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ABSTRACT Unmanned Aerial Vehicles and the increasing variety of their applications are raising in
popularity. The growing number of UAVs, emphasizes the significance of drones’ reliability and robustness.
Thus, there is a need for an efficient self-observing sensing mechanism to detect real-time anomalies in
drone behavior. Previous works suggested prediction models from control theory, yet, they are complex by
nature and hard to implement, while Deep Learning solutions are of great utility. In this paper, we propose
a real-time framework to detect anomalies in drones by analyzing the sound emitted from them. For this
purpose, we construct a hybrid Deep Learning based Transformer and a Convolutional Neural Network
inspired by the well-known VGG architecture. Our approach is examined over a dataset that is collected
from a single microphone set located on a micro drone in real-time. Our approach achieves an F1-score of
88.4% in detecting anomalies and outperforms the VGG-16 architecture.Moreover, the framework presented
in this paper reduces the number of parameters of the well-known VGG-16 from 138M, into a shrunk version
with 3.6M parameters only. Additionally, our real-time approach, results in a smaller number of parameters
in the neural network, and yet yields high accuracy in anomaly detection in drones with an average inference
time of 0.2 seconds per second. Moreover, with an earphone that weighs less than 100 grams on top of the
UAV, our method is shown to be beneficial, even in extreme conditions such as a micro-size dataset that is
composed of three hours of flight recordings. The presented self-observing method can be implemented by
simply adding a microphone to drones and transmitting the captured audio for analysis to the remote control
or performing it onboard the drone using a dedicated microcontroller.

INDEX TERMS Acoustics, UAVs, anomaly detection, CNN, deep learning, transformers, Wav2Vec2.

I. INTRODUCTION
Unmanned Air Vehicles (UAVs) are nowadays used in many
industries, such as the food industry [1], retail [2], health-
care [3], etc. In addition, They can be used in cinematography
to follow stunt doubles during outdoor filming [4], and can
even help with agriculture by doing redundant tasks like
seeding, planting, or spraying [5]. Moreover, when combined
with Artificial Intelligence, UAVs get incredible abilities like
3D modeling in the aftermath of an area where a disaster
occurred for analysis, and even doing tasks mentioned above
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autonomously [6]. With all of these UAV features, UAVs
are fragile and can be damaged or suffer from malfunctions,
especially when they are autonomous [7]. While executing
such tasks, UAVs can be damaged by insects or birds, which
can cause damage to the UAV’s blades or rotors. This can
ruin the UAV’s stabilization and render it incapable of flying
straight. The problem may go unnoticed and the drone acts
as if it is following properly on the predefined path, while in
reality, it is diverging, causing the drone to miss the crops.
As such, these kinds of anomalies should be detected in real-
time by the UAV and should be reported immediately in order
to prevent long-term problems preemptively [8]. There are
cases where anomalies can be detected from the software
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FIGURE 1. A standard BLE (Bluetooth Low Energy) earphone is used as a
‘‘stethoscope’’ for sensing the drone’s ‘‘well-being’’. The middle (main)
image shows a Tello micro drone (sub 100 grams) with an earphone
located a few centimeters above it (see also the lower left image). A minor
anomaly in the propeller ‘‘tip’’ is shown in the upper left image. Another
(more visible) anomaly is demonstrated by the blue propeller (which has
slightly different parameters than the black ones). On the right side - two
examples of the experiments are presented in outdoor scenarios; the
upper image shows a relatively high altitude flight (about 8 meters above
the ground, to avoid ‘‘ground effects’’) and the lower left image shows
the drone flying in a low altitude (about 1 meter above the ground).

by monitoring the sensors and moving parts’ actions and
observations against certain thresholds, but the real world is
much more complex and external influences are much harder
to detect. In addition, UAV’s blades can be damaged [9] by
an unexpected object hitting the UAV, or the wind that can
push it into a sturdy object. So the question is, how can we
detect these anomalies in real-time? One can note in Figure 1
the overall suggested solution - A Bluetooth earphone is used
as a ‘‘stethoscope’’ sensor for the drone.

