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ABSTRACT With the technological evolution of mobile devices, 5G and 6G communication and users’
demand for new generation applications viz. face recognition, image processing, augmented reality, etc., has
accelerated the new computing paradigm of Mobile Edge Computing (MEC). It operates in close proximity
to users by facilitating the execution of computational-intensive tasks from devices through offloading.
However, the offloading decision at the device level faces many challenges due to uncertainty in various
profiling parameters in modern communication technologies. Further, with the increase in the number of
profiling parameters, the fuzzy-based approaches suffer inference searching overheads. In this context,
a fuzzy-based approachwith an optimal inference strategy is proposed tomake a suitable offloading decision.
The proposed approach utilizes the Classification and Regression Tree (CART) mechanism at the inference
engine with reduced time complexity of O(| V |2log2 | L |)), as compared to O(| L ||V |) of state-of-the-art,
conventional fuzzy-based offloading approaches, and has been proved to be more efficient. The performance
of the proposed approach is evaluated and compared with contemporary offloading algorithms in a python-
based fog and edge simulator, YAFS. The simulation results show a reduction in average task processing time,
average task completion time, energy consumption, improved server utilization, and tolerance to latency and
delay sensitivity for the offloaded tasks in terms of reduced task failure rates.

INDEX TERMS Computation offloading, decision-making, fuzzy logic, MEC.

I. INTRODUCTION
With the growing usage of mobile user equipment (UE),
the evolution of modern communication technologies viz.
5G and 6G, there is a proportionate increase in demand for
mobile applications which are computationally intensive in
nature. In the last decade, such applications have shown
extensive usage in mobile healthcare services [1], mobile
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learning services [2] etc. But, due to the constrained resource
capacity of UE, there is a need for helpers or servers to
whom the application’s inherent tasks can be offloaded to
do the task execution in favor of mobile devices and send
back the computational results. For example, a study in [3]
shows that many mobile apps of different categories like
gaming, puzzles, and image manipulation are energy hungry.
Usage of these applications has shown a substantial amount
of battery drain on mobile devices. For example, the authors
considered around 550 apps for face manipulation, more than
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7800 apps for gaming, and 717 apps for puzzles, and specific
to a chess game, they have considered around 166 numbers.
The average energy drain of every app group is compared
with the subset. It is observed that 44%, 45%, 42%, and
33% of respective apps which execute high computational
operations cause more energy drain than the normal apps.
This shows that a significant number of apps that involves
high computation require the task to be offloaded and
executed remotely to save UE’s energy consumption. This
leads to the paradigm of mobile cloud computing services.
But, this paradigm has faced many challenges such as service
delays due to remoteness, the need for higher bandwidth, and
degraded Quality of Experience (QoE) for end users.

To overcome the specific challenge of a service delay due
to the remoteness of cloud servers, mobile edge computing
(MEC) plays an alternative role in the smooth computation
of complex applications near to users. It also serves as the
backbone paradigm of 5G communication [4]. Still, MEC
suffers the common challenges of offloading. Those generic
challenges can be classified into three major domains: when
to offload, where to offload, and what to offload [5], [6]. This
work focuses on the context of when to offload the problem
domain where it is required to decide whether the offloading
will be effective or not by considering various parameters like
the size of the task, communication time, computation time,
energy, and delay. The offloading decision should satisfy
the strict constraint that the total time taken in offloading
the tasks and getting the results from offloaded tasks should
be less than the time involved in the local computation.
In many cases, due to the dynamism of various device and
network-level parameters, there lies uncertainty in decision-
making, thus making the decision process a challenging
task [7].

Recently, fuzzy-based approaches in offloading decision-
making [8], [9], [10], [40] have attracted the research
community. But, the majority of fuzzy-based strategies focus
on fuzzification, defuzzification, and conventional inference
engine design strategies with few offloading parameters. In a
realistic environment, the number of offloading parameters
may increase, depending on the type of application, device,
and environment parameters [31]. As the number of offload-
ing parameters increases, the size of rule sets in fuzzy-based
off-loader grows exponentially which leads to a complex
fuzzy inference system (CFIS) [32]. In CFIS-based off-
loader, the decision-making time will be a bottleneck which
will reduce the overall performance of the system and the
inherent objective of offloading will not be met. To the best of
our knowledge, this work has made a first attempt to design
an optimal inference strategy over a conventional fuzzy
inference engine for accelerated performance in the decision-
making of fuzzy-based off-loader in the MEC environment.
To this end, the major contributions of this article are as
follows:

1) A fuzzy-based approach is proposed to handle the
uncertainty in profiling parameters for task offloading
in MEC.

2) The inference engine of the fuzzy-based offloading sys-
tem is optimized, using a Classification and Regression
Tree-based approach on fuzzy offloading rules-set, for
optimal decision-making.

3) A thorough mathematical analysis is performed to
prove the optimal complexity of the proposed inference
mechanism.

4) Extensive simulations are carried out to compare
the performance of the proposed optimal offloading
method with some state-of-the-art offloading strategies
by considering different performance metrics on a
python-based simulator, YAFS.

The rest of the article is organized as follows. A back-
ground study of different approaches to decision-making in
computation offloading is presented in section II. Section III
presents a theoretical analysis of conventional fuzzy-based
decision-making which motivates the design of a fuzzy
optimal decision-making strategy. The proposed network
architecture and problem formation are discussed in sec-
tion IV, followed by system models in section V. Section VI
briefly discussed the proposed CART-based fuzzy optimal
approach with detailed mathematical analysis in section VII.
Section VIII presents the simulation environment using
YAFS and the result discussion. Finally, section IX concludes
with future work.

II. RELATED WORK
This section presents a comprehensive survey in the context
of different approaches followed in offloading decision-
making in MEC. They are categorized into machine learning,
graph theory, auction theory, and fuzzy-based approaches.
The overall survey is summarized in Table 1.

