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ABSTRACT Positron Emission Tomography and Computed Tomography(PET/CT) imaging could obtain
functional metabolic feature information and anatomical localization information of the patient body.
However, tumor segmentation in PET/CT images is significantly challenging for fusing of dual-modality
characteristic information. In this work, we have proposed a novel deep learning-based graph model
network which can automatically fuse dual-modality information for tumor area segmentation. Our method
rationally utilizes the advantage of each imagingmodality(PET: the superior contrast, CT: the superior spatial
resolution). We formulate this task as a Conditional Random Field(CRF) based on multi-scale fusion and
dual-modality co-segmentation of object image with a normalization term which balances the segmentation
divergence between PET and CT. This mechanism considers that the spatial varying characteristics acquire
different scales, which encode various feature information over different modalities. The ability of our
method was evaluated to detect and segment tumor regions with different fusion approaches using a dataset
of PET/CT clinical tumor images. The results illustrated that our method effectively integrates both PET and
CT modalities information, deriving segmentation accuracy result of 0.86 in DSC and the sensitivity of 0.83,
which is 3.61% improvement compared to the W-Net.

INDEX TERMS PET/CT images, graph model, deep learning, fusion learning.

I. INTRODUCTION
Positron emission tomography and Computed Tomogra-
phy(PET/CT) imaging with 18F-fluorodeoxygl- ucose(FDG)
have been widely used in cancer diagnosis. PET imag-
ing extracts metabolic and functional information about
organs from the human body. CT imaging extracts detailed
anatomical high-resolution information of the human body.
Compared with the CT modality, PET imaging can be imple-
mented for an earlier diagnosis of the disease. According to
the characteristics of inconsistent metabolic absorption rate
of pathological and normal tissue, the pathological tissues
appear as ‘‘high contrast’’ in PET images [1]. In the PET
modality, the typically high contrast is presented between
the malignant tumor and normal tissue [2]. However, PET
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imaging is limited by imaging principles. The image which
obtained has the disadvantage of low spatial resolution, which
results in blurred lesion area boundary. In addition, a tumor
area usually presents intensity distribution inhomogeneity in
the PET modality. For these reasons, accurately delineat-
ing a tumor edge from a single PET modality is arduous.
Compared with the PET modality, the CT modality provides
high-resolution details of anatomical information from the
human body. Under the same conditions, CT images have
a higher spatial resolution detail than PET images. There
are clear edges between the malignant tumors and peripheral
normal tissue in the CTmodality. Unfortunately, the intensity
distribution of the normal soft tissues is usually similar to that
of the tumor areas in the CT. Since it is formidable to segment
the tumor regions from the surrounding tissues in CT images
when a malignant tumor invades into the adjacent normal
soft tissues. This situation often occurs in the detection of
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FIGURE 1. Tumor invade the chest wall.

lung cancer. A non-small cell lung cancer tumor can invade
the chest wall or the thoracic vertebrae. Besides, CT images
have complex interference information from the background.
Complex background information can lead to arduous tumor
segmentation(as Figure 1). Based on these reasons above, it is
extremely difficult to obtain a clear boundary segmentation of
tumors using a single modality.

Researches in recent years illustrate that the fusion strategy
ofmultiplemodalities can effectively improve the accuracy of
diagnosis [3]. Multiple modalities imaging techniques, such
as MRI/PET, MRI/SPECT, MRI/CT and PET/CT, have been
applied to clinical trial [3], [4], [5].Multiplemodalities fusion
techniques provide a method to obtain the information of
focal area from biological and physical aspects. Fusion strate-
gies are proposed to combine the complementary information
from multi-modality images [6]. In the decade, an army of
multiple-modality tumor segmentation approaches based on
machine learning and level sets have been proposed. In the
level set aspect, [7] used Jensen-Renyi divergence to ergodic
update the level set contour and proposed a multimodal-
ity segmentation method based on geometric level contour.
Reference [8] proposed a level set model based on multi-
valued integration. This method can effectively aggregate
multiple-modality and realize cross-modality data iteration
of the level set. However, the level set algorithm has a high
requirement on the area ratio between foreground object and
background, minuscule object will result in segmentation
failure. Although the level set has a strong anti-noise ability,
the segmentation target would be lost in the image with a
complex structure [9]. To address these issues, relevant kinds
of literature [10] obtain images suitable for level set segmen-
tation in advance through a multitude of pre-processing of
images to be segmented. In the machine learning domain,
the main research direction is the application of traditional
feature engineering and probability graph models. For exam-
ple, [11] comprehensively used watershed segmentation, the
dynamic threshold to perform a multi-modality fusion of
texture features of CT andmetabolic features of PET and clas-
sifies the global model with support vector machine(SVM) as
the classifier. References [12], [13], [14], and [15] similarly
used metabolic and texture features engineering to merge
multi-modality image and SVM classifier for the staging of
lymphoma patients. Reference [16] formulates the problem of
segmenting tumors from CT and PET modalities as Markov
Random Field(MRF) with specific-modality energy terms for
the characteristic of PET and CT. Reference [15] proposed a

random walk approach as an initial preprocessor to acquire
an object original state. And the application of graph cutting
method to segment pulmonary tumors on PET/CTmodalities.
However, conventional feature engineering methods have the
disadvantages of difficult feature function setting and weak
generalization ability.