Most of the UAVs today ‘know’ how to stabilize them-
selves, but the situations mentioned above disrupt this mech-
anism. When attempting to modify the UAV’s blades, there
is one thing that can be easily noticed, which is the noise that
the UAV makes is different from its normal state. When a
UAV gets hit, it immediately tries to re-stabilize itself, and
this re-stabilization causes the rotors to spin unevenly, some
faster than the others, to get the UAV back to its normal state.
This process produces a sound that is different from the usual
sound emitted from the UAV in its normal state. Moreover,
a damaged [10] blade also emits a different sound than when
the UAV is in a normal state [11]. The method proposed in
this work for detecting the anomalies in the emitted sound
from the UAV, uses a lightweight microphone mounted on the
UAV, that can be connected to an external computer through
Bluetooth or any other wireless connection. The audio stream
is then passed to the external computer on which the proposed
algorithm is executed. The algorithm uses the power of Deep
Learning (DL) [12], [13] [14] to classify sound clips into
anomalous or regular ones.

Deep learning is a machine learning technique that teaches
computers to do what comes naturally to humans, which is
learning by example. This technique can be used for many
different tasks including prediction of future events [15],
classification of data to groups [16], generation of new
data [17], Anomaly Detection (AD) [18], [19] and more.
A Convolutional Neural Network (CNN) is a sub-class of

DL architectures, most commonly applied to analyze visual
imagery [20]. CNNs utilize the convolution operation, using
kernels or filters that slide along input features and provide
feature maps. CNNs can also be used for audio analysis [21],
by turning audio into a 2D representation called a ‘spectro-
gram’. Similar to an image, the data can be processed by
a CNN, as a spectrogram is a visual representation of the
spectrum of frequencies of a signal as it varies with time.

The use of DL for AD is not a new thing [22] since DL is
useful when working with data that has patterns. DL models
are able to learn patterns from the data that was given to them
as an example, whichmakes DL good at AD. An anomaly can
be defined as the occurrence of an unusual event or a deviation
from a common rule. Using DL, it is possible to learn to clas-
sify the activity of a system over time as anomalous or regular.
AD in UAVs [8] is no different; the goal is to identify unusual
activities or patterns, by monitoring a stream of sensor-based
information coming from the UAV. A DL model can identify
if the current input is anomalous or not by learning from
examples [23]. The use of DL for AD in UAVs has many
advantages [24], where one of them is the ease of use and
implementation. The first methods proposed for AD in UAVs
were based onmodels from control theory [25], which require
a good understanding of linear and non-linear systems, and
knowing how to do the required math to implement these
methods, while DL only needs sufficient data. Moreover,
today there are many frameworks and libraries that make it
quick and easy to implement and train DL models.

In this paper we use a Transformer-based model [26], [27].
A Transformer is a DL model that adopts the mechanism of
self-attention [28], differently weighting the significance of
each part of the input data. Transformers are also used for
AD in many different fields such as, aerial videos from a
UAV’s [29], system logs [30] and brain-scan images [31]. The
self-attention mechanism of Transformers is very useful for
AD, making it easier for DL models to recognize irregular
activities in the input. The Transformer used in this paper
takes an array that represents the sound frequencies of a
second-long recording and outputs amatrix onwhich the self-
attention mechanism is applied, then the CNN architecture
processes it and outputs the probability that an anomaly has
occurred. That is, we use twomodels from theWav2Vec2 [26]
group of transformers, which are the Wav2Vec2-Base and
Wav2Vec2-ASR-960h, and compare their performance on the
task of AD in UAVs. The Wav2Vec2-Base is a transformer-
based model created for speech recognition and has been
pre-trained on 960 hours of unlabeled raw speech data for
speech recognition tasks. Wav2Vec2-ASR-960H is another
transformer-based model, that has been trained and fine-
tuned to identify English letters in raw sound. Generally,
we denote our framework by Wav2BC+ which stands for
the exploitation of the Wav2Vec2-Base and the VGG-based
CNN. Wav2Vec2 has been shown to be highly effective
with relatively low training data [32], [33]. This model takes
raw audio as input and outputs an image-like representation
of the input data, which can then be passed to a classifier
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TABLE 1. List of abbreviations.

that can differentiate between an anomalous and regular
sound.

Finally, The contributions of this paper are highlighted as
follows in Section I-A;

A. OUR CONTRIBUTION
1) Development process of a compressed version of the

well-known VGG-16 framework that is extremely
smaller in terms of number of parameters in the neural
network, that is capable of yielding high accuracy in
anomaly detection in UAVs.