The machine learning approach helps to optimize the
network management processes in the 5G environment [11].
The authors have addressed the issue of placement of the
Service Function Chain (SFC) under 5G network architec-
ture. The underlying problem can be generalized as a task
offloading problem. The SFC is a chain of ordered function
requests (analogous to a set of dependent tasks) from User
Equipment (UE) where each function request is associated
with end-to-end latency and data rate requirements. They
adopted amachine learning-based approach for the prediction
of the number of VNF requirements for SFC using traffic
demand. The problem is formulated as an ILP for jointly
optimizing the placement of SFC in VNF and at the same
time handling end-to-end delay and data rate using a heuristic.
The authors have considered the binary decision strategy
for offloading the task. In [12], they have considered better
service accuracy by applying the machine learning case
study. They have selected the appropriate path to find a
suitable edge server in an industry-based IoT environment.
They have considered decisions based on the accuracy of the
edge server and not considered the constraints on resources.
Machine learning techniques are helpful to improve the
performance of MEC [13]. Machine learning is applied in
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device coordination and task scheduling algorithms. They
proposed a task-scheduling algorithm in a distributed envi-
ronment using a game-theoretic approach. In MEC servers,
the scheduling policy decisions are taken by task scheduling
strategies. Their procedures perform better coordination of
the devices, that want to cooperate for participating in the
distributed computing environment. They have considered
scheduling policy decisions in the distributed task scheduling
scenario in a single MEC server, which may not be suitable
for multiple servers.

The game-theoretic approach helps in better scheduling
of the tasks and making better decisions in selecting the
server in a multi-user, multi-server, and multi-channel envi-
ronment [14]. They have considered the Nash equilibrium
to get the optimized result with a reduction in time, energy,
and cost. The decision is based on the covariance of the
analytic hierarchical process. They have not considered the
selection of the appropriate server in the ad-hoc network.
In [15], they have considered application partitioning in
a dynamic environment. The authors proposed the MCOP
algorithm to make the optimal partitioning, which results
in a reduction in time, cost, energy, and delay. They have
shown the optimal partitioning in a weighted consumption
graph where the mobile-side and server-side executions are
clearly distinguished. The offloading decision is based on
the computational and communicational cost in the WCG in
a task partitioning scenario, which minimizes the response
time. They have not considered task partitioning in a parallel
manner. In [16], Li. et al. considered the overall problem that
arises in the computation and communication model during
the offloading process, they have proposed a cluster-oriented
graph-based partitioning algorithm to reduce the overhead
of the task scheduling process in a dynamic environment.
They have shown how the reduction in energy consumption
takes place after considering the clustering of tasks when
the task size increases. The task scheduling decision helps to
minimize the overhead of the unloading and task scheduling
process, but they have not considered the priority of the task
during execution.

Auction theory played an important role in task scheduling
and choosing the MEC server. In [17], the multi-objective
decision-making strategies are used based on the analytic
hierarchy process model for selecting the suitable server
for offloading. And also the improved auction theory-based
algorithm is used in the task scheduling procedure of
computation offloading to reduce service delay and energy
consumption with better QoE which improves the task
execution speed. The improved auction theory requires the
tasks and VMs in sorted order, but not perform well when
considering the task failure rate. Also, auction theory plays an
essential role in finding a suitable nearby MEC server [18].
The procedure helps in finding better dynamic pricing in
MEC. Their proposed double auction-based method helps in
finding suitable servers only within the range. They have only
considered similar types of tasks for the offloading in edge
servers.

In the dynamic environment of the traffic load variations
with respect to time and vehicle terminal mobility, making
the decision for offloading becomes a crucial task. To make
an effective offloading decision and resource allocation,
the authors proposed a Lyapunov-based optimization algo-
rithm [19], which helps to maintain the stability of the
queue, and the network utility function is minimized by
converting the tasks into subtasks. In [20], the authors
observed similar repeated task offloading request patterns.
So, when the decision for the offloading of the tasks arrives
with repeated patterns, then the probabilistic methods will
be helpful for making the better decision of offloading.
They have computed the computation, communication, and
edge computing probabilities based on varying the task
arrival time, latency, and the size of the task. They have
not considered optimization techniques for decision-making.
In [21], the authors proposed the particle swarm optimization
for taking the decision of offloading the task into the MEC
server. Here they have prepared a mathematical model for
the computation of the cost during the offloading. They have
taken the channel gain matrix to consider the transmission
rate of the task during offloading to the MEC. Their result
shows the effective reduction of energy during the offloading
process. They have not considered the resource requirement
and priority of the task while offloading. In [22], they
have proposed the offloading algorithm based on deep
supervised learning in a dynamic weighted task environment.
They have increased their system utility and near-optimal
offloading decisions are achieved by considering only four
training samples of each MEC server. They have not
considered the MEC scenarios in a dynamically changing
environment.

Fuzzy-based approaches are helpful in making better
decisions during the offloading process. In [9], the authors
have considered a fuzzy strategy in a collaborative envi-
ronment among edge servers by considering the delay-
sensitivity of tasks and suggested a server selection method
to improve QoS. In [10], the input parameters considered
for fuzzification are WAN bandwidth, VM utilization, length
of the incoming task, and delay-sensitivity of the task.
Additionally, the authors have also proposed a fuzzy-based
orchestration strategy among edge servers with the objective
to balance the workload among local edge servers, remote
edge servers, and cloud servers. The authors have not
considered any optimization techniques on rule-set and also
have not considered the task migration scenario between
servers. In [23], they have used the fuzzymethod for decision-
making and the optimal algorithm for node selection. Their
algorithm reduces the cost and improves the response time.
The authors have not considered the workload balance in the
user mobility scenario. In [24], a suitable 3-tier architecture
has been proposed by considering a heterogeneous and
dynamic environment. Keeping in view of the applications
with latency-sensitive nature, the proposed algorithm reduced
the service time with better resource utilization, resulting in
a reduction in task failure rate. They have not considered
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the task dependencies while scheduling the tasks during
offloading. A multi-tier architecture is also proposed in [25]
based on the fuzzy decision-makingmobile edge orchestrator.
Their experiment provides a better result in improving the
processing time and reduction in task failure rate in a real-
time environment. They have not considered optimization
techniques for task scheduling. In [26], a fuzzy-based scheme
is proposed to select edge servers where the decision
parameters considered are latency-sensitivity, the capacity
of servers, and network parameters. FTOM algorithm is
proposed by considering the fuzzy decision for choosing a
better computing device during offloading. They have shown
improvements in the reduction of the completion time and
success rate of the execution of tasks. They have considered
an orchestrator management layer for better management in
the distribution of tasks among the servers. The authors have
not considered any optimization techniques for offloading the
task.