With the development of deep learning networks, more
and more researchers begin to apply deep learning frame-
works so as to realize the fusion of multiple-modality [17].
A large number of experimental reaseaches have demon-
strated the success of deep learning in the field of object
segmentation [18], [19], image recognition [20], [21], [22],
object detection [23], [24] and medical image processing
[25]. Medical image processing mainly focuses on image
processing of various modalities, such as CT image segmen-
tation [26], [27], [28], standard-dose PET image estimation
from low-dose PET/MRI [29] and multi-channel MRI image
segmentation [30], [31], [32]. In the first MICCAI(Medical
Image Computing and Computer Assisted Intervention) chal-
lenge on tumor segmentation with PET image, the applica-
tion of convolutional neural network(CNN) won excellent
results. The general deep learning network consists of mul-
tiple layers of processing units. Reasonable processing units
can extract multi-scale representation data information from
multi-modal medical images. High dimensional feature infor-
mation can be extracted efficiently from complex structural
data effectively by constructing a suitable multi-layers deep
network model. [33] used a two-stage classification method
to design a CNN network which can judge whether the can-
didate is a false positive sample. To obtain high and low-level
features, many researchers have introduced V-Net. Reference
[34] introduced first V-Net [35] is used to obtain CT image
and the second V-Net is used to obtain pre-fused PET-CT
image. Reference [36] also used V-Net for lung tumor seg-
mentation. By enhancing the V-Net link mode, V-Net can
be applied to the multi-branch paradigm. Similarly, some
researches combine U-Net [37] with graphmodel to fuse PET
modality and CT modality. Reference [14] trained U-Net for
PET image and CT image portion respectively, fusing the
multi-modality using a graph cut algorithm. Reference [9]
proposed an improved model that integrated pixel intensity
of PET with CT probability map from a CNN-derived to
segment lung lesion. According to the researches on deep
learning-based PET-CT multi-modality lung tumor segmen-
tation focused on fusing image pixel intensity around the
tumor. Yet, a single-pixel intensity integrating the PET-CT
modalities ignores the relatives of PET and CT image fea-
tures for tumors occurring in diverse anatomical locations.
In addition, considering the relatives between multi-modality
in the anatomical structure can significantly improve the
segmentation accuracy.

In recent researches, graph-based dual-modality segmen-
tation optimization obtains a army of attention in lesion
segmentation/detection domain [38], [39], [40]. For enhanc-
ing integration of the complementary information from PET
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FIGURE 2. PET and CT images.

modality and CT modality images for pulmonary lesion seg-
mentation, we propose an efficient graph-based network to
strengthen each modality for target segmentation. The core
idea of a graph-based algorithm is to transform the object task
as the unary and pairwise energy minimization optimization
problem, which can efficiently solve dual-modality features
for target segmentation in the anatomical locations. First,
in order to automatically obtain the feature information of
each modality, we used CNN to learn the superior contrast
metabolic information of PET and the superior spatial reso-
lution information of CT images respectively and combine
the features of the dual-modality for joint segmentation(as
the Fig 2).

Then, the modality features of PET and CT images
obtained by the superior are fused, which is formulated as
a Conditional Random Field(CRF) probability estimation
problem. We introduce a global co-fusion energy term into
the target loss function for balancing the segmentation diverse
between PET and CT images so that it can achieve lesion seg-
mentation in dual-modality simultaneously. Through exper-
iments, our novel network guarantees to achieve global
optimization problems with the co-fusion energy term in
a low-order polynomial formulation by computing each
modality’s maximum flow in the probability graph. After
testing clinical data, the proposed method improves radiation
therapy target definition and achieves 0.86 of the DSC on the
co-segmentation.

II. METHOD
Figure 3 illustrates the framework architecture of our
proposed approach. Our network comprises three main com-
ponents: dual-modality encoder, multi-scale fusion compo-
nent, and multi-modality reconstruction component. The
main purpose of the dual-modality encoder(the green dotted
box in Figure 3) is to derive each modality image features that
are maximum relevant to the corresponding specific image
modality. We use the Convolution Neural Network(CNN)

to obtain two-dimension slice image data from each modal-
ity. The multi-scale fusion component(the blue dotted box
in Figure 3) utilizes the modality-specific features yielded
by the encoders of the previous level to derive a series of
different scales spatially diverse feature maps. In order to
make use of multi-scale spatially feature maps reasonably,
we construct state transition probability models between
different scales across diverse multiple scales. Ultimately,
the multi-modality reconstruction component(the red dotted
box in Figure 3) integrates dual-modality-specific fused fea-
tures by graph-based structure optimization to produce the
final segmentation map. The crucial components are further
described in detail in the next subsections.

A. DUAL-MODALITY ENCODER
The dual-modality encoder consists of two branches: one
encoder for PET images and one separate encoder for CT
images. The purpose of each modality encoder is to acquire
the modality-specific features that are corresponding to the
input modality data. According to research in recent years,
CNN achieves high-precision object detection and segmen-
tation in medical images [41]. Therefore, we use the cas-
cade convolutional layers to build each modality encoder.
As shown in Figure 3 each modality encoder comprises
five blocks, each of which contains two convolution kernels
and a pooling layer. Each level of block is connected to a
side-output to provide feature maps for multi-scale fusion
components.

Although the CNN has achieved a satisfactory result in the
pulmonary probability map, a single CNN still has several
limitations. First, a single CNN has a convolutional ker-
nel with fixed receptive fields. Therefore, it yields coarse
pixel-level resulting maps [42]. Second, a CNN absents fine-
grained constraints, which would lead to the loss of texture
details of output result images [43]. In a complex cascade
structure, these limitations above make subtle changes in
the feature information of the underlying layer potentially
affecting the deeper convolution layer. During the training
stage, this potential impact means that even tiny errors are
magnified in the course of multiple iterations of training and
multi-level convolution calculations. In order to avoid the
accumulation of errors in each convolution layer, we used
the side-output to output the feature distribution maps of
the convolution block at each scale. Then, the feature graph
output from each side-output is modeled as the probability
graph of chain state transition. As shown in Figure 4, a CNN
absents fine-grained constraints, which would lead to loss
of texture details of output result images. Since we utilize
PGM to model the side-outputs of each stage. We design a
linear PGM encoder for dual-modality independently. The
graph network of each modality contains six nodes and five
corresponding edges. in the graph network, each node is
composed of CNN feature maps of multi-scales. Each edge
is a connection of two adjacent scales.