2) Our real-time approach achieves State-of-the-art per-
formance compared to two baseline approaches, and
high accuracy at detecting anomalies in non-ideal envi-
ronments, which results in a working implementa-
tion of a system for real-time anomaly detection in
UAV’s. Namely, we outperform the traditional VGG-
based CNN architecture by introducing a Transformer
as feature extraction and acoustics embedding.

3) Quick training process over only 3 hours of recorded
data, which leads to a fast convergence due to the
use of Transfer Learning, from an acoustic pre-trained
model. That is, we tackle a problem in acoustics using
technologies used for speech recognition.

4) Exploitation of an earphone and minimal hardware so
that it can be used on any size UAV without affecting
its functionality.

The remainder of this paper is structured as follows:
Section II surveys related work on anomaly detection in
UAV’s, as well as DL approaches; Section III describes the
data collection procedure as well as the organization and
preparation for training the system; Section IV describes the
proposed method in detail; Section V presents the results
between the different approaches compared in this work;
Finally, Section VI Summarizes this paper. For ease of read-
ing, Table 1 provides a list of abbreviations that are commonly
used in this paper.

II. RELATED WORK
The topic of AD in UAVs has been covered by quite a
few works [34], [35] [36]. One of the first categories of

approaches to this diagnostic problem utilizes model-based
fault diagnosis with sophisticated [37] methods to evalu-
ate model residuals and conclude on the fault’s occurrence.
In [25], the method is based on a nonlinear observer [38],
which is an extension of linear observer [39] design tech-
niques using transformations related to linear observability
matrices. The work in [40] later boosts the method above by
adding an adaptive observer, making it more dynamic, and
then in [41], the method before is implemented for real-time
application on multirotor UAV’s. However, the studies above
only address the consequence of the rotor’s impairment, since
the analyzed type of anomaly is simulated Loss of Effective-
ness [25] in thrust generation. Some other works follow the
same approach with various methods of model-based fault
estimation algorithms and following control strategies such
as sliding mode control [42], Model Predictive Control [43],
and Kalman filters [44].

The challenge of AD is often best solved using data-driven
fault detection methods [29], [45], [46], [47]. They are based
on statistical modeling and classification algorithms that use
sensor-based data as input and output the probability of the
occurrence of an anomaly. In [48], the proposed method
included a hybrid Recurrent Neural Network [49] (RNN)with
Long Short TermMemory (LSTM) [48] and CNN [20] archi-
tecture and reached approximately 92% accuracy in detecting
actuator faults, using the state information from the UAV,
like pitch, roll, pitch rate, roll rate, yaw rate and the input
commands sent to the motors as input to the hybrid network.
However, the dataset that was used in that work was recorded
in ideal lab environments in a predefined setup platform.Most
of these works are focusing on two types of sensor-based
information, vibrations, and sound. In addition, the work
in [48] copes with faults in UAVs, however, it excepts from
the scope of this work for one main reason, which is the usage
of LSTM; [48] presents an LSTM-based architecture, on top
of a CNN, which means that the required memory amount
is way too big for tiny UAVs, and real-time applications as
well, which are the main interest of this scope. As a result,
we train a small architecture that receives as input acoustic
segments of size 1-second, and any greater segment length
might result in a failure, in the case of tiny UAVs. That is,
whenever the acoustic signals get longer (up to an anomaly),
LSTMs are hard to converge into a detection. The reason is
that the probability of preserving the vocal context from an
acoustic segment that is extremely far from a segment that
is currently being processed diminishes exponentially with
the distance from it. That is, whenever ‘normal’ i.e. acoustic
segments are long, the model might forget the content of
positions that are distant in the acoustic segment. Another
problem with LSTMs, is their parallelization inability of
the acoustic segments processing, since they are required
to be processed sequentially (frame by frame). In conclu-
sion, LSTMs based methods are suffering from the following
problems:

• Sequential computation restricts parallel data
processing.
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• LSTMs have no strict modeling ability of short and long-
range dependencies.

• The distance between the frames’ position in an acoustic
signal is linear.