In summary, the above-surveyed works reflect that through
a series of fuzzy-based and similar approaches are available
in the existing literature for task offloading decision-making,
the state-of-the-art approaches suffer inference-searching
overheads to make the offloading decisions, with the increase
in the number of offloading parameters. The same is
thoroughly analyzed in the succeeding section. Further, in the
current generation of 5G/6G networks, delayed offloading
decisions may lead to the degradation of the Quality of
Service (QoS) of the edge computing environment. Hence,
it is desired for optimal offloading decision-making in the
MEC environment.

III. MOTIVATION: A PRIORI ANALYSIS
The above comprehensive review carried out on offload-
ing strategy in MEC reveals that fuzzy-based approach
[10], [26], [29] has recently gained much attention in task
offloading decision problem in MEC due to their effec-
tiveness of modeling uncertainty in offloading parameters
in 5G communication. The majority of strategies focus on
fuzzification, defuzzification, and inference engine design
with a limited set of offloading parameters. But in a realistic
environment, with the popularity of the 5G technology, the
number of offloading parameters may vary from 15-20, based
on application, device, and environment parameters [31].
As the number of offloading parameters increases, the size
of rule-sets grows exponentially which leads to a complex
fuzzy inference system (CFIS) [32]. For example, if the
number of offloading parameters is 15, the rule-sets with
3 linguistic variables will consist of 315 = 1, 43, 48, 907 rules.
In such CFIS, the inference engine searching mechanism
which performs the matching of fuzzified values with the
antecedent part of rule-sets, has a significant impact on the
performance of FIS. In 5G environment, with the availability
of a faster computation facility, the decision of choosing the
offloading for computation should be faster to cope with
the 5G technology. This can be further analyzed in detail as
follows:

For a FIS-based offloading framework, the overall time
complexity (To) can be expressed as:

To = Tfuz + Tinference + Tdefuz (1)

where Tfuz = time complexity of the fuzzification process,
Tinference = time complexity of the inference engine, and
Tdefuz = time complexity of the defuzzification process.
Since Tfuz and Tdefuz processes are dependent on offloading
parameters | V | and their linguistic variables | L |, and
independent of the number of rule-sets, so, they can be
expressed as:

Tfuz = O(K1 | L || V |) (2)

Tdefuz = O(K2 | L || V |) (3)

where K1, K2 = constants time factor for computations
involved in fuzzification and defuzzification process.

But, inference time, Tinference, has major rule-set searching
overhead because with the increase in offloading parameters,
the rule-sets grow exponentially, i.e., | L ||V |. So, Tinference
can be expressed as:

Tinference = O(| L ||V | +K3) (4)

where K3 = constant time factor for aggregation, activation
accumulation in the inference steps [26]. Using (2), (3) and
(4), (1) can be re-written as:

To = O(K1 | L || V |)+ O(| L ||V | +K3)+ O(K2 | L || V |)

= O(| L ||V |) (5)

Equation (4) and (5) indicates that the inference searching
mechanism has a significant impact on the overall time
complexity To of CFIS. Hence, it is required to optimize
the inference searching mechanism which will be more
beneficial for delay-sensitive task offloading.

Based on this priori analysis and motivation, the following
section presents the problem formulation and the underlying
network architecture for the proposed fuzzy-optimal offload-
ing strategy.

IV. NETWORK ARCHITECTURE AND PROBLEM
FORMULATION
This section presents the underlying network architecture, the
offloading framework, and the formalization of the offloading
problem through a mathematical description of the proposed
fuzzy-based task offloading strategy.

A. NETWORK ARCHITECTURE
The proposed 2-tier network architecture is given in Fig. 1.
The different types of user devices (Ui) are present in the
lower layer of the architecture. The middle layer represents
the different access points (APi) available in the nearby
places, and the upper layer consists of the nearby available
edge servers (ES) to compute the computationally intensive
tasks in a 5G environment. The edge layer combines the
different access points and available edge servers. The device
layer combines the different access points and user devices.
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TABLE 1. Summary of related works.

FIGURE 1. (a) MEC Network Architecture, (b) Proposed Fuzzy-based
Offloading Framework.

B. OFFLOADING FRAMEWORK
In this section, we will discuss the proposed offloading
framework process as shown in Fig. 1(b). The bottom
layer represents the user devices with low-power computing
processes. When there will be a requirement of offloading the
task based on the (6), then by using the fuzzy decision maker,
the user will decide to offload the task in the edge server by

using the access points and after the execution is completed
the user can download the result back from the edge
server.

C. PROBLEM DESCRIPTION
Considering the underlying network architecture as shown in
Fig. 1(a) and the offloading framework shown in Fig. 1(b), the
fuzzy-optimal decision-making for task offloading problem
can formally be defined as follows.