Finally, we analyze the inter-scale relationship between
each scale and continuously compensate for the low-level
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FIGURE 3. The architecture of our network.

details information lost due to multiple convolutional sam-
pling. To effectively model the multi-scale output, we
implement Conditional Random Field(CRF) to analyze the
adjacent side-output state in the convolution component,

which is the major chain structure PGM. In the side-output,
suppose W denotes the weight of each level of the convo-
lutional layers, and N is defined as side-output layers in the
feature sampling phase, where the corresponding weights are
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FIGURE 4. The linear chain CRF for dual-scale fusion.

defined as w = (w(1), . . . ,w(N )). The objective loss function
of each side-output layer is as follows:

LSide(W ,w) =

N∑
n=1

λnL(n)s (W ,w(n)) (1)

In which λn is the loss function linear combination weights
of each side-output layer, and Ls defines the loss function of
the prediction with ground-truth, which is quantified over all
pixels of the training lung each modality image and corre-
sponding lesion ground-truth.

The main purpose of using side-output is to obtain the
characteristic map of each scale. The backbone of the whole

network is path-connected with each side-output. There-
fore, the side-output layer parameters can continuously be
updated according to back-propagation by the path of the
weighted-fusion layer error propagation. After obtaining the
feature maps of each scale, we use linear chain CRF for
modeling to achieve deep supervision and multi-scale fusion.
The following sections describe the CRFmodeling process in
detail.

B. MULTI-SCALE FUSION COMPONENT
Figure 4 shows the modeling and fusion process of
multi-scale feature maps. We formulate the feature maps of
each scale as the state transition graph of linear-chain CRF.
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In the CRF stage, we mainly model the relationship of the
unary and pairwise factors between adjacent scales. First, the
conditional probability distribution P(Y |x) is modeled as a
CRF with the Gibbs distribution of:

P(Y = y|x) =
1

Z (x)
exp(−E(V )) (2)

where E(V ) is the energy function that measures the cost of
unary potential and pairwise potential. We define V = vi as
a labeling value over all pixels of the side-output image, with
vi = 1 for pulmonary nodules and vi = 0 for normal tissue.
The energy objective function of a label assignmentV is given
by:

E(V ) =

∑
i

ψu(vi) +

∑
i<j

ψp(vi, vj) (3)

where ψu(vi) and ψp(vi, vj) are the unary and pairwise terms
respectively. The formula is as follows:

ψu =
1
N

N∑
n=1

a(n)i (4)

ψp(vi, vj) = w(vi, vj)
G∑
g=1

λgkg(fi, fj) (5)

a(n)i is the value at pixel i in the edge prediction maps
of side-output layer n. w(vi, vj) is a trainable weight that
coordinates the correlation intensity between two pairwise
within the training stage. λg is the corresponding weight
factor. kg is the kernel of Gaussian applied on feature vectors,
called transfer characteristics. The fi and fj are feature vectors
of pixel i,j, respectively. They are derived from image features
such as gray intensity values and spatial location coordinates.
In this paper, we used the log-likelihood function form of
conditional probability P(Y = y|x).

LCRFs (Λ) = logP(Y = y|x)

=

M∑
m=1

∑
i

λgkg(ai, fi, fj) − log(Z0) (6)

In our framework, we reformulate CRF as a Recurrent
Neural Network(RNN) layer and can be implemented in an
end-to-end framework.

To sum up, the objective function of the entire framework
is:

LTotal = argmin(LSide(W ,w) + LCRFs (Λ)) (7)

where h is a layer parameter of CRF. LSide and LCRFs are the
loss functions of CNN layer and CRF stages respectively.

We implement the standard stochastic gradient descent to
optimize the objective function. To comprehensively consider
the actual situation of lung images, we selected five CNN
blocks with side-output in the modeling stage. Pulmonary
lesions in original medical images are different from the
general object detection task in the visible light images. The
general object detections contain rich semantic information,

FIGURE 5. The PET/CT co-segmentation.

which allows the objective regions to be conserved in the
high-level layers. In contrast, the medical image contains
relatively single semantic information and a pulmonary lesion
appears as a spot, which results in difficulty in obtaining
responses in the high-level convolution layers. The low-
level layers have a smaller size of the receptive field and
reflect location information, while higher-level layers repre-
sent semantic information of a larger receptive scale.

The main function of the dual-modality encoder compo-
nent is to extract the corresponding feature distribution map
from PET and CT modalities. This process can not fuse the
two modalities. The modality fusion part is mainly in the
Multi-modality Reconstruction Component.

C. MULTI-MODALITY RECONSTRUCTION COMPONENT
The main function of the Multi-modality Reconstruction
component is to learn the feature map information of each
modality from the upper level and integrate the complemen-
tary information of the dual-modality. Figure 3 shows the
fusion process of PET and CT images in the red dotted box.
We formulate the task of co-fusion as the binary labeling
of Conditional Random Field(CRF) on a probability map
corresponding to the input CT and PET modality. Not only
the framework attempts to simultaneously minimize the total
CRF energy for both PET and CT modalities but also bal-
ances the segmentation result diverse between dual-modality.
Finally, the output probability predictionmap is reconstructed
into a segmentation result image.

Figure 5 illustrates the co-segmentation process of PET
and CT images. For two co-registered PET and CT images,
the superior spatial resolution of CT and the superior inten-
sity contrast of PET can achieve a more accurate segmenta-
tion result by simultaneously utilizing the information fusion
method.