The existence of AI in low memory devices such as UAVs
and drones is not new; that is, in [50] for instance, was
introduced a survey of methodologies that combines deep
learning and data science algorithms (e.g., statistics, linear
regression, Bayesian methods). Another review was intro-
duced in [51] and discusses new and emerging forms of
data and technologies which seems to be a new field for
future developments on AI, as well as in [52] that presented
a method for the conceptualization of healthcare system that
is supported by autonomous AI devices (such as drones or
UAVs) that can use edge health devices with real-time data.
As the AI field progresses more and more from a complex
architecture standpoint, in this paper we use a Transformer-
based architecture (explained thoroughly next in this section),
in order to avoid the main LSTM three drawbacks. A handful
of works [53], [54] show how the use of vibrations as the
main source of information helped achieve highly accurate
detections, by extracting the vibration data using sensors and
then use this data as input to a model that then classifies it as
anomalous or normal. An instance of a work [55] that used
this approach, achieved more than 94% accuracy in detecting
faults in UAV components, by using vibration data as input
to a fuzzy ART neural network model [56] that then outputs
the probability of the anomaly has occurred.

A few works describe fault detection in UAVs by ana-
lyzing sound [57], [58]. The work in [59] used sound as
a source of input data to a Feed Forward Neural Network
model that outputs the probability that one of the blades is
partially or fully broken. This method achieved 98% accuracy
in detecting broken or partially broken blades. Those results
show great potential in using sound emitted from the UAV
as the source of data for AD with neural networks. However,
the experiments were performed with a stationary, ground-
fixed UAV and an external high-class microphone, which is
ideal. Moreover, their training methods were based on the
assumption that an imbalance in the blade is equivalent to
a partial loss of the blade. In another work, [60], a similar
neural-based algorithm with physically impaired rotors and
data collected in a real flight scenario resulted in 92% accu-
racy at detecting broken blades, although they can only detect
whether a blade is broken or not. As such, the work in [57]
takes into account a wider range of fault classes including
broken rotors, bearing failure, and eccentric shaft faults. Their
algorithm is based on classical machine learning methods
such as k-Nearest Neighbors (KNN) [61], and Support Vector
Machine [62], but the dataset was recorded in a noise-free
lab, from a mobile-phone positioned about 1 meter from the
UAV to make the recordings as clear as possible due to the
indoor environment.

Our proposed method is meant to work in non-ideal envi-
ronments, and the dataset that was created for our method
was recorded in a variety of environments with noise. The

work in [58], has exploited two kinds of DL models, RNN
and CNN, to see which of them achieves better accuracy in
AD. The task was to identify which rotor is malfunctioning
and classify themalfunction under two fault classes, fractured
tip, and edge distortion. The proposed method in the afore-
mentioned work reached an accuracy of up to 98% by using
an array of microphones which enables us to identify which
rotor is malfunctioning but the use of an array of microphones
makes the system complicated and might not be applicable
to smaller UAVs. Moreover, the dataset that was used to
train the model was in an indoor environment and without
noise. However, in this paper, we propose an improvement
by using a Transformer to weigh parts of the input differently
to accentuate important features, and a system using a single
microphone that weighs significantly less as a consequence.

Acoustic data as captured by a microphone has a single
dimension by nature (a stream of samples in time). Yet, it can
be presented as a two-dimensional matrix (Y-axis as its fre-
quency dimension, and the X-axis as samples-in-time). Thus
such a matrix can be presented as an image. The approach
proposed in this paper is inspired by a CNN model called
VGG [63], which was already used in the domain of acoustic
analytics [64], [65]. The VGG is a CNN model used in the
domain of computer vision, for tasks like image classifica-
tion [66] and object detection [67]. The VGG architecture
managed to achieve 8.0% top 5 error [63] on the test set at the
task of image classification with the ILSVRC dataset, which
consists of 1.3M images for training and 100K for testing and
has 1000 different classes. VGG has scored the second high-
est among the tested models, right behind GoogLeNet [68]
with a margin of 0.1%, but it has fewer layers and is much
less complex.