Let, at a user U, the number of independent tasks generated
at a particular instance is represented by a task set, T = Ti,
i=1, 2, . . . , n. Based on various profiling parameters denoted
as a set, P = Pi, i=1, 2, . . . , m, it is required to design
the fuzzy-optimal decision maker FDU which will decide
whether a task Ti will be executed locally at U or it will
be offloaded for execution to MEC server ES. Without loss
of generality, the profiling parameters can also be treated as
offloading input parameters since they affect the offloading
decision-making. The output of the FDU is denoted as Y ∗ for
a task Ti which is defined as follows:

Y ∗(Ti) =

{
Local execution of taskTi, if Y ∗(Ti) < Th
Edge server execution of taskTi, if Y ∗(Ti) > Th

(6)

where Th = threshold value for making the offloading
decision, based on the crisp output Y ∗, produced by the fuzzy-
based decision maker FDU . The FDU will run independently
at each user to support distributed decision-making for task
offloading.

The efficacy of FDU will be evaluated in a simulation envi-
ronment using performance metrics; offloading decision time
versus increase in rule-set size, average task processing time,
average task completion time, energy consumption, server
utilization, and tolerance to latency and delay sensitivity for
the offloaded tasks in terms of task failure rates.

V. SYSTEM MODELS
In this section, we will discuss the different types of
system models required to perform the task offloading
approaches. In the decision of choosing between local or
MEC computation we have to consider many parameters
for smooth computation to build different supporting system
models are discussed below.
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A. TASK MODEL
End users are producing various tasks which are either
computed locally or in theMEC server. The decision of where
to compute the task based on some attributes, which are used
to represent the task with 3 tuples as Ti = (Int ,Out t ,Ct ),
where Int is the size of the input data, Out t is the size of the
output data and Ct is the number of CPU cycles required to
execute the task during computation. In our proposed model,
we assume that the tasks are independent and full offloading
of the task is taken place.

B. COMMUNICATION MODEL
In a 5G network, each mobile device will come across a
decision of choosing whether to offload or execute tasks
locally. When the decision is taken for offloading, then the
offloading transmission rate is given by

OT = Blog2
(
1+

Ti × Gi
Ni

)
(7)

where B is the bandwidth of the channel, Ti is the
transmission power of a device, Gi is the channel gain and
Ni is the noise received during the transmission. So, we have
used Shannon’s theorem to calculate the transmission rate,
as it produced a maximum transmission rate with minimum
delay [14].

C. COMPUTATION MODEL
Here we will discuss the computation in local and MEC
servers by considering the size of the data and the clock cycle
of the CPU required to compute the task.

1) LOCAL COMPUTING
When the task is executed locally on the user device, the time
required to complete the task is shown in (8)

TL =
Ci
RL

(8)

where Ci is the computation resource of task I and RL is the
rate of the execution of CPU.

2) MEC SERVER COMPUTING
When the task is computed in the MEC server, the total time
required to offload the selected task in the MEC server is as
follows:

Toffload = Tupload + Texecute + Tdownload (9)

where Tupload = Time required to upload the task in the MEC
server, Texecute = Time required to execute the task in the
MEC server, and Tdownload = Time required to download the
task from the MEC server after the successfully executed As
the output of the executed task is very smaller than that of the
input, we can ignore the download time [33], [34], then the
above offloading (9) will become:

Toffload = Tupload + Texecute (10)

The transmission time of Tupload will represented as below:

Tupload =
Di

Blog2(1+
Pupload×d−α

N )
(11)

where Di is the size of the data uploaded to the MEC server,
Pupload is the uploading power of the user device, d−α is the
distance-based channel gain with α value 4 [17], N is the
noise power of the channel. The time to execute the task in
the MEC server is

Texecute =
Ci

RMEC
(12)

where RMEC is the execution rate of the MEC server. Now we
can compute the final Toffload by combining the (11) and (12)
as follows:

Toffload =
Di

Blog2(1+
Pupload×d−α

N )
+

Ci
RMEC

(13)

In a 5G environment, the decision of choosing a MEC
server for computation offloading will be beneficial when the
offloading time will be less than the local computation time
can be expressed as below:

Toffload < Tlocal (14)

D. ENERGY MODEL
Here, we have considered the energy in terms of battery
consumption by the own user device during the computation
that takes place locally. By applying the (8) we can calculate
the energy consumption by a local computing device as:

EL = PL × TL = PL
( Ci
RL

)
(15)

where PL is the local processing power of the user device.

VI. PROPOSED FUZZY-OPTIMAL APPROACH
When the user wants to execute any computationally
intensive task and needs to review his decision of choosing
between the offloading in the MEC server and the local
execution in its own device. The decision of offloading the
tasks becomes a type of NP-hard problem. For creating a
lower complexity environment, we are using a fuzzy-based
approach as shown in Fig. 2. The five different crisp inputs are
used in the fuzzification process which results in suitable and
optimized fuzzy rules from where we get the crisp output for
the decision to choose a suitable offloading place by applying
the weighted average method. The detailed process is shown
in Fig. 2.

A. FUZZIFICATION
In the fuzzification process, we have considered five different
crisp input variables which are converted to the resultant
fuzzy values. The input variables are assigned with the
corresponding linguistic variables with suitable ranges as
described in Table 2. The input variables such as task size,
network bandwidth, network delay, energy consumption, and
MEC VM (Virtual Machine) utilization are used for making
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FIGURE 2. The Proposed Fuzzy Logic Architecture.

TABLE 2. Input variables with assigned ranges.

efficient decisions for task offloading. The representation
of the input variables, V = {α, β, ρ, δ, γ } where, α

represents the size of the task for calculation of the execution
time; β denotes the bandwidth requirements of the network
for successful offloading; ρ represents the delay in the
network while offloading process, δ represents the need of the
energy required during the execution of the task; γ denotes
the utilization (%) of the VM in MEC.

By considering the fuzzy logic system, three different
linguistic variables are assigned with the five different input
variables. The linguistic variables help to take the proper
decision as when the task size will be large then the
role of MEC evolved, and similarly when the bandwidth
utilization of MEC will be heavy then choosing the MEC
for computation will become a bad option which is trailing
towards the increasing rate of the task failure percentage.
In a similar way, considering the different linguistic variables
result in a better decision-making process. Fig. 3 represents
the different linguistic value representations in a trapezoidal
member function where the x-axis represents the input
variables and the y-axis represents the degree of membership.