In our co-fusion problem, we set a discrete random vari-
able (fi, fj) to represent each pixel value (i, j) of the input
PET and CT images. Denote by Vpet and Vct the set of
the variable value corresponding to the pixels in the input
PET and CT image respectively. In order to deal with
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the resolution inconsistency between PET and CT images,
we first implement the image registration algorithm to reg-
ister the coordinate information of the CT and PET images.
Then, the upsampling of PET images with low resolution
guarantees that the resolution is consistent with that of CT
images. Via image registration and upsampling, pixel coordi-
nates between Vpet and Vct of the dual-modality image can
be kept in one-to-one correspondence with each other. Each
label f in Vpet or Vct gains the label value from the set of
pixel labeling N = 0, 1 assigning that the pixel is in the
object area(f = 1) or the normal tissue(f = 0). Ultimately,
we compute an optimal pulmonary lesion segmentation in
the PET or CT image to minimize the corresponding CRF
energy by implementing Boykov and Kolmogorov’s graph
cuts approach. However, the single-use of graph cut method
can not obtain information from other modalities. To real-
ize the fusion of PET and CT modalities, we introduce a
co-segmentation parameter to combine the two modalities.

We set up the third set of co-segmentation parameters
VP−C to correlate with a pair of the corresponding pixel
(Vpet ,Vct ) in the PET and CT modality. The co-segmentation
parameter VP−C is utilized for incorporating the energy
balance of the segmentation diverseness between the dual-
modality. Scilicet, when the pixel labeling pairs(fi, fj) are the
same as the corresponding pixel coordinates (i, j), then no
penalty is enforced; Otherwise, we balance the divergence
from the dual-modality. Moreover, the degree of divergence
between PET and CT modalities may be different in the
results of final segmentation. Thus, we need to optimize for
varying degrees of difference in the co-segmentation of pixel
label pairs.

The task of PET-CT co-fusion is to minimum optimize the
following energy loss function(Eq(8)).

LPET−CT = EP(Vpet ) + EC (Vct ) + EP−C (FP−C ) (8)

where EP(Vpet ) and EC (Vct ) are the CRF energy functions
for the PET and CT modality, respectively. The energy term
of co-segmentation EP−C (FP−C ) is utilized for balancing
the segmentation divergence from the PET and CT. The
co-segmentation energy term EP−C (FP−C ) integrates
the high contrast metabolism information of PET and
the supreior spatial resolution of CT to associate results of the
PET segmentation and CT segmentation as a joint process.
The various energy functions are described in detail below.

1) THE CRF SEGMENTATION ENERGY ON THE PET
MODALITY
According to the state transition relationship of CRF,
we model the neighborhood system on the input image data.
Denote Np is the neighborhood regions of the pixel Ip in the
PETmodality. Since, the CRF energy term in the PETmodal-
ity consists of a current state term di(fi) and a smoothness term
wi−1,i, as follows:

EP(Vpet ) =

∑
i∈Ip

di(fi) +

∑
i∈Np

wi−1,i(fi−1, fi). (9)

The current state di(fi) is the likelihood that executes indi-
vidual penalty for assigning a pixel label fi (eg, the lesion
or the normal) to the corresponding pixel i. The smooth-
ness term wi−1,i(fi−1, fi), meaning the interaction potential
between adjacent pixels (fi−1, fi) [44], estimates the loss of
assigning diverse pixel labels to two adjacent pixels fi−1 and
fi in the set of Np.

wi−1,i(fi−1, fi) =

{
α(i− 1, i), if fi−1 ̸= fi,
0, if fi−1 = fi.

(10)

where α(i−1, i) is the smoothness value calculated from adja-
cent pixels when fi−1 and fi are unequal. In the PET modality,
we obtain an optimal segmentation concerning the energy
function EP(Vpet ) by applying the graph cuts approach.

2) THE CRF SEGMENTATION ENERGY ON THE CT MODALITY
Denote Nc is the neighborhood regions of the pixel Ic in the
CT modality. Since the CRF energy term in the CT modality
consists of a current state term dj(fj) and a smoothness term
wj−1,j, as follows:

EC (Vct ) =

∑
j∈Ic

dj(fj) +

∑
j∈Nc

wj−1,j(fj−1, fj). (11)

wj−1,j(fj−1, fj) =

{
α(j− 1, j), if fj−1 ̸= fj,
0, if fj−1 = fj.

(12)

In the CT modality, the current state term and smoothness
term are the same as in the PET modality. We also use the
graph cut algorithm to optimize the energy function.

3) THE CO-SEGMENTATION ENERGY TERM
To balance the divergence between the dual-modality,
co-segmentation energy term Ep−c(FP−C ) is set to coordinate
the segmentation diverse between the PET and the CT. Each
variable value f(i,j) ∈ FP−C relevant with a pair of corre-
sponding pixels (i, j) in Ip and Ic assigns a pixel label from
the labeling set Y = {0, 1}.When f(i,j) = 1, the corresponding
pixels pair of i and j are assigned as foreground(lesion region)
labeling; Otherwise, the corresponding pixels pair of i and j
are assigned as background(normal tissue). When fi, fj and
f(i,j) are inconsistent, we use the ηi,j(fi, f(i,j)) to resolve the
divergence of the fi and fj. Based on this condition ηi,j can
further resolve the difference based on the obvious feature
from the PET and CT modalities. The function is described
in detail in the following formula(13):

ηi,j(fi, f(i,j), fj) =


δ1(i, j), if fi ̸= fj, f(i,j) = fi,
δ2(i, j), if fi ̸= fj, f(i,j) = fj,
0, if fi = f(i,j) = fj.

(13)

where δ1(i, j) and δ2(i, j) are the term to balance the segmen-
tation divergence between corresponding pixel pair i and j.
Summary the co-segmentation energy term between the PET
Ip and the CT Ic is defined as follows:

Ep−c(FP−C ) =

∑
i∈Ip,j∈Ic

ηi,j(fi, f(i,j), fj). (14)
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III. THE GRAPH MODEL OPTIMIZATION PROCESS
In this section, we present a graph-based method for solving
the co-segmentation based on the PET-CT task. The reso-
lution of co-segmentation achieves global network optimal
with respect to the object energy function LPET−CT defined
in Equal(8). To solve the problem,we construct a graphmodel
G = (ν,E) and solve it by calculating the minimum-cost cut
in the low-order polynomial term. Figure 6 shows the general
process of modality fusion between PET and CT by graph
model.