Recall that in this paper we apply a Transformer architec-
ture before the CNN, from the domain of speech recognition
called Wav2Vec2 [26], that used in many tasks of speech
recognition [69], and that has proved to be efficient whenever
the dataset is small [32]. The Wav2Vec2 model takes raw
sound data as input and outputs a more informative repre-
sentation of that data [26]. Although the Wav2Vec2 is meant
for tasks involving speech recognition, in this workwe use the
same Transformer to solve an acoustic problem. Our intuition
is that an anomaly in acoustics can be considered an anomaly
in patterns of speech, like speech impediments, as can be seen
in [70] that shows how theWav2Vec2 can be used for the task
of identifying speech sound disorders. The Wav2Vec2 [26]
is a group of transformers, that are mainly used in the
context of speech recognition. The Wav2Vec2 family uses
representation-learning to transform sound into a matrix rep-
resenting that sound, while also accentuating important fea-
tures in the sound. Representation-Learning [71], is a set of
techniques that enables a system to automatically learn the
representation of raw data for tasks like classification and
detection [72]. This set of techniques replaces manual feature
extraction and feature engineering. Transformers are a type
of representation-learning that uses Self Supervised Learning
(SSL) [73] to learn the best representation of raw data for a
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given task. SSL is a technique in machine learning that is used
to train a model with unlabeled data, usually before training
it again later with labeled data for fine-tuning [26], [74], [75].
There are several approaches for solving the problem at hand,
though part of them are only capable of detecting very spe-
cific anomalies. While other methods use machine learning
to classify a wide range of classes, yet, such methods usually
require a massive dataset for the learning (training) process.
The proposed method in our work uses a more compact and
realistic dataset and uses a Transformer to handle the noise in
challenging environments.

III. DATA COLLECTION
The following section describes the data collection phase,
namely; (i) the manner in which the dataset was generated;
(ii) what features were taken into account and their influence;
and (iii), the differences between particular labels and their
distribution.

The dataset1 used in this paper were recorded manually by
the authors. The micro UAV used for recording is the DJI’s
Tello drone. This quadrotor is a cost-effective micro-drone
and is popular among beginners, intermediates, and even
professional drone developers. In addition, this quadrotor (see
Figure 1) is very easy to manipulate, since there is an official
SDK for Android and iOS smartphones for controlling the
quadrotor. Also, a user-friendly interface Tello SDK written
in Python is included. This allows the owners to connect
and send commands to it through WiFi and run self-made
scripts to control it from a computer. Moreover, the Tello
drone is particularly small and has multiple flight modes that
make it very agile while flying. These advantages couldn’t
be ignored, and as a result, the Tello was chosen for the
data generation task. The data generation process was not
that simple, due to two major disadvantages; (i) the Tello
has a short flight time, which is about 5-10 minutes; (ii) The
Tello’s WiFi communication uses the UDP protocol. Since
this protocol works like a stream, the quadrotor might miss
some commands, and whenever this situation occurs, it may
land or even crash due to the loss of communication. Unde-
sired crashes and landings forced us to scratch the current
recording and start over.

For the recording procedure, it was a deliberate choice
to test the significance of the microphone’s weight on the
balance of the quadrotor. The recording setup was as follows:
a small piece of Tin (about 5 cm long) was taped pointing
upwards on top of the quadrotor at its center of mass using
Duck-tape. At the tip of the Tin piece, we placed a small JBL
Tune 225 TWS Bluetooth earphone acting as a microphone,
and the quadrotor was controlled by a computer that also
received the audio stream from the earphone over Bluetooth.

The recording procedure took place in different environ-
ments: closed rooms and open spaces, all with and without
noisy environments [76] (mostly human speech), since these
constraints may affect the sound waves that the microphone is

1Available upon request from the authors, as well as the code.

recording. These constraints were taken into account so that
the dataset would be as diverse as possible, and to get better
performance in non-ideal environments. The recordings were
done both manually and automatically using two different
scripts to control the quadrotor. The scripts also produced a
log file in which information was written about the quadrotor
every tenth of a second. The scripts logged information such
as recording time, flying status (if an anomaly has occurred
or not), barometric sensor data, yaw, pitch, and roll angles,
height, and battery percentage. Next, the script saved the
recorded audio in a WAV (Waveform Audio) file format and
the log file corresponding to that recording in CSV (Comma-
separated values) file format. For the automatic recordings,
the script included numerous movement patterns that were
pre-defined for variety, such as square orbits and turns in
mutable altitudes.

Different types of anomalies were recorded, including par-
tially broken and defective blades, undesired movements,
or destabilization and hits from an external source. To create
even more diversity, all the recordings were done with the
Tello’s original blades as well as third-party blades (slightly
lighter than the original ones). Furthermore, actually broken
blades were used in the recordings as well. Each recording
lasts 2 minutes long. In order to understand how and when
the small UAV experienced an anomaly while recording,
we combined the movement commands sent to the quadrotor
with the data received from its sensors. For instance, when-
ever the quadrotor moved and the command it received was
to stay still, but an unwanted movement occurred. Another
instance of an anomaly is whenever a hit is recognized. A hit
can be characterized as a drastic unwanted change in the
quadrotor’s accelerometer sensor, hence, the same approach
can be modified to similarly identify hits from external
sources.

The audio recordings consist of 3 hours long of record-
ings, separated into two minutes for each audio recording
(as mentioned before), each with a corresponding log file
describing it. After the recording phase, and in order to use it
for training the DL model, data engineering was needed. The
audio recordings were split into 1-second long soundtracks
and were saved into a directory with a unique name. Using
the log files, for each recording a corresponding label was
also written and saved as a text document) file format in a
different directory with the same name as the recording. The
result was two directories, one with WAV files of 1-second
long sound bits, and the other contained the labels for each
second-long sample.

The total number of samples is 11,040. In order to verify
that the collected data is as diverse and non-trivial as we
wished, we manually looked up for different types of Normal
records and Anomaly records. To do that, we visualized the
data. A natural challenge we faced while exploring the dataset
was the class imbalance; a quick statistical analysis showed
that 85% of the samples were labeled as Normal. In contrast,
only 15% of the samples were labeled as Anomaly. This is not
a surprise, since in most of the flight time the UAV doesn’t
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FIGURE 2. An example of an emission output matrix, of the Wav2Vec2 -
Normal sample.

FIGURE 3. An example of a graphical representation of a spectrogram -
Normal sample.

have any anomalies. In Section V, we discuss two methods in
which the data is processed into visual images: spectrograms
and emissions. One can see in Figures 2 and 3, a particular
sample from an audio recording, labeled as ‘‘normal’’, and
visualized as an emission from the Wav2Vec2 [26] Trans-
former (Figure 2) and as a spectrogram (Figure 3)
We found out that flights with partially broken and defec-

tive blades are much harder to classify as anomalies, and are
visually very similar to normal recordings. Hence, we spec-
ulated that our CNN (discussed in Section IV) would have a
hard time catching these anomalies. Figures 4 and 6 shows
two different samples, labeled as ‘‘anomaly’’, and visualized
as an emission from the Wav2Vec2, and as a spectrogram in
Figures 5 and 7.
The first sample visualizes part of the quadrotor’s stabi-

lization process. One can easily distinguish between the two
samples. On the other hand, the second sample is much harder
to classify as Anomaly. This sample visualizes one second
from a flight where the quadrotor had a defected or partially
broken blades. The sound emitted from the rotors was almost
identical to the sound of proper rotors and will be explained
in Sections IV and V. Finally, one can note in Figure 8 the
Data-Collection process described in this Section; Namely,
the Main-Computer component runs the process that sends

FIGURE 4. An example of an emission output matrix, of the Wav2Vec2 -
Anomaly sample.

FIGURE 5. An example of a graphical representation of a spectrogram -
Anomaly sample.

FIGURE 6. An example of a graphical representation of an abnormal
emission.

the commands to the UAV, then the UAV creates sound
waves during its flight time. Next, two threads are working
in parallel, which is the (i) transmission of information from
the microphone to the computer, and (ii) transmission of yaw,
pitch, and roll states from the UAV’s Accelerometer to the
computer. Finally, this process outputs whether the UAV is in
Anomaly or Normal state.

IV. OUR APPROACH
The following section describes our proposed method to
detect anomalies, of types: (i) unplanned stabilization, and
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FIGURE 7. An example of a graphical representation of an abnormal
spectrogram.

(ii) malfunction/tackled propeller in UAVs using its emission
sound.

The remainder of this section is structured as follows;
Section IV-A describes in detail the idea of a Transformer
and discusses the specific Transformer based architecture
used in this work. Next, Section IV-B introduces the VGG
architecture and discusses its use both as a separate model and
as part of the proposed hybrid model in this work (Figure 9).
Section IV-C presents the Transfer Learning technique and its
implementation using the Wav2Vec2 over the CNN model.
Finally, Section IV-D describes the final algorithm.

A. Wav2BC+ AND Wav2Vec2-ASR-960h
Wav2Vec2 [26] is a group of transformers, that are mainly
used in the context of speech recognition. The Wav2Vec2
family uses representation-learning to transform sound into
a matrix representing that sound, while also accentuat-
ing important features in the sound. Representation Learn-
ing [71], is a set of techniques that enables a system to
automatically learn the representation of raw data for tasks
like classification and detection [72]. This set of techniques
replaces manual feature extraction and feature engineering.
Transformers are a type of representation-learning that uses
SSL [73] to learn the best representation of raw data for a
given task. SSL is a technique in machine learning that is used
to train a model with unlabeled data, usually before training
it again later with labeled data for fine-tuning [26], [74], [75].
Note that in the scope of this paper, the self-supervised learn-
ing is a process already learned in the pre-trained Wav2Vec2
model, from which we perform the transfer learning. That is,
the Wav2Vec2 model only was fine-tuned with our datasets
and was not trained or re-trained using SSL.

As aforementioned, theWav2Vec2 takes raw audio as input
and outputs an image-like representation of the input data,
which can then be passed to a classifier that can differ-
entiate between an anomalous and regular sound. Namely,
both the Wav2Vec2 models are composed of a multi-layer
based convolutional feature encoder, and receive as input a

raw audio matrix, and their output are latent speech repre-
sentations for each time-step among T time-steps. Next, the
speech representations are fed into a Transformer, that cre-
ates T representations, extracting information from the whole
sequence. Finally, the feature encoder output is discretized,
in order to represent the targets (outputs) as a self-supervised-
based objective function. The feature encoder contains a
temporal convolution followed by a normalization layer and
a GELU [77] activation function. Then, the encoder’s total
stride computes the amount of the T time steps, which serves
as the Transformer’s input. In this manner, it is possible to
distinguish between the sound emitted from the rotors, which
was almost identical to the sound of proper rotors. Next, the
Transformer produces contextualized speech representations;
that is, the feature encoder output is fed into a context network
that follows the Transformer architecture as in [78]. The main
change is that instead of fixed positional embeddings [78]
which encode absolute positional information, theWav2Vec2
exploits a convolutional layer that behaves as if it was a
relative positional embedding. The convolution’s output is
being added to the inputs, followed by aGELU [77] activation
function, and then apply the layer normalization process. One
can note in Figure 10, the Wav2Vec2 architecture.
The Wav2Vec2 has been originally designed for human-

speech recognition. Yet, it is possible to exploit it for the
general acoustic problem as in UAVs. Wav2Vec2 leverages
self-supervised training in a continuous framework from raw
audio data. It builds context representation over continuous
speech representation and self-attention capture dependen-
cies over the entire sequence of latent representation end-
to-end [79]. Speech representations can be used for several
downstream tasks [80], such as AD in UAVs using sound.
Similar to human speech, UAVs produce continual raw audio,
when in a normal state that can be considered as a represen-
tation of silence in human speech, its anomalies are reflected
as notable shifts in the acoustic signals (as in human speech),
which can be recognized clearly. Therefore, exploitation of
the Wav2Vec2 over an AD in UAVs sound can improve the
model’s ability to detect patterns in the data, which will
eventually increase the model’s accuracy.

B. CNN (VGG-16)
In this research, we have used an altered version of a popular
CNN architecture, which is the VGG-16 [63]. The VGG-16
model is designed for image classification and object local-
ization and won first place in ILSVR (Imagenet Large
Scale Visual Recognition) competition in 2014. Although the
VGG-16 model is mainly used for image processing tasks,
it can be used for speech processing and phoneme recognition
by converting a sound segment into a spectrogram or other
visual forms that can be represented as an image. As a result,
the model can classify segments or extract features from
them. In order to train a VGG-based model, the input consists
of a fixed-size 224 × 224 RGB image, where the only pre-
processing being made is subtraction of the mean RGB value
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FIGURE 8. The Data-Collection process described in this section.

FIGURE 9. The pipeline of the anomaly detection framework proposed in this work.

from each pixel, in any image of the training set. Next, the
image is being passed through a chain of convolutional layers,
with extremely small filters of size 3 × 3. The stride of the
convolutions is set to 1 pixel, which is the spatial padding of
the convolution operation. The layer’s input is processed so
that the spatial resolution is preserved after the convolution
operation. Next, a spatial pooling operation is performed,
followed by five max-pooling layers. The max-pooling com-
putation on top of the convolutions is performed over a pixels
window of size 2 × 2, with a stride of size 2. Next, a chain of
convolutional layers is followed by 3 fully-connected layers,
where the third performs a classification of over 1000 classes
from the ILSVR [81] competition. Finally, a softmax layer
outputs the probability for each class. Throughout the neural-
network architecture flow, all of the hidden layers are trans-
forming the mathematical operations with a ReLU activation
function [82]. We used the VGG-16 model in two methods:
(i) an altered version of the VGG-16 CNN architecture as a
standalone model; (ii) as the classifier in a two-layer model.
In the second method, we use the Wav2Vec2 to extract fea-
tures from sound segments and visualize them as images that
are used as input to the CNN. In the next subsection, we go
into detail about the second method that uses the Transfer
Learning technique.

C. Wav2Vec2 OVER CNN
Our main approach is based on the combination of both the
Wav2Vec2 and the VGG-based CNN, on which a Transfer
Learning [83], [84] is applied. In DL, Transfer Learning is
the application of knowledge gathered from a model that was
trained for a specific task, that can later be reused as the
backbone for a more advanced task. This approach is popular
in DL, by applying pre-trained models that are used as the
starting point on Computer Vision and Natural Language
Processing tasks given the vast computing and time resources
required to develop neural network models for these prob-
lems [85]. Using the Transfer Learning method can improve
the chances of solving the AD in UAVs by using acoustic
signals, having only 3 hours of recorded data, by using pre-
trained Transformers [86]. The Wav2Vec2 is a pre-trained
model with over 960 hours of data to its training set so that
it can perform well on tasks that are similar in nature to the
tackled task in this paper. The exploitation of the Transfer
Learning technique with a pre-trained Transformer over a
CNN model (VGG), contributes to faster convergence of the
model while improving its accuracy [87]. In this approach, the
input of the model corresponds with the Wav2Vec2’s input
as presented in Section IV-A, and its output is an image-
like input which is the raw audio of the sound emitted from
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FIGURE 10. Wav2Vec2 Architecture.

TABLE 2. A summarization of the VGG-16 layers modifications, that are
manifested in the CNN of the Wav2BC+ architecture.

the UAV, that serves as input to the VGG-based architecture
employed in this paper (Figure 12). As for the output of
the VGG-16 model (Section IV-B), our CNN model that is
based on theVGG-16 architecture, and only outputs 2 classes,
instead of 1000 as mentioned in Section IV-B, as the chal-
lenge in this work is the detection of anomalies and normal
states in UAVs flight.

D. PROPOSED METHOD
In this paper we propose a method for AD in UAVs, using
only the sound emitted from them. The method is based on
a transformer-based model for binary classification, so that
the model gets as input the raw sound that is emitted from
the UAV, and outputs the probability that an anomaly has
occurred. In this paper the model is built from two compo-
nents, a transformer-based architecture for feature extraction
called Wav2Vec2 [26] and a classifier model that is inspired
by the VGG CNN architecture [63]. Figure 11 shows the
architecture of VGG-16, while Figure 12 presents ours, which
is the mini-VGG version of VGG-16.

Observing Figures 11-12, one can note that the main dif-
ferences between the VGG-16 architectures, and the one pre-
sented by the CNNof theWav2BC+, are as follows in Table 2.
The result of ourmodified CNN architecture of theWav2BC+
is a decrease in the number of parameters of the well-known
VGG from 138M, to a shrunk version of the VGG with only
3.6M parameters.

Our approach demonstrates that it is possible to use tools
from the domain of speech recognition and analysis in audio-
analysis problems. It starts with the usage of the Wav2Vec2
in order to extract features from the raw audio data to get a
representation of the audio. The new representation is then
passed to the VGG-based CNN model, which serves as the
classifier that computes whether the sound is anomalous or

regular. In the training process, we used 1-second long sound
samples of sound. To make training faster and create a more
reliable model, we used transfer learning to fine-tune the
transformer and train the classifier model. One can note in
Figure 9 an illustration of the pipeline proposed in this paper.

V. EXPERIMENTAL EVALUATION
The following section is dedicated to the validation of
our hypothesis that using Transformer-based techniques for
UAVs AD using sound can outperform classical CNN tech-
niques. Our evaluation was conducted on an HP Omen com-
puter, Windows 11 64Bit OS with 3.20GHz AMD Ryzen
7-5800H CPU, 32GB of RAM, and NVIDIA GeForce
RTX 3070 GPU, using PyTorch (v1.14.0) and scikit-learn
(v1.1.3).

A. DATASETS FOR EXPERIