoj = 2 ∗ cauchy(0, 1) ∗ Zj − xij (11)

In Eq. (11), in order to prevent the reverse solution from
expressing any other individuals and thus affecting the con-
vergence speed of the algorithm, the dynamic coefficient con-
forming to the standard Cauchy distribution{Cauchy (0,1)}
is introduced. The introduction of the Cauchy mutation can
effectively avoid position repetition, expand the search space
and make the algorithm obtain a stronger global exploration
ability. The differential mutation operator is the core of the
differential evolution algorithm, which iterates through pro-
cesses of mutation, crossover and selection [22], [80]. The
weighted sum of the difference between any two individual
vectors randomly selected in the search space and the individ-
ual vector randomly selected by the third individual indicates
population mutation. The mutated individual is expressed as
follows:

xnew_i = xr1 + F · (xr2 − xr3) (12)
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where F is the scaling factor; the individual index is the
integer of new_i ̸= r1 ̸= r2 ̸= r3 ∈ [1,PopSize]; xr1
and xr2 − xr3 are the basis vector and the difference vector
respectively.

The Cauchy reverse mutation of the center of gravity can
maintain the diversity of the population. At the early stage
of the iteration, the differences between the individuals of
the population are large, and the mutated spider can expand
the exploration space. At the later stages of the iteration, the
generation of mutated spiders can maintain the diversity of
the population. In addition, the differential evolution algo-
rithm takes the difference between two randomly selected
individuals as the difference vector, but ignores the direction
of the difference vector. Consequently, although the differen-
tial mutation operator can improve the search ability of the
algorithm to a certain extent, the algorithm tends to fall into
local optimality at the later stages of the iteration.

Therefore, combining the advantages of the above two
mutation strategies, a new mutation operator is employed
which is referred to as Cauchy barycenter reverse differential
mutation operator, with the mutated spider near the center
of gravity of the contemporary population. The mutation
operator is shown in Eq. (13):

Xnew = Zg + F∗(Xm2 − Xworst ) + F∗(Xbest − Xm1 ) (13)

where Zg is the center of gravity of the population; F is the
scaling factor, randomly generated in the interval [2, 0]. The
two randomly selected individuals and their reverse individ-
uals are sorted according to their fitness value from good
to bad as Xbest , Xm1 , Xm2 and Xworst . Equation (13) shows
that its expression is related to the fitness value of the four
selected individuals for each mutated spider, starting from the
center of gravity of the population andmoving in the direction
of the optimal individual Xbest . The strategy of barycenter
reverse learning can bring about a reverse solution far from
local extreme points, increase the diversity of the population,
and thus improve the searching ability of the algorithm and
prevent its falling into local optimization. The set of the
difference vector is toward Xbest . The new mutation operator
(Cauchy barycenter reverse differential mutation strategy) is
therefore not only of randomness, but also gives guidance.
When the new hybrid strategies are employed to the algo-
rithm for engineering constrained optimization problems,
the IBWOA has a fast convergence speed, and can balance
global exploration and local exploitation satisfactorily. The
pseudocode of the implementation process of the IBWOA is
shown in Table 2.

D. THE TIME COMPLEXITY OF THE IMPROVED BLACK
WIDOW OPTIMIZATION ALGORITHM
Without losing generality, let f be any optimization problem
and assume that O(f) is the time complexity involved in
calculating relevant functional values. Therefore, the time
complexity of the BWOA is notated as O(tMax × nSp×f).
For the IBWOA, there is no new loops nested. According to
the multiplication principle and the addition principle of time

TABLE 2. The pseudocode of the improved BWOA.

complexity, the time complexity of the IBWOA is O(tMax ×

nSp × nDE×f), where tMax is the maximum number of itera-
tions and nSp is the number of spiders (population size), nDE is
the number of the optimization problem evaluations when the
Cauchy barycenter reverse differential mutation operator is
executed. The complexity slightly increases comparing with
that of the original algorithm. However, the search accuracy,
convergence speed and robustness of the algorithm are greatly
improved.

E. THE SPACE COMPLEXITY
The space complexity of the IBWOA is the maximum space
considered in the initialization process to be used at any
time. Therefore, the total space complexity of the IBWOA is
O(nSp×dim), where dim is the dimension of the optimization
problem.

V. CONVERGENCE ANALYSIS OF THE IMPROVED BLACK
WIDOW OPTIMIZATION ALGORITHM
In this paper, Markov process is used to analyze the con-
vergence of IBWOA [64]. According to the pseudocode of
the IBWOA, the current state of an individual is related not
only to its state at the previous time, but also to the state
of the whole population. Therefore, the transfer of a single
individual does not conform to theMarkov process. However,
the transformation process of the state of the whole popu-
lation is related only to the current state of the population.
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Therefore, the transfer process of the population is a Markov
process [81]. Because the number of the population and the
number of the states of the whole population in the IBWOA
are limited in a discrete space, the population sequence is
a finite Markov chain. Moreover, the IBWOA adopts the
elite retention strategy, so its corresponding Markov process
is an absorbing Markov process. In the IBWOA, the space
defined by the positions of all black widow individuals is
notated as D, and the position of black widow individuals is
represented by X , X ∈ D. The state space of Markov chain
is G, and the number of the dimensions in the state space is
L, L = |G| = |D|

N . The set of black widow states at the t-th
iteration is expressed as

Q(t) = (X1(t),X2(t), . . . ,XN (t)) (14)

where Xi(t) ∈ D, N is the number of black widow individuals
in the group with N < ∞.
Definition 1: The global optimal solution set of the opti-

mization problem is

G∗
= {X∗

|∀X ̸= X∗, f (X ) > f (X∗)} (15)

and letG(Q(t)) = |Q(t)∩G∗
| represent the numberof optimal

solutions contained in the black widow population.
Definition If lim

t→∞
P(G(Q(t)) > 0|Q(0) = Q0) = 1 exists

for any initial state Q0, the algorithm converges to the global
optimal solution with a probability of 1.
Theorem 1: The number of optimal solutions in the black

widow population is monotonic and non-decreasing. That is,
for any ∀t ≥ 0, there is

lim
t→∞

P(G(Q(t + 1)) < m|G(Q(t) = m)) = 0,m ≥ 0 (16)

Proof: Because the BWOA adopts the optimization preserv-
ing technique, the optimal black widow position is reserved.
Therefore, the optimal solution of the old black widow pop-
ulation cannot be eliminated in the new population. That is,
when the number of optimal solutions in the population is
m ≥ 0 at the t-th iteration, the probability that the number of
optimal solutions in the population is less than m is 0 at the
(t + 1)-th iteration.
Theorem 2: The IBWOA may find the global optimal

solution at any time. That is,

P(G(Q(t + 1)) > 0|G(Q(t) = 0)) > 0, ∀t ≥ 0 (17)

Proof: According to the search strategy of the IBWOA, the
black widow population is generated by the moving behavior
of black widows, the behavior of avoiding cannibalism and
Cauchy barycenter reverse differential mutation strategy in
the search space. Therefore, the probability that the black
widow individual is any possible solution at any time is not
equal to 0, the probability that the black widow individual
is the global optimal solution at any time is not equal to 0.
Therefore, when the number of optimal solutions in the old
population is equal to 0, the probability that the number of
optimal solutions in the new population is not equal to 0 is
greater than 0.

Theorem 3: After the Cauchy barycenter reverse differen-
tial mutation strategy, the IBWOA that retains the optimal
solution in each generation converges to the global optimal
solution with a probability of 1. That is,

lim
t→∞

P(G(Q(t)) > 0) = 1 (18)

Proof: Let the probability that the number of optimal solu-
tions in the population is i at t-th iteration be

Pi(t) = P(G(Q(t)) = i)

According to Bayesian conditional probability formula:

P0(t + 1) = P(G(Q(t + 1)) = 0|G(Q(t)) = 0)

× P(G(Q(t)) = 0) + P(G(Q(t)) ̸= 0)

× P(G(Q(t + 1)) = 0|G(Q(t)) ̸= 0) (19)

According to Theorem 1:

P(G(Q(t + 1)) = 0|G(Q(t)) ̸= 0) = 0(20)

⇒ P0(t + 1) = P(G(Q(t + 1))

= 0|G(Q(t)) = 0) × P0(t) (20)

According to Theorem 2:

P(G(Q(t + 1)) > 0|G(Q(t)) = 0) > 0 (21)

Let:

ζ = min(P(G(Q(t + 1)) > 0|G(Q(t)) = 0)),

That is,

0 < ζ ≤ P(G(Q(t + 1)) > 0|G(Q(t)) = 0) ≤ 1

⇒ P(G(Q(t + 1)) = 0|G(Q(t)) = 0)

= 1 − P(G(Q(t + 1)) ̸= 0|G(Q(t)) = 0)

= 1 − P(G(Q(t + 1)) > 0|G(Q(t)) = 0)

≤ 1 − ζ < 1(t = 0, 1, · · · )

⇒ P0(t + 1) ≤ (1 − ζ )P0(t) ≤ · · · ≤ (1 − ζ )t+1P0(0)
(22)

Therefore, when t tends to infinity, it can be concluded that:

0 ≤ P0(t + 1) ≤ (1 − ζ )t+1P0(0) = 0

⇒ lim
t→∞

P0(t − 1) = 0

It can be seen from the above:

lim
t→∞

P(G(Q(t + 1)) > 0) = 1 − lim
t→∞

P(G(Q(t + 1)) = 0)

= 1 − lim
t→∞

P0(t + 1) = 1

⇒ lim
t→∞

P(G(Q(t)) > 0) = 1

(23)

That is, as time tends to infinity, IBWOA algorithm can
search for the global optimal solution with a probability of
1, and the theorem is proved.
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TABLE 3. Optimization results of typical benchmark functions.

VI. EXPERIMENT OF ENGINEERING CONSTRAINED
OPTIMIZATION PROBLEMS
A. TYPICAL BENCHMARK FUNCTIONS
In order to verify the effectiveness and advantage of the
IBWOA, typical benchmark functions of Step Function and
Generalized Penalized Function, are selected respectively
[54]. Step Function is single-mode function, which can eval-
uate the exploitation ability of the algorithm. Generalized
Penalized Function is multi-mode function, which can evalu-
ate the exploration ability of the algorithm. The equations are
as follows.

1)Step Function(F1):

F1(x) =

∑n

i=1
(xi + 0.5)2 (24)

where dimension is 30, variable range is [−100, 100], and
optimal value is zero.

2) Generalized Penalized Function(F2):

F2(x) =
π

n
{10 sin(πy1) +

n−1∑
i=1

(yi − 1)2[1 + 10 sin2(πyi+1)]

+ (yn − 1)2} +

∑n

i=1
u(xi, 10, 100, 4)

yi = 1 +
xi + 4
4

, u(xi, a, k,m) =


k(xi − a)mxi > a
0 a > xi > −a
k(−xi − a)mxi < a

(25)

where dimension is 30, variable range is [−50, 50], and
optimal value is zero.

The simulation results of the IBWOA are compared with
those of the dragonfly algorithm (DA) [33], moth-flame
optimization algorithm (MFO) [25], sine cosine algorithm
(SCA) [82] and BWOA [65]. The population size of each
algorithm was set at 30, the maximum number of iterations
was 500. Other parameters were set at the default values of the
algorithms. In order to avoid the contingency of optimization
results, each benchmark function was run on each algorithm
for 30 times.

The worst, best,and mean objective function values, and
the standard deviation (Std) for each test problem are des-
ignated to be the evaluation index to verify convergence
accuracy and robustness for the IBWOA. It is shown in
Table 3 that the values obtained from the IBWOA outperform
the DA, MFO, SCA and BWO results regarding the worst,
best, and mean values and the standard deviation for the
single-mode functions F1(Step Function) and the multi-mode
functions F2(Generalized Penalized Function). It can be seen
from Fig. 2 that the convergence curve of IBWOA decreases
faster than the other algorithms. It shows that IBWOA outper-
forms the DA, MFO, SCA and BWO regarding convergence
speed and optimization ability. Therefore, when optimizing
single-mode and multi-mode functions, IBWOA has better
performance in terms of convergence accuracy, convergence
speed and robustness.

B. ENGINEERING CONSTRAINED OPTIMIZATION
PROBLEMS
In this paper, the IBWOA is used to solve the optimiza-
tion design problems in real-world engineering [5], [83].
Moreover, the results are compared with those given by
butterfly optimization algorithm(BOA) [84], transient search
optimization (TSO) [46], dragonfly algorithm(DA) [33] and
BWOA [65]. It further shows the superiority of the IBWOA
in solving real-world engineering problems. Each algorithm
runs for 30 times independently and the number of iterations
is 300. All algorithm parameters are set to the default values
in the original literature.

1) CANTILEVER BEAM DESIGN PROBLEM
This problem is a structural engineering design example
related to the weight optimization of a square section can-
tilever beam. One end of the beam is rigidly supported, and
the vertical force acts on the free node of the cantilever, which
is shown in Fig. 3. The beam is composed of five hollow
square blocks with constant thickness. Its height (or width)
is a decision variable, and its thickness remains unchanged
as 2/3. This problem can be expressed by the following
analytical equation:

Objective function:

f (X ) = 0.0624(x1 + x2 + x3 + x4 + x5) (26)

Subject to:

g(X ) =
61

x31
+

37

x32
+

19

x33
+

7

x34
+

1

x35
− 1 ≤ 0

Boundary condition:

0.01 ≤ xi ≤ 100, i = 1, · · · , 5.

The best solutions for cantilever beam design problem
obtained by IBWOA and other methods are listed in Table 4.
It can be seen that the IBWOA provides better solution
than those provied by other methods. The statistical results
of IBWOA and other methods are listed in Table 5. For
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FIGURE 2. Average fitness value convergence curves of typical benchmark functions.

FIGURE 3. Schematic diagram of cantilever beam.

cantilever beam design problem, the average value ranking
is IBWOA> BOA> TSO> BWOA> DA; The standard
deviation ranking is IBWOA> BOA> TSO> BWOA> DA.
It can be seen that IBWOA outperforms other algorithms in
respect of the worst value, optimal solution, average value
and standard deviation.

The results show that the convergence accuracy and sta-
bility of IBWOA outperform BOA, TSO, BWOA, and DA.
Although the optimal solution of DA outperforms the other
three algorithms, the robustness of DA is the worst. The
BOA is relatively stable in solving the cantilever beam design
problem. BOA has competitive results compared with TSO,
DA and BWOA. The fitness curves of different algorithms for
solving cantilever beam problems are given in Fig. 4. It can
be seen that the IBWOAoutperforms the four compared algo-
rithms regarding convergence speed. Therefore, the searching
ability of IBWOA outperforms other algorithms in solving
the cantilever beam design problem.

2) I-BEAM DESIGN PROBLEM
Another typical engineering optimization problem is the
design of I-beam. The purpose is to minimize the vertical
deflection of the beam, while meeting the cross-sectional area
and stress constraints under a given load, which is shown in
Fig. 5. Flange width b(= x1), section height h(= x2), web

FIGURE 4. Average fitness curve of different algorithms for solving
cantilever beam problem.

FIGURE 5. Schematic diagram of I-beam.

thickness tw(= x3) and web thickness flange tf (= x4) are
variables of I-beam problem. When the length (L) and elastic
modulus (E) of the beam are 5200 cm and 523.104 kN/cm2

respectively, the maximum vertical deflection of the beam is
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TABLE 4. Optimal results of cantilever beam design problem.

TABLE 5. Statistical results of cantilever beam design problem.

f (x) =PL3/48EI. The objective function and constraints of
the problem are as follows:

Objective function:

f (X ) =
5000

x3(x2 − 2x4)3/12 + (x1x34/6) + 2bx4(x2 − x4/2)2

(27)

Subject to:

g1(X ) = 2x1x3 + x3(x2 − 2x4) ≤ 300,

g2(X ) =
18x2 × 104

x3(x2 − 2x4)3 + 2x1x3(4x24 + 3x2(x2 − 2x4))
+

15x1 × 103

(x2 − 2x4)x23 + 2x3x31
≤ 56,

Boundary condition:

10 ≤ x1 ≤ 50,

10 ≤ x2 ≤ 80,

0.9 ≤ x3 ≤ 5,

0.9 ≤ x4 ≤ 5.

The best solutions for I-beam design problem obtained by
IBWOA and other methods are listed in Table 6. It can be
seen that IBWOA, BWOA and DA yield the best results in
dealing with this problem excepted BOA and TSO. The sta-
tistical results of IBWOA and other methods listed in Table 7
show that IBWOA achieves better results than other methods
in terms of worst value, optimal solution, mean value and
standard deviation. In other words, the convergence accuracy
and robustness of IBWOA outrank BOA, TSO, BWOA, and
DA. In the case of similar optimization results, the worst
value, mean value and standard deviation obtained by DA are
0.013332052, 0.013100482 and 6.1866E−05 respectively.
It outranks the BOA, TSO and BWOA. Therefore, compared
with BOA, TSO and BWOA, DA has certain advantages in
solving I-beam problem.

FIGURE 6. Average fitness curve of different algorithms for solving
I-beam problem.

In addition, the fitness curves of different algorithms for
solving I-beam problems are shown in Fig. 6. It can be noticed
that the convergence speed of IBWOA outperforms other
algorithms. It further shows that IBWOA is a good alternative
for solving I-beam optimization problem.

3) THREE-BAR TRUSS DESIGN PROBLEM
This example considers the Three-bar planar truss structure,
which is shown in Fig. 7. Subjecting to stress (σ ) constraints
on each of the truss members, the volume of the statically
loaded three-bar truss should be minimized. The objective
is to evaluate the optimal cross-sectional areas, A1(= x1)
and A2(= x2). The objective function and constraints of the
problem are as follows:

Objective function:

f (X ) = (2
√
2 x1 + x2) × l (28)

Subject to:

g1(X ) =

√
2 x1 + x2

√
2 x21 + 2x1x2

P− σ ≤ 0,
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TABLE 6. Optimal results of I-beam design problem.

TABLE 7. Statistical results of I-beam design problem.

FIGURE 7. Schematic diagram of three-bar truss.

g2(X ) =
x2

√
2 x21 + 2x1x2

P− σ ≤ 0,

g3(X ) =
1

√
2 x2 + x1

P− σ ≤ 0,

l = 100 cm,

P = 2kN/cm3,

σ = 2kN/cm3,

Boundary condition:

0 ≤ x1, x2 ≤ 1.

The best solutions for Three-bar Truss design problem
obtained by IBWOA and other methods are listed in Table 8.
It can be seen that IBWOA and BWOA provide better results
than other algorithms. However, from the statistical results

FIGURE 8. Average fitness curve of different algorithms for solving
three-bar truss problem.

of IBWOA and other methods listed in Table 9, IBWOA
and BWOA outperform the other methods in respect of
the worst value, optimal solution, mean value and stan-
dard deviation. According to the fitness curves of dif-
ferent algorithms for solving the three-bar truss problem
in Fig.8, the convergence speed of IBWOA outranks the
other algorithms in the case of similar optimization results.
The IBWOA performs better in the Three-bar Truss design
problem.

4) SPEED REDUCER DESIGN PROBLEM
In the mechanical system, the reducer is one of the important
components of the gearbox, which can be used in a variety
of applications. In this optimization problem, the weight of
the reducer will be minimized under 11 constraints, which
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FIGURE 9. Schematic diagram of speed reducer.

is shown in Fig.9. There are seven variables in this problem,
which are tooth width b(= x1), gear modulus m(= x2), num-
ber of teeth in pinion z(= x3), length of the first shaft between
bearings l1(= x4), length of the second shaft between bear-
ings l2(= x5), diameter of the first shaft d1(= x6) and
diameter of the second shaft d2(= x7). The mathematical
equation of this problem is as follows:

Objective function:

f (X ) = 0.7854x1x22 (3.3333x
2
3 + 14.9334x3)

− 1.508x1(x26 + x27 ) + 7.4777(x36 + x37 )

+ 0.7854(x4x26 + x5x27 ), (29)

Subject to:

g1(X ) =
27

x1x22x3
− 1 ≤ 0,

g2(X ) =
397.5

x1x22x
2
3

− 1 ≤ 0,

g3(X ) =
1.93x34
x2x46x3

− 1 ≤ 0,

g4(X ) =
1.93x35
x2x47x3

− 1 ≤ 0,

g5(X ) =

√
(745x4/x2x3)2 + 16.9 × 106

110x36
− 1 ≤ 0,

g6(X ) =

√
(745x5/x2x3)2 + 157.5 × 106

85x37
− 1 ≤ 0,

g7(X ) =
x1x2
40

− 1 ≤ 0,

g8(X ) =
5x2
x1

− 1 ≤ 0,

g9(X ) =
x1
12x2

− 1 ≤ 0,

g10(X ) =
1.5x6 + 1.9

x4
− 1 ≤ 0,

g11(X ) =
1.1x7 + 1.9

x5
− 1 ≤ 0,

Boundary condition:

2.6 ≤ x1 ≤ 3.6,

0.7 ≤ x2 ≤ 0.8,

x3 ∈ {17, 18, 19, · · · , 28}

FIGURE 10. Average fitness curve of different algorithms for solving
speed reducer problem.

7.3 ≤ x4, x5 ≤ 8.3

2.9 ≤ x6 ≤ 3.9,

5 ≤ x7 ≤ 5.5.

The best solutions for speed reducer design problem obtained
by IBWOA and other methods are listed in Table 10. It can
be seen that the solution obtained by IBWOA outranks other
methods. According to the statistical results of IBWOA and
other methods listed in Table 11, the IBWOA outperforms the
other methods in terms of the worst value, optimal solution,
mean value and standard deviation. Therefore, optimization
ability and stability of IBWOA outperforms the other meth-
ods. For speed reducer design problem, the mean value, opti-
mal value and standard deviation obtained by DA are second
only to IBWOA. By comparing the results, DA algorithm has
better optimization accuracy and stability than BOA, TSO
and BWOA when solving the speed reducer design problem.

It can be seen from the fitness curves of different algo-
rithms given in Fig. 10 that the convergence speed of IBWOA
outranks other algorithms. The advantages of IBWOA in
solving speed reducer design problem are further verified.

5) PISTON LEVER DESIGN PROBLEM
The main purpose of this problem is to position the piston
lever components H (= x1), B(= x2), D(= x3) and X (= x4)
by minimizing the oil volume when the piston rod is raised
from 0◦ to 45◦, as shown in Fig. 11. The expression of this
problem is as follows:

Objective function:

f (X ) =
1
4
πx23 (L2 − L1) (30)

Subject to:

g1(X ) = QL cos θ − R× F ≤ 0,

g2(X ) = Q(L − x4) −Mmax ≤ 0,

g3(X ) = 1.2(L2 − L1) − L1 ≤ 0,
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TABLE 8. Optimal results of three-bar truss design problem.

TABLE 9. Statistical results of three-bar truss design problem.

TABLE 10. Optimal results of speed reducer design problem.

g4(X ) =
x3
2

− x2 ≤ 0,where

R =
|−x4(x4 sin θ + x1) + x1(x2 − x4 cos θ )|√

(x4 − x2)2 + x21

,

F =
πPx23
4

,

L1 =

√
(x4 − x2)2 + x21 ,

L2 =

√
(x4 sin θ + x1)2 + (x2 − x4 cos θ )2,

θ = 450,

Q = 10000 lbs,

L = 240 in,

Mmax = 1.8 × 106lbs in,

P = 1500 psi,

Boundary condition:

0.05 ≤ x1, x2, x4 ≤ 500,

0.05 ≤ x3 ≤ 200.

The best solutions for piston lever design problem obtained
by IBWOA and other methods are listed in Table 12. It can be
seen that the IBWOAprovides the best solution. According to
the statistical results of IBWOA and other methods listed in
Table 13, the IBWOA outperforms other methods in respect
of the worst value, optimal solution, mean value and standard
deviation. Therefore, the convergence accuracy and stability
of IBWOA outranks those of BOA, TSO, BWOA, and DA.
For piston lever design problem, the worst value, optimal
value, mean value and standard deviation obtained by DA are
519.9923802, 211.1498409, 8.412698323 and 163.9011095,
respectively, which are second only to IBWOA. Compared
with the other three algorithms, DA provides the competitive
results.

From the fitness curves of different algorithms for solving
the piston lever problem given in Fig. 12, it can be seen that
the convergence speed of IBWOA outranks that of other algo-
rithms. The robustness and convergence speed of IBWOA is
the best. It is an effective tool to solve the piston lever design
problem.
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FIGURE 11. Schematic diagram of piston lever.

FIGURE 12. Average fitness curve of different algorithms for solving
Piston lever problem.

FIGURE 13. Schematic diagram of pressure vessel.

6) PRESSURE VESSEL DESIGN PROBLEM
As shown in Fig. 13, both ends of the cylindrical vessel
are covered by hemispherical heads. The design goal of
the pressure vessel is to minimize the total cost, including
material, forming and welding costs. This problem involves
four variables: shell thickness Ts(x1), head thickness Th(x2),
inner radius R(x3) and vessel length L(x4), where Ts and Th

FIGURE 14. Average fitness curve of different algorithms for solving
Pressure Vessel problem.

are integral multiples of 0.625 inch. R and L are continuous
variables. The mathematical expression is as follows:

Objective function:

f (X ) = 0.6224x1x3x4 + 1.7781x2x23
+ 3.1661x21x4 + 19.84x21x3 (31)

Subject to:

g1(X ) = −x1 + 0.0193x3 ≤ 0,

g2(X ) = −x2 + 0.00954x3 ≤ 0,

g3(X ) = −πx23x4 −
4
3
πx23 + 1296000 ≤ 0,

g4(X ) = x4 − 240 ≤ 0,

Boundary condition:

x1, x2 ∈ {1 × 0.0625, 2 × 0.0625, 3 × 0.0625,

· · · , 1600 × 0.0625} ,

10 ≤ x3, x4 ≤ 200.

The best solutions for pressure vessel design problem
obtained by IBWOA and other methods are listed in Table 14.
It can be seen that the optimal solution obtained by IBWOA
is the best. According to the statistical results of IBWOA and
other methods listed in Table 15, the IBWOA outperforms
other methods in respect of the worst value, optimal solution,
mean value and standard deviation. Therefore, the IBWOA
possesses better convergence accuracy and stability when
solving pressure vessel design problem. From the fitness
curves of different algorithms to solve the pressure vessel
problem given in Fig. 14, it can be seen that the convergence
speed of IBWOA outranks other algorithms. Convergence
speed, convergence accuracy and stability of IBWOA are
the best in solving pressure vessel problem. Therefore, the
IBWOA is a good choice in this problem.
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TABLE 11. Statistical results of speed reducer design problem.

TABLE 12. Optimal results of piston lever design problem.

TABLE 13. Statistical results of piston lever design problem.

TABLE 14. Optimal results of pressure vessel design problem.

TABLE 15. Statistical results of pressure vessel design problem.

7) TENSION/COMPRESSION SPRING DESIGN PROBLEM
As shown in Fig. 15, the goal of the design problem of the
tension / compression spring is to minimize the weight of the
tension / compression spring. The problem is constrained by
the minimum deflection, shear stress, oscillation frequency
and outer diameter. The problem includes three variables: the

average diameter of the spring coil D(x1), the diameter of the
spring wire d(x2), and the number of effective coils of the
spring N (x3). The mathematical expression is as follows:
Objective function:

f (X ) = (x3 + 2)x2x21 (32)
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TABLE 16. Optimal results of tension/compression spring design problem.

TABLE 17. Statistical results of tension/compression spring design problem.

TABLE 18. Optimal results of welded beam design problem.

TABLE 19. Statistical results of welded beam design problem.

FIGURE 15. Schematic diagram of tension/compression spring.

Subject to:

g1(X ) = 1 −
x32x3

71785x41
≤ 0,

g2(X ) =
4x22 − x1x2

12566(x2x31 − x41 )
+

1

5108x21
− 1 ≤ 0,

g3(X ) = 1 −
140.45x1
x22x3

≤ 0,

g4(X ) =
x1 + x2
1.5

− 1 ≤ 0,

Boundary condition:

0.05 ≤ x1 ≤ 2,

0.25 ≤ x2 ≤ 1.3,

2 ≤ x3 ≤ 15.

VOLUME 11, 2023 32491



D. Xu, J. Yin: IBWOA for Engineering Constrained Optimization Problems

FIGURE 16. Average fitness curve of different algorithms for solving
tension/compression spring problem.

FIGURE 17. Schematic diagram of welded beam.

The best solutions for tension/compression spring design
problem this problem obtained by IBWOA and other methods
are listed in Table 16. It can be seen that the optimal solution
obtained by IBWOA outranks other methods. According to
the statistical results of IBWOA and other methods listed in
Table 17, the IBWOA outperforms other methods in respect
of the worst value, optimal solution, mean value and standard
deviation. In other words, convergence speed and stability
of IBWOA outrank other four algorithms. The indices of
worst value, mean value and standard deviation obtained
by TSO outperform the BOA, BWOA and DA in the case
of similar optimization results. Therefore, compared with
the other three algorithms, TSO gets competitive results in
solving tension/compression spring design problem. From
the fitness curves of different algorithms to solve the Ten-
sion/compression spring problem given in Fig. 16, it can be
seen that the convergence speed of IBWOA outranks that
of other algorithms. Therefore, it is further verified that the
convergence speed, stability and convergence accuracy of the
IBWOA are the best in solving tension/compression spring
design problem.

8) WELDED BEAM DESIGN PROBLEM
As shown in Fig. 17, the goal of the beam bears vertical
force problem is to find the minimum manufacturing cost

of welded beams. The problem is constrained by seven con-
straints including shear stress, bending stress, beam bending
load and end deviation. This problem involves four design
variables, i.e. beam weld thickness h(x1), height l(x2), length
t(x3) and thickness b(x4). The mathematical expression is as
follows:

Objective function:

f (X ) = 1.10471x21x2 + 0.04811x3x4(14.0 + x2) (33)

Subject to:

g1(X ) = τ (X ) − τmax ≤ 0,

g2(X ) = σ (X ) − σmax ≤ 0,

g3(X ) = δ(X ) − δmax ≤ 0,

g4(X ) = x1 − x4 ≤ 0,

g5(X ) = P− Pc(X ) ≤ 0,

g6(X ) = 0.125 − x1 ≤ 0,

g7(X ) = 1.10471x21 + 0.04811x3x4(14.0 + x2) − 5.0 ≤ 0,

τ ′
=

P
√
2 x1x2

,

τ ′′
=
MR
J

,

M = P(L +
x2
2
),

R =

√
x22
4

+ (
x1 + x3

2
)2,

J = 2

{
√
2 x1x2[

x22
4

+ (
x1 + x3

2
)2]

}
,

σ (X⃗ ) =
6PL

x4x23
, δ(X⃗ ) =

6PL3

Ex23x4
,

Pc(X⃗ ) =

4.013E
√
x23x

6
4/36

L2
(1 −

x3
2L

√
E
4G

),

P = 6000lb,L = 14in, δmax = 0.25in,

E = 30 × 106psi,G = 12 × 106psi,

τmax = 13600psi, σmax = 30000psi,

Boundary condition:

0.1 ≤ x1, x4 ≤ 2,

0.1 ≤ x2, x3 ≤ 10.

The best solutions for welded beam design problem
obtained by IBWOA and other methods are listed in Table 18.
It can be seen that the optimal solution obtained by IBWOA
outranks other methods. According to the statistical results
of IBWOA and other methods listed in Table 19, the IBWOA
outperforms other methods in the worst value, optimal solu-
tion, mean value and standard variance. Therefore, conver-
gence accuracy and stability of IBWOA are the best when
solving welded beam design problem. In addition, the BWOA
outranks DA, TSO and BOA in terms of the optimiza-
tion result. However, in the case of similar optimization
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FIGURE 18. Average fitness curve of different algorithms for solving
Welded beam problem.

results, the worst value, mean value and standard deviation
obtained by DA outrank BWOA, TSO and BOA. Therefore,
DA achieves competitive results in solving welded beam
design problem. From the fitness curves of different algo-
rithms to solve the welded beam problem given in Fig. 18,
it can be seen that the convergence speed of IBWOA outranks
that of other algorithms. It is proved that IBWOA is a power-
ful tool for solving welded beam design problem.

VII. CONCLUSION
In this paper, for solving engineering constrained optimiza-
tion problems, an improved black widow optimization algo-
rithm (IBWOA) is proposed with new hybrid strategies being
employed in the IBWOA. Firstly, the quality of the initial
population of the BWOA is improved based on the double
chaotic map; secondly, in order to make full use of the differ-
ence information between the current and the optimal posi-
tion, golden sine guidance strategy is introduced to improve
optimization accuracy of the IBWOA; finally, the Cauchy
barycenter reverse differential mutation operator is employed
to increase the diversity of the population, avoid trucking
local optimization and enhance the global search ability of
the IBWOA.

Eight continuous / discrete hybrid engineering optimiza-
tion problems and typical benchmark functions are utilized
to evaluate the performance of the IBWOA. The optimization
results show that IBWOA effectively improves the search
accuracy, convergence speed and robustness of engineering
constrained optimization problems, and overcomes the defect
that IBWOA is easy to fall into local optimization. The global
exploration, local exploitation and optimization ability of the
IBWOAwith new hybrid strategies can be improved. The new
hybrid strategies can enable the algorithm to seek an appropri-
ate balance between the exploration and exploitation stages.
Moreover, it is proved that the IBWOA which retains the
optimal solution after Cauchy barycentric reverse difference

mutation strategy converges to the global optimal solution
with a probability of 1 based on Markov theory. It opens up
a future for online optimization calculation in a low grade
hardware condition.

However, the convergence speed and accuracy of the algo-
rithm are only analyzed based on experiments.Markov theory
only proves the convergence performance of the algorithm
in the sense of probability. There are some uncertainties in
actual performance. The IBWOA is a meta- heuristic algo-
rithmwith random characteristics. It will still be a challenging
task to achieve an appropriate balance between the explo-
ration and exploitation stages in the future.

This paper extends the application of BWOA in engineer-
ing constrained optimization problems. The IBWOA will
be evaluated on machine learning, pattern recognition and
other complex real-world optimization problems in our future
work.
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