Each pair of variables fi and fj are mapped to one pair
node in νpet and νct . In the graph G, a pair of i and j also
denote the corresponding a pair node of pixel i and j in (Ip, Ic).
Moreover, a graph model node ϕi,j ∈ νp−c is introduced
for each variable value f(i,j) ∈ FP−C . Thus our purpose is
to formulate the co-segmentation task as a minimum-cost
cut problem. The minimum-cost cut problem consists of two
terminal nodes, a source node s and a sink node t . All of
the other vertices νp−c have to be connected to these two
vertices to form part of the edge set. The set of graph model
ν = {s, t} ∪ νct ∪ νpet ∪ νp−c. The graph cuts method of
Boykov and Kolmogorov contains two types of nodes and
edges linking methods. One link method is between vertices
corresponding to each pixel in the input image, defined as
N-links. Another link is the connection between the vertex
corresponding to each pixel in the input image and the two
terminal vertices, defined as T-links. However, the standard
graph linkingmethod cannotmodel the input image of the two
modalities. In order to model dual-modality, we introduce the
three linking models: T-links and N-linksmodel the sub-node
of eachmodality from νpet and νct respectively, and additional
D-links connects the image data over the modality νp−c. The
following subsections introduce the three types of links in
detail.

A. T-LINKS
The graph cut method is similar to the pixel labeling assign-
ment problem. Our purpose is to minimize the energy func-
tion by cutting an optimal boundary between the object and
the background. Therefore, to search for this optimal bound-
ary, we need to consider the region of pixels on the current(i.e.
Current state term) and the effect from adjacent regions of
pixel(i.e. Smoothness term). We introduce T-links to integrate
the current state term of the CRF segmentation energy. For
each node i in νpet from PET modality, we defined it as an
edge start s to i with the edge cost function of di(fi = 1) and
an edge start i to t with the edge cost function of di(fi = 0).
Denote F and B are lesion region and normal tissue sets
respectively. The problem of label assignment for each pixel
is calculated by Gaussian Mixture Model(GMM) to reflect
the probability intensity distribution of each pixel in Ip. The
experiments prove that the fusion effect of GMM is the high
point in this paper. Then the negative log-likelihoods of each
pixel for assigning F = 1 or B = 0 obtained by GMM are
used on di(fi). Defining the intensity value of each pixel i in Ip

as Ei. The pixel values of di are calculated for in the following
formulation:

di(fi) =

{
−λ1lnP(Ei|F), if fi = F,
−λ2lnP(Ei|B), if fi = B.

(15)

Similarly, we utilize T-links for each node j in νct from CT
modality.

B. N-LINKS
We introduce N-links to measure the effect of each corre-
sponding pixel intensity on its surrounding pixels(i.e., the
smoothness terms wi−1,i in Equal(10)). For each pixel i in the
PET modality Ip, we measure the elements in the neighbor-
hood of the current pixel i by N-links. First, Np is defined as
the neighborhood set of pixel i. The setting of Np range of the
neighboring sets mainly considers experimental accuracy and
computational cost. Then, we add two connection methods to
link each adjacent pixel of pixel i. Note that the connection
direction of each pair of adjacent pixels is bi-directional, i.e.
one starts the node i ∈ νpet to the adjacent node in Np and the
other in the opposite direction start the adjacent node in Np to
node i. The cost value of each link path is α(i− 1, i):

α(i− 1, i) =

{
λ3e(−θ1||Ei−1−Ei||), (i− 1, i) ∈ Np
0, Otherwise.

(16)

In the same way, the N-links are introduced for the
sub-node set νct with the neighboring set Nc on the CT
modality.

C. D-LINKS
D-links are utilized for measuring the segmentation diver-
gence between the PET and CT modality. Similarly i ∈ νpet
and j ∈ νct , we introduce a novel node8i,j ∈ νp−c. Each node
8i,j from the νp−c is connected to the corresponding node
of PET and CT modality. For example in the PET modality,
we set two links between i and 8i,j. One link start i to 8i,j
and the other one start8i,j to i, each link with a cost function
of φ1(i, j). Those types of D-links are used to penalize the
divergence case where fi ̸= fj, but fi,j = fj. In the same
way, two links between j and 8i,j are set with each of cost
φ2(i, j) on the CT modality. Those types of D-links are used
to penalize the divergence case that fi ̸= fj, but fi,j = fi.
Both cost function φ1(i, j) and φ2(i, j) are calculated by below
formulation:

8(i, j) =

{
φ1(i, j) = λ4e(−θ2||Ei−Ej||)

φ2(i, j) = λ5e(−θ3||Ei−Ej||).
(17)

Thus we complete the construction of the graphmodelG =

(ν,E) from the PET and CT modality. Figure 7 illustrates a
pixel sample construction of the graph model. In this work,
we set the 8-neighboring pixels system for dual-modality
NP and NC . In addition that, higher-order clique potential
learning can acquire more complex interactions information
of conditional random variables. However, the computation
cost for learning the clique potential increases exponentially

34022 VOLUME 11, 2023



X. Xia, R. Zhang: Novel Lung Nodule Accurate Segmentation of PET-CT Images

FIGURE 6. The construction of co-segmentation graph.

with the range of the clique and result in a difficult problem
of energy minimization.