The smooth functioning of the fuzzification process needs
different linguistic values such as small (S), medium (M),

and large (L) represents task size. For network bandwidth we
have considered low (L), medium (M), and high (H) linguistic
values; the network delay is associated with the small
(S), medium (M), and high (H); the energy consumption
is assigned with low (L), normal (N), and high (H); and
similarly the MEC VM utilization is linked with light (L),
medium (M), and heavy (H) linguistic values.

Membership functions play an important role to produce
the fuzzy result. The result is calculated by mapping the
input variables with the degree of membership. The output
of the result ranges from 0 to 1 and is denoted by
µA(V ) ϵ [0, 1]. Where µA(V ) represents the membership
function of A, V represents the element of a fuzzy set and
the range of membership values is from 0 to 1. Among the
different types of membership functions such as singleton,
sigmoid, Gaussian, triangular or trapezoidal, we have used
the trapezoidal membership function for the fuzzification
process as it produces better results with low complexity
in a computational-intensive environment. By considering
the trapezoidal membership function in the Fig. 4, the
corresponding membership equation 16 is given below:

µA(v) =



0 v ≤ a1
v− a1
a2 − a1

a1 ≤ v ≤ a2

1 a2 ≤ v ≤ a3
a4 − v
a4 − a3

a3 ≤ v ≤ a4

0 v ≥ a4

(16)

Here A is a fuzzy set and a1, a2, a3 and a4 represent
the x co-ordinates of the membership function where a1 and
a4 are the lower and upper limit respectively, and a2 and
a3 parameters are having the highest membership functions
in between them. The y-axis represents the membership value
between 0 to 1.

The trapezoidal membership function plays an important
role in calculating the fuzzy results. Many papers [35], [36]
have proven the effectiveness of the trapezoidal membership
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FIGURE 3. Membership function of proposed variables.

FIGURE 4. The Trapezoidal Membership function.

function. The representations of the trapezoidal membership
function for our five input variables are shown in Fig. 3.
Considering our designed trapezoidal membership functions,
we got the respective fuzzy inputs which are combined with
the different inference rules to make the final decision for the
system. In the next section, we will discuss the better way to
generate an optimal inference engine.

B. OPTIMAL INFERENCE ENGINE
The inference engine considers the fuzzy outputs produced
by the fuzzification process and results in some rules, and

all these rules are combined together to make a suitable
decision of choosing between the local computation and
MEC offloading.

We got 243 rules after considering our five different
variables with their respective linguistic values. Each rule is
linked with its own decision for example, IF α is small AND
β is medium AND ρ is medium AND δ is low AND γ is
light THEN local execution takes place. We have used the IF-
THEN rule with the AND operator for making the inference
rules.

During the formation of rules, we observed that some
of the rules are coming under one cluster. So, we have
started clustering the inference rules by adding the CART
algorithm based on Gini index, where we have observed
that the resultant decision tree has pruned decision paths.
We are getting m-way search in the general decision tree
when we have considered all 243 rules individually. Here the
tree results in wider branching factors whereas the CART-
based optimal binary decision tree has very less paths due to
the post-pruning clustering effect. As the resultant decision
tree has very less branches, (also called paths) so it produces
the decision quickly. The Gini index for the rule-set RS is
calculated by using the following equation.

Gini(RS) = 1−
m∑
i=1

Pi2 (17)

where i is the number of resultant decisions of the rule-set
RS i. e. the value of i = 1, 2, . . . , m and Pi is the relative
frequency of the decision taken for RS. In our problem, we are
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considering two resultant classes, so the above formula is
further derived as below:

Gini(RS) = 1−
(
Po
T

)2

−

(
No
T

)2

(18)

where ‘‘Po’’ is the number of positive decisions, i.e., MEC
execution and ‘‘No’’ is the number of negative decisions, i.e.,
local execution and T is the total number of decisions. For
individual variable (V), we have calculated the Gini by using
the following formula given below:

Giniv(RS) =
|RS1|
|RS|

gini(RS1)+
|RS2|
|RS|

gini(RS2) (19)

Here, RS1 and RS2 are the 2 decision clusters of rule-set RS.
From here we will be able to know which linguistic variables
will be combined together to form a suitable 2-way division
by considering the lowest result of the Gini.

Based on the 243 rule-sets from table 3 with our proposed
algorithm 1, we have created a CART-based decision tree,
based on Gini index by clustering the similar types of
decision produced by some of the rules. Fig. 5 shows
the overall representation of the decision tree based on
Gini index.

Algorithm 1 Optimal Decision Tree Algorithm
Data: Rule-Set (combination of input variables, V= TS,

NB, DE, EC, VU with corresponding linguistic
variables as (SMALL, MEDIUM, LARGE),
(LOW, MEDIUM, HIGH), (SMALL, MEDIUM,
HIGH), (LOW, NORMAL, HIGH), (LIGHT,
MEDIUM, HEAVY))

Result: Optimized decision tree
Calculate Gini(RS) = 1 – (Po/To)2 – (No/To)2; Where
RS is the rule-set, Po is the positive decisions, No is the
negative decisions and To is the total decisions.
for i=1 to n do

Compute (Gini)v(RS) = 1−
∑n

i=1
RSi
RS gini(RSi);

Where RSi is the greedy division of the rule-set RS.
end for
Set parent(node)← min(Gini);
Repeat steps 2 to 4 to find the MEC execution and Local
execution subgroups of the tree until a leaf node (no
further subgroup for decision) is reached;

C. WEIGHTED AVERAGE METHOD
In literature [37], [38], it has been proved that the fuzzy
weighted average is used to derive the exact membership
function, so we have considered the fuzzy weighted average
to generate the crisp output for making a suitable decision.
Many research papers [8], [26] used the centroid method to
get the final crisp result, but we have considered the weighted
average method for calculating the resultant crisp value. This
process helps us to avoid the complicated iteration process
followed by the other approaches. The weighted average

FIGURE 5. The CART-based binary tree for proposed fuzzy optimal
offloading.

process gives the constant output with less computation and
works well in multiple input and single output environments.
The weighted average method performs best in an uncertain
environment. Algorithm 3 describes the calculation of the
crisp result (Y ∗) by using the weighted average method
whereWi is the minimum weighted value calculated from the
fuzzy input parameters and Yi is the suitable linear equation
corresponding to the available rules of the rule-set. The
threshold value (Th) is compared with the crisp result and
makes a faster decision of the suitable place for computation.
The threshold value is derived from the algorithm 2. From the
set of generated Y ∗ values, the average of Y ∗ generates the
possible place of Th, which results in two sets of Y ∗ values
based on the two decisions as explained in (6). By applying
the (20), as shown at the bottom of the next page in the
algorithm 2, we got the suitable value of Th.

Algorithm 2 Finding the Threshold Value
Data: Y ∗ = {Y ∗1 ,Y ∗2 , . . . . . . ,Y ∗n }
Result: Threshold ′Th′

Find_Threshold (Y ∗);
Initialize i← 1, j←1, k ←1, Decision1 = [ ] and
Decision2 = [ ];
Th←

∑n
i=1 Y

∗
i

n ;
for i = 1 to n do

if y∗[i] < Th then
Decision1[j]← Y ∗[i];
j← j+ 1;

end if
else

Decision2[k]← Y ∗[i];
k ← k + 1;

end if
end for
while (|| Decision1 | - |Decision2|| ≥ 0) do

Compute Th using (20);
end while
return Th;
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TABLE 3. Inference Rule-Set.

Algorithm 3 Fuzzy Based Optimal Decision in MEC
(FODM)
Data: Rule-Set
Result: DECISION
Crisp_Value_Generate (Rule_Set);
for i = 1 to n do

Build Trapezoidal Membership Functions using {α,
β, ρ, δ, γ }
Find min (Wi) and Yi
Calculate Y ∗ =

∑n
i=1

Wi.Yi
Wi

end for
return Y ∗;
if Y ∗ < Th then

DECISION← LOCAL COMPUTATION;
end if
else

DECISION←MEC COMPUTATION;
end if

VII. MATHEMATICAL ANALYSIS
Lemma 1: The conventional fuzzy-based offloading infer-

ence engine is inherently a state-space search tree of height
|V | and branching factor |L| where |V | = number of
offloading parameters and |L| = number of linguistic values
for fuzzification of offloading parameters.

Proof: In a conventional fuzzy-based offloading
framework, the inference engine searches suitable rules for
aggregation and activation by mapping fuzzified values of
offloading parameters with the antecedent part of rule-sets.
Inherently, the searching process can be logically represented
as a state-space search tree as shown in Fig. 6 where the
process starts with one of the offloading parameters (p1) as
root-level. The branching factor b of the decision tree will be
b= |L|, where |L| = number of linguistic variables used for the
offloading parameters. The search process explores the next
level of nodes for offloading parameter (p2) and so on. Hence,

FIGURE 6. State-space search tree.

the height of the tree will be h = |V |, where |V | = number of
offloading parameters. □
Lemma 2: The search time, Ts, on rule-sets in a con-

ventional fuzzy-based offloading inference engine is upper
bounded by O(|L||V |)

Proof: As proved in Lemma 1, the conventional fuzzy-
based offloading inference engine inherently searches the
rules-set in the form of a state-space search tree of height
|V | and branching factor |L|. With the fuzzified value of the
rootlevel offloading parameter (p1), the next level node states
are generated for offloading parameter (p2) and the number
of node states for p2 is = |L|2 and so on. For, the number of
offloading parameters = |V |, the state-space search tree will
be of depth |V |. Hence, the total number of states generated
are:

S = 1+ |L| + |L|2 + |L|3 + . . . .+ |L||V | (21)

Since the inference engine searches every rule for aggregation
and activation, the searching strategy visits every edge of the
state-space search tree and every edge corresponds to one
state in the search space. Hence, the total number of states
(S) will affect the searching time (Ts) for a conventional

Th =


Th if (0 ≤ ||Decision1| − |Decision2|| ≤ 1)
Th+ Step_Value if ((|Decision2| − |Decision1|) > 0)
Th− Step_Value if ((|Decision1| − |Decision2|) > 0)

(20)
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fuzzy-based offloading strategy. So, using (21), Ts can be
expressed as:

Ts = O(S) = O(1+ |L| + |L|2 + |L|3 + . . . .+ |L||V |)

= O(|L||V | − 1)/(|L| − 1)

= O(|L||V |) (22)

□
Lemma 3: The proposed optimal CART-based offloading

inference engine is inherently a binary tree of height, bounded
by θ (log2|RS|), where (|RS|) = |L||V |

Proof: For a fuzzified value of an offloading parameter
(p1), the Gini-index is computed, and based on Gini-index,
the sample rule-sets are split into two clusters of rules-set
as shown in Fig. 5. This process continues iteratively for
other offloading parameters. At each level, the clusters of
rule-sets are split into two further clusters. So, it inherently
induces a binary tree by partitioning the rule-sets |RS| at
each level where every node in the tree contains cluster
of rule-sets. Since it induces a binary tree, by assuming
balance partitioning, the height of the tree will be bounded
by θ (log2 |RS|). □
Lemma 4: The search time, Ts, on rules-set in a CART-

based offloading inference engine is upper bounded by
O(|V |2 log2 |L|)

Proof: As proved in Lemma 3, the proposed CART-
based offloading inference engine produces a binary tree
of height = θ(log2 |RS|). In a binary tree search space, the
searching complexity is majorly affected by the height of
the tree. Considering, Gini-computation of each rule on
offloading parameters, |V |, it can be represented as O(|V |).
Hence, Ts can be written as:

Ts = O(|V | θ (log2 |RS|))

= O(|V | log2 |L||V |)

= O(|V |2 log2 |L|) (23)

So, Ts for the proposed CART-based offloading inference
engine is upper bounded by O(|V |2 log2 |L|). □

VIII. SIMULATION AND OBSERVATIONS
In this section, we discuss briefly the setup of the simulation
environment, followed by the performance evaluation using
standard performance metrics and models.

A. SIMULATION SET UP
For the implementation of aforesaid algorithms, a state-
of-the-art, python-based simulator, YAFS [39] is used
under Windows 8, 4 GB RAM, i5 processor, and python
3.8 environment. The simulator mainly consists of five
important components; network topology, application, pop-
ulation model, selector model, and placement algorithm.
In the network topology component, the proposed network
architecture is realized as a hierarchical topology by mapping
the simulator’s node entity as UEs, APs, and ES, and the
link entity in the simulator is mapped to the connection link

among UEs to APs and APs to ES. The characteristics of the
node entity, IPT (Instructions per simulation time), and RAM
(memory available), and the characteristics of link entity,
BW (Channel Bandwidth), and Channel Propagation speed
(PR) are set as per values given in Table 2 and the simulation
parameters given in Table 4. The latency is dynamically
computed using task size, BW, and PR.
The proposed fuzzy-based algorithms are embedded in the

application component of the simulator with user-defined
functions with the defined fuzzy-based rule sets as NumPy
arrays as given in Table 3. The population model, selector
model, i.e., the service orchestration model, and placement
algorithm are set as default in the simulator because they
have the least impact on the proposed device-level offloading
decision-making. Based on the decision outcome produced
from the proposed FODM algorithm, the off-loadable tasks
are sent through message (m_a buffer in the simulator) and
responses are collected through reply message (m_b buffer).
The simulator after the successful execution of tasks produces
service time, time_in (the instance of receiving tasks at
ES), time_out (the instance of completion of tasks by ES
and time_reception (response received by device, i.e., UEs).
These are recorded in a CSV file which is produced by the
simulator. From these parameters, the performance of the
algorithms is evaluated using standard performance metrics
and is shown in Fig. 8 to 14.

B. SIMULATION RESULT
In this section, we have presented the performance of
the proposed FODM scheme and justified the benefits in
the offloading environment. FODM is evaluated using task
processing time, completion time, task failure rate, server
utilization rate, and energywith respect to the number of tasks
produced by the user devices by using the YAFS simulator
in the Python environment. For a fair comparison, we have
considered a similar set of parameters for decision-making
at UE level or device-level, as that of three fuzzy-based
approaches: FCTO [9], Sonmez et al. [10], and FTOM [26].
Before evaluating the proposed scheme, the justification of
the proposed optimal inference engine is explained first.
The conventional inference engine uses the m-ary decision

tree for the decision-making process, which results in
overhead to the system as the resulting complexity is
in the exponential term already proved in the lemma 1
discussed earlier in this paper. To reduce the complexity,
we have used the CART-based binary decision tree for the
decision-making process as shown in Fig. 5. Due to the
logarithmic time complexity of the binary decision tree,
the resultant decision-making process becomes faster than
the conventional decision tree model. Fig. 7 represents the
behavioral graph among the number of offloading decision-
making times versus the increasing number of offloading
parameters and the size of the rule-set. The number of
offloading parameters is considered from 1 to 15, the size
of the rule-set is taken in the logarithmic scale format
for simplicity and the offloading decision-making time is
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FIGURE 7. Performance evaluation between fuzzy-based and CART-based
offloading decision.

represented in seconds. The grey color plot represents the
fuzzy-based decision-making process and the pink color
plot represents the CART-based decision-making process.
In Fig. 7, when the rule-set size is small, then both the
conventional decision tree and the CART-based decision
tree result in a similar type of decision-making time. But
when the number of parameters increased more than 3,
then the difference is observed between the fuzzy-based
and CART-based decision-making processes. The different
paper uses different parameters to find out the effective result
such as Sonmez et al. uses WAN, MAN, and WLAN to
represent 4 variables, FCTO uses 5 variables to represent
localMEC and neighboringMEC and FTOMuses 5 variables
to represent WAN with different VM utilization, but when
we will combine the approaches to make an efficient model
with a large number of variables then the complexity will
be increased exponentially, which can be overcome by our
optimal inference engine with logarithmic complexity. Fig. 7
justifies the use of CART in the optimal inference engine
for making a much faster decision than the fuzzy-based
conventional offloading decision.

The efficiency of the proposed FODM scheme is measured
by using the different simulation results discussed in Fig. 8
to 14. Table 4 represents the list of simulation parameters
used in our result analysis. Fig. 8 represents the performance
evaluation based on the average processing time (in y-axis)
with respect to the number of tasks (in x-axis) by comparing
the different schemes such as FCTO, Sonmez et al., and
FTOM with our proposed FODM scheme. Here all four
approaches result similarly when the number of tasks is
within 200. When the task size increases the Sonmez et al.,
and FCTO approaches take more processing time due to
the traffic congestion in WAN and conventional decision-
making process respectively. Our proposed approach and
FTOM perform the same till the number of tasks becomes
150. When the number of tasks increases gradually, there
is a slight difference in the performance because of the
difference in the decision-making process as the FTOM uses
the conventional method of decision-making. For example,

TABLE 4. Simulation parameters.

FIGURE 8. Performance evaluation using average task processing times.

FIGURE 9. Performance evaluation using average task completion time
with a number of tasks.

considering a point at 200 tasks, the average processing time
of Sonmez et al., FCTO, FTOM, and FODM are 3.6, 3.2, 2.8,
and 2.4 respectively, which clearly shows that our proposed
approach is performing the best compared to other three
approaches.

Fig. 9, represents the task completion time on the y-axis
with the number of tasks on the x-axis. The task completion
time is the combination of the processing time and network
delay. So, by considering the Fig. 8 result, we can conclude
that a better processing time results in better performance
in the task completion time. The simulation result shows,
our proposed approach reduces the task completion time by
approximately 37.08%, 27.24%, and 4.46% when compared
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FIGURE 10. Performance analysis based on latency-sensitive and
latency-tolerant task ratio with average task failure rate.

with the Sonmez et al., FCTO, and FTOM approaches
respectively.

The latency-sensitive and latency-tolerant are complemen-
tary to each other means, when any task is of a latency-
sensitive type, then it never comes under the latency-tolerant
type, and also similarly latency-tolerable tasks are never
sensitive to the latency in the 5G environment. So, we have
considered the ratio of latency-sensitive and latency-tolerable
tasks with respect to the average task failure rate and average
task completion time. The starting index of the x-axis begins
with 0:10, which means we are considering the latency-
tolerable offloaded tasks. The x-axis ends with 10:0, which
means we are considering the latency-sensitive offloaded
tasks. In Fig. 10, all the latency-tolerant tasks are executed
at any time with minimum or maximum latency, resulting
in very low task failure rates as 0.3%, 0.24%, 0.23%, and
0.22% for the approaches Sonmez et al., FCTO, FTOM,
and FODM respectively. But all the latency-sensitive tasks
cannot wait for the maximum time to be executed, resulting
inmaximum task failure rates as 15.59%, 10.46%, 8.92%, and
6.54% for the approaches Sonmez et al., FCTO, FTOM, and
FODM respectively. Our proposed approach performs better
when we are considering the latency-sensitive offloaded
tasks, as we have used the optimal inference engine to make
the faster decision, which helps in the faster execution of the
latency-sensitive tasks without waiting for a longer time in the
5G network. From the above discussion, we can conclude that
latency-sensitive tasks are more prone to failures, and need to
be handled carefully in a 5G environment.

In Fig. 11, the average task completion time is represented
by the ratio of tasks. The simulation result is considered by
taking heavier task sizes in a latency-sensitive environment.
Here the latency-tolerant tasks are having very little com-
pletion time and all the approaches are taken within 0 to
1 second time to complete the execution of the task. But
when we are considering the latency-sensitive tasks, results
in a clear distinction among all the approaches. The best
performance is produced by our proposed FODM approach.

FIGURE 11. Performance analysis based on latency-sensitive and
latency-tolerant task ratio with average task completion time.

FIGURE 12. Performance evaluation using average task completion time
with task size.

Our proposed approach reduces the task completion time
by 69.4%, 64.59%, and 46.01% when compared with the
Sonmez et al., FCTO, and FTOM approaches respectively.

In Fig. 12, FODM performance is analyzed by considering
the task completion time in the y-axis with the size of the
task in the x-axis. From the task size 2 to 6 GI, all the
approaches are performing in a similar pattern, when the task
size increases more than 6 GI shows the distinct variation
of the other approaches in comparison with the proposed
FODM. As we have discussed earlier, the completion time
is dependent on the processing time, due to the faster
processing approach proposed in our method, the resultant
completion time also becomes less in comparison with the
other approaches. Here we have analyzed the approaches by
considering the offloading process only in MEC.

The utilization percentage of the server is analyzed in
corresponding with the task size is explained in Fig. 13. Here
our proposed approach does not perform well as we have not
considered the VM utilization in the MEC server. When the
size of the task is small, the Sonmez et al. and our approach
behave similarly, but as the task size is gradually increasing
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FIGURE 13. Performance evaluation using average server utilization with
task size.

FIGURE 14. Performance evaluation using average energy with task size.

more than the 4 GI, the Sonmez et al. approach performs
better than our approach. When the task size is 20 GI,
the server utilization of FODM, Sonmez et al. FCTO and
FTOMare 7.21%, 11.52%, 17.15%, and 18.24% respectively.
From this result, we can conclude that the FTOM approach
performs well in comparison with the other approaches as
FTOM has implemented the VM utilization in MEC servers
in an effective manner.

Fig. 14 shows the energy consumption plot with respect
to the size of the task. The minimization of energy
consumption plays a vital role when we are considering
the computationally intensive task in a resource constraint
environment 5G environment. Mobile devices are associated
with limited energy, so the main aim is to how effectively
utilize the energy for getting better performance. In the
graph, Sonmez et al. and FCTO approaches are consuming
more energy than the FTOM and FODM approaches. At the
beginning when the sizes of the tasks are small, then the
energy consumption in FTOM and FODM are resulting
in similar performances, but when the task size is more
than 6 GI, the plot distinguishes the approaches clearly.
The FODM scheme performs well as we have used the

optimal inference engine to take faster decisions which help
in the reduction of the energy consumption by 16.79%,
34.71%, and 39.53%with the approaches FTOM, FCTO, and
Sonmez et al. respectively.

IX. CONCLUSION
The development of task offloading strategies for mobile
edge computing has become a center of attraction because
of its multi-faceted challenges at various levels. At the
device level, taking an optimal decision to offload a task
or not, is extremely challenging in a real environment due
to the uncertainty present in profiling parameters that affect
offloading of tasks. Further, in a realistic environment, with
the increase in the number of offloading parameters, the
recent state-of-the-art fuzzy-based approaches face degra-
dation in performance due to exponential searching time
complexity at the inference engine. In this context, an optimal
fuzzy-based strategy, FODM, is proposed using classification
and regression tree-based inference mechanism to minimize
searching time complexity and optimize the decision-making
time of offloading which is specifically beneficial for delay-
sensitive tasks in a real-time network. The proposed FODM
is compared with state-of-the-art fuzzy-based approaches
for task offloading using different performance metrics
through simulations and an in-depth mathematical analysis
is carried out to prove its efficacy. The extension of this
work will be carried out on multiple-users and multi-server
environments by embedding centralized task queuing and
edge orchestration methods.
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