Based on the structure of graph model G = (ν,E) above,
we further demonstrate the minimum-cost cut. The core idea
of the minimum graph cut problem is to binary divide graph
by s − t cut C and obtain the minimum weight. The graph
cut C divides all nodes in the graph into two disjoint subsets
S and T by cutting the edges of the graph model, where
the source s is in subset S and the terminal point t is in
subset T . Each edge e ∈ E in the graph model is defined
a non-negative weight we. A path cut is a subset of edges
C ⊆ E such that the terminals points separated on the induced
graph G(C) =< ν,E|C >. Via normal combinatorial opti-
mization, we combined statistics for each cutting path to
calculate the sum value of the overall path cost, the following
formula:

|C| =

∑
e∈C

we. (18)

Graph cut formalism is suitable for pixel-level segmenta-
tion tasks. The total nodes of the graph G = (ν,E) represent
pixels from the dual-modality and the edges represent adja-
cent relevance between the pixels.

Figure 7 illustrates partitioning corresponds to the segmen-
tation of underlying image pixels. Through built into the edge
weights, a minimum cost cut path yields a segmentation result
that is an optimal solution in terms of properties. Therefore,
the optimal co-segmentation solution of PET and CT modal-
ity can be acquired by computing a minimum s− t cut in G.

IV. EXPERIMENTAL SETTINGS
In this section, we show the parameters setting of our fusion
network on dual-modality in detail. Via several experiments

FIGURE 7. Diagram of graph cut algorithm.

verification, we demonstrate the advantages of our proposed
network in PET-CT co-segmentation.

A. PREPARATION DATASETS
The proposed network was validated on the clinical medical
dataset with 135 non-small cell lung carcinoma(NSCLC)
patients(Collected from The Cancer Imaging Archive(TCIA)
[45]). We randomly selected 88 PET/CT images to train our
network, and the remaining 47 PET/CT images were used as
the test dataset. To further verify the generalization ability of
the proposedmethod, a partition of clinical data from [9] were
used for validation.
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Each pair of PET and CT images has been registered by the
special hardware on the PET/CT scanner. The PET scanner’s
transaxial resolution increased from 4.6mm to 10mm from
the center at a radius of 200mm. The axial resolution of PET
increased from 3.5mm at the center to 7.8mm at a radius of
200mm [46], [47]. For the PET modality images acquisition,
the PET images were reconstructed by the Ordered Subset
Expectation Maximization(OSEM) method with 6 subsets
and 2 iterations. The dimensionality of each PET slice recon-
structed image is 128*128. For the CT modality images, the
resolution of each CT slice reconstructed is 512*512.

The ground truth of each pair of the PET/CT images in the
datasets was manual annotation by an experienced radiolo-
gist. With the existing lung lesion segmentation approaches,
we defined a rectangular region of interest(ROI) for each
PET/CT slice, which enclosed the whole lesion region. Our
method and all comparison baseline methods were imple-
mented in the ground truth.

B. COMPARISON METHODS
To systematicallymeasure the performance ofmulti-modality
information fusion to lung lesion segmentation, we compared
our proposed method with the conventional methods(without
deep learning), segmentation method based on deep learning
respectively. The conventional methods include thresholding
and level-set segmentation [48]. The deep learning methods
include single modality such as FCN [49] and dual-modality
such as V-Net [35], W-Net [50] and 3D-UNet+GC [51],
[52]. Besides, we compared our method with some classical
segmentation approaches on the PET modality. For example,
thresholding algorithms-Otsu automatic thresholding and a
graph theory method-Graph Cuts(GC) [52].

C. PARAMETER SETTING AND IMPLEMENTATION
Our proposed method was implemented with Python3.6 on a
standard Linux server with a tesla P100 arithmetic processor.
The graphmodel optimization tool selects themaximum-flow
library [53]. For the PET/CT image registration, we utilized
Elastix [54] tools to register it to the corresponding CT image.
After dual-modality registering, we obtained PET/CT data
with the same pixel resolution and one-to-one corresponding
pixel coordinates of two modality images. In our experi-
ments, we set the parameter as follows: The current state
term coefficients: λ1 = λ2 = 0.9. The smoothness term
coefficients, we set λ3 = 25 and θ1 = θ2 = θ3 = 1.2. The
co-segmentation term coefficients: λ4 = 25 and λ5 = 1.1.
The learning rate of our network was 0.003. In addition that,
the selection of fixed parameters is set via several rounds of
experimental tuning.

D. EVALUATION METRIC
The segmentation methods performance was evaluated by
calculating the Dice Similarity Coefficient(DSC), posi-
tive predictive value(PPV), classification error(CE), sen-
sitivity(SE), and volume error(VE). SE, PPV, and DSC

calculate the similarity(value of spatial overlap) between
the segmented lung lesion volume SA and the ground-truth
volume SG:

SE =
|SA ∩ SG|

|SG|
. (19)

PPV =
|SA ∩ SG|

|SA|
. (20)

DSC(SA, SG) =
2|SA ∩ SG|

|SA + SG|
. (21)

These three evaluation metrics above are ranged from
[0, 1](0:without spatial overlap, 1:perfect spatial overlap).
According to recent research on the PET/CT tumor segmen-
tation [55], we can calculate the accuracy Score by unifying
PPV and SE, as the following formulation:

Score = 0.5(PPV + SE). (22)

Compared with DSC, SE and PPV, CE, and VE measure
the area difference and spatial location bias between the
segmentation tumor pixel and the ground-truth volume [56].

CE(SA, SG) =
abs(|SA| − |SG|)

|SG|
. (23)

VE(SFP, SFN , SG) =
(|SFP| − |SFN |)

|SG|
. (24)

where SFP defines the number of false-positive samples, SFN
denotes the number of false-negative samples. The smaller
value of CE and VE means a more accurate segmentation
result.

V. EXPERIMENTAL RESULTS
In the training stage of the network, We show the training
loss value of the entirety model and the weight convergence
of each side-output. Figure 8 illustrates our proposed method
training result and the baseline methods training results. The
baseline methods include 50% Threshold, W-Net and the
3D-UNet+GC. From this figure, we observe that the loss
value of the 50% Threshold network in the training ini-
tial phase, is up to 0.512. However, deep learning-based
methods have lower loss value in the initial stage. W-Net,
3D-UNet+GC and our proposed method reach 0.188, 0.106,
and 0.066 respectively. On the hand, this improvement bene-
fits from the pre-training of the convolution network, which
substantially shortens the training period. On the other hand,
the introduction of PGM filters irrelevant feature subsets to
a certain extent and improves training efficiency. In the final
phase, the proposedmethod also has a low loss value of 0.044,
which is better than other methods.

We also extracted all weight parameters of each side-output
layer in the initial phase, 20 epoch, 40 epoch, and final phase
of the training process for visualization, which is shown in
Figure 9. In the initial phase, the distribution map of each
weight is scattered, especially outside of the image. The cen-
tral region of the image produces multiple secondary peaks
with the extension of sides. In the 20-40 epoch stage, the
scattered peaks on the sides of the image gradually weaken
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FIGURE 8. Comparison of our propose method with baseline on the
model training stage performance.

or disappear. At the same time, the secondary peak in the
central region tends to be flat and increasingly converges to
the center. In the final phase, the scattered peaks on the sides
have completely disappeared, while the secondary peak in
the central region absolutely converges to the center. On the
whole, the weight values in the side-output trend gradually
converge after the four stages, and the whole detection net-
work also completes the training.

VI. PERFORMANCE VALIDATION ON TUOMR
SEGMENTATION
In this section, we mainly illustrate the performance of our
network and baseline methods(FCN-CT, FVM-PET, Thresh-
old, Level set, V-Net, 3D-UNet+GC, W-Net) on PET/CT
tumor segmentation. First, we compare the probability map
performance between our method and baseline on PET/CT
segmentation.

Figure 10 displays three slices images of the isolated lesion
from three different patient images data in the first col. The
first image shows areas of non-small cell lung cancer, while
others show regions of microscopic nodules. We selected
three representative probability map feature extraction meth-
ods, which named 50% Threshold, W-NET and our method.
In general, all three methods have achieved excellent results
for feature extraction of large tumor areas in the first image.
However, the 50% Threshold method is least effective in
the other two microscopic nodules with serious identification
errors. Although the features extracted by W-Net accurately
delineated the lesion areas, it lost an army of texture informa-
tion and the probability of image contrast is lower. In contrast,
the multi-scale method added in this paper can accurately
extract the contour of the lesion core region while retaining
the texture information in the region completely.

Figure 11 shows three slices of lesion images that overlap
with the surrounding tissue. Both the 50% Threshold and
FCN-CT methods confused the lesion area with the pleura.
In contrast, our method andW-Net can effectively distinguish

the lesion and pleural areas. Comparedwith theW-Netmodel,
our method can retain texture information of the lesion area,
providing a basis for further segmentation tasks.

Although the probability maps of tumor regions could
not accurately delineate the tumor outline, probability maps
could roughly reflect the relationship between the tumor and
its surrounding normal tissues. The probability maps are also
the basis for accurate delineating, for the intensity of the
response has a high similarity to the tumor. This indicated that
the probability maps obtained by our proposed network could
effectively depict and distinguish the tumor and background
region. This is paramount for our method to further fuse the
PET and CT information for accurate segmentation of the
tumor area.

Figure 12 illustrates the segmentation results of FVM-PET
and FCN-CT in a single modality. In figure 12, the black
curve is the ground-truth by manual delineating, and the blue
curve is the segmentation region outlined by the two methods
respectively.We can find that the segmentation recognition of
a single modality has confusion between the lesion region and
normal tissue. In the PET modality, the trachea(Figure 12(c))
is divided into lesion areas and the necrotic areas in the
tumor center(Figure 12(g)) is divided into normal tissue by
FVM-PET. In CT modality, although the FCN-CT method
can effectively segment normal tracheal tissue, it is prone to
interference from surrounding groups with similar contrast.
The main reason for this defect is the lack of multimodal
complementary information.

Figure 13 displays the segmentation results of W-Net,
3D-UNet+GCand ourmethod(the pink curve is ground truth;
the red curve is segmentation results of our method ). In the
images with complex background(in the Figure 13(a)(b)),
3D-UNet+GCpresents a relatively serious segmentation fail-
ure(as the blue curve). In the central necrotic areas, the
dual-modality contradictory information balancing failed and
the edge smoothness is insufficient. In the Figure 13(c)(d),
the segmentation results obtained by 3D-UNet+GC are more
accurate and correctly segment the trachea region. However,
the fineness of the delineation is still insufficient and the
visual effect is rough. The segmentation results of W-Net
has higher fineness and smoother curve(as the green curve).
Though the segmentation of necrotic areas has also been
improved,there are deviations in tracheal region division in
Figure 13(d).
Figure 14 is a series of visual comparison results of the

segmentation for a PET-CT image slice with nodules within
the lung tissue. This figure depicts that our proposed net-
work could effectively segment the pulmonary nodules within
the mediastinum, although the resulting image has slightly
deviated from the ground-truth. In contrast, none of the
other methods can effectively segment lung nodules in the
mediastinum.

Compared with the above two methods, our method is
the closest to the curve drawn by ground-truth(pink curve)
and has the highest overlap area. In the visual, our method
is significantly superior to the W-Net and 3D-UNet+GC
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FIGURE 9. Convergence of side-output in different training phases.

FIGURE 10. Visualization probability map of our proposed method with
50% Threshold and W-Net method on the isolated lesion.

FIGURE 11. Visualization probability map of our proposed method with
50% Threshold, FCN-CT and W-Net method in the case of adhesion to
surrounding normal tissue.

approaches on segmentation accuracy and test stability.
A probable factor is that we used the probability map fusion
by graph cut algorithm for the multi-modality segmentation
while the other deep learning-based methods used complex

dual-modality images register. In another word, this demon-
strates the superior capacity of our designed method to finely
delineate the tumor region and the normal tissue using a graph
model.

In table 1, we list the detailed numerical evaluation
value(DSC, SE, PPV, CE, and VE). Obviously, our method
is superior to the other methods which used the single-
modality(PET or CT) image information. The major factor
for the inferior single-modality segmentation performance of
the PCN-CT method is that the intensity inhomogeneity from
the PET modality is left out of consideration. FVM-PET,
which only uses PET modality, generally has higher indexes
than FCN-CT. The main reason is that the strong intensity
contrast of PET images provides a better segmentation basis.
Similarly, we also compare the proposed method and several
multi-modality tumor segmentation algorithms with other
deep learning-based fusion strategies. The proposed method
has a higher DSC and Score value of segmentation results and
is more stable than the W-Net and 3D-UNet+GC.

In the table 2, we also counted the detailed numerical
evaluation value(Train, Test, IoU, and Inter). Similarly to
other baseline approaches, the performance of our proposed
network is close to the ground-truth, even though a signifi-
cantly larger number of dataset has been learned. Advanta-
geously, our method does not rely on complicatedly heavy
pre-processing stages and allows to segment nodules of
all textures and sizes without the need to define specific
parameters.

In conclusion, our method combining the advantages of
deep learning multi-scale features and specially designed
graph models to construct segmentation networks is help-
ful for more accurate segmentation of tumor regions from
PET/CT dual-mode.

VII. DISCLUSION
PET/CT modality images have been widely implemented in
clinical medical practice. Generally, the imaging of the PET
modality has a high-intensity contrast with a low spatial res-
olution. The tumor boundary is blurred on the morphological
and tumor regions may have intensity inhomogeneity in the
PET modality. Relatively, the characteristic of CT imaging
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FIGURE 12. Segmentation result of FVM-PET and FCN-CT in the single modality.

FIGURE 13. Segmentation result of W-Net, 3D-UNet+GC and our method in the dual-modality.

has superior spatial resolution with a low-intensity contrast
between the lesion region and neighboring normal tissues.
Integrating the advantages of the dual-modality can enhance
the tumor segmentation relative accuracy. Nowadays,

multi-modality tumor co-segmentation by PET/CT still has
some shortcomings. Since the complementary information
from the PET and CT images could be contradictory.
In this paper, we proposed a novel network to integrate
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FIGURE 14. Visual results comparison of the segmentation obtained by our proposed method compared to the four baselines ande the
ground-truth(GT).

TABLE 1. The mean value of DSC, SE, PPV, Score, VE and CE of the segmentation results of different segmentation algorithms.

the PET/CT complementary information for tumor area
segmentation.

On the PETmodality, several normal tissue areas neighbor-
ing the tumor could have a highly similar intensity response.
Since these normal tissue areas could lead to incorrectness
segmentation results as tumors by conventional segmentation
methods. To improve the segmentation accuracy of PET, the
proposed method correctly segments areas as normal tissue

with the constraint of a prior tumor probability graph model
from CT.

On the CT modality, the tumor areas express various sizes
and shapes in complex forms. The tumor also has a sim-
ilar intensity response with its surrounding normal tissue
region. It is arduous for conventional approaches to describe
the tumor on a single CT image. The state-of-the-art deep
learning-based network is used to handle the complex forms
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TABLE 2. The mean value of Train, Test, IoU and Inter of the segmentation results of different segmentation algorithms.

of CT images. Generally, the excellent capability of deep
learning is based on the learning of a large multitude of
datasets with ground-truth labels. However, in the medical
image processing domain, especially on PET/CT modalities,
there are problems with obtaining ground-truth labels data
are arduous and acquiring amount of learning data. In our
work, only a few batch patients were applied to our deep
learning network for learning. First, the tumor region is
effectively separated by a probability map from the com-
plex background. Then graph model further fuses the PET
and CT modality information for more accurate segmenta-
tion of tumor regions. In addition, we use the probability
graph model and side-output mechanism to construct a whole
set of multi-scale feature learning networks. The comple-
mentary information of high-level and low-level is used to
compensate for the information loss of multiple convolution
sampling.

In the fusion dual-modality information, we built a novel
graph model construction to enhance the strength of each
of the PET and CT modalities for tumor regions segmenta-
tion. Inspired by information provided by other modalities in
which tumors are simultaneously segmented from PET and
CT images. We design the weight coefficients to balance the
divergence and contradictory information from each modal-
ity. For measuring the inter-relationship between the pixels at
each coordinate position and surrounding areas, the graph cut
algorithm is used to refine co-segmentation results. Through
the improvements above, our co-segmentation method can
successfully integrate both information from PET and CT
images. Normally, we assume that dual-modality images
could be perfectly registered, i.e. each pixel one-to-one corre-
spondence between PET andCT.However, image registration
bias is hard to void and would seriously affect the fusion
results. In this paper, the algorithm of dual-modality running
on a low-order polynomial term by optimizing graph G has
weak robustness against registration bias [16]. Consequently,
the high-order terms are introduced to experiment with the
robustness of the fusion segmentation model in our future
work.

VIII. CONCLUSION
To further improve the accuracy of the co-segmentation
model, we proposed a novel supervised deep learning

network for fusing complementary feature information from
dual-modality image data. Our method leverages CNN to
derive a series of spatial diverse fusion probability maps
from the dual-modality specific features. Then, quantifying
the relevance of each modality pixel across varying spatial
locations by the graph model. Our achievement from lesion
region detection and segmentation experiments on PET/CT
non-small lung cancer images demonstrated that our pro-
posed method significantly enhanced(improved 3.61% than
W-Net on DSC) than several baseline deep learning-based
approaches for dual-modality image tasks. Experiments illus-
trate that our conceptual method which has a specific graph
model mechanism component to derive fusion probability
maps, which could be a serviceable technique for medi-
cal image analysis applications especially requires integrat-
ing complementary feature information from diverse image
modalities.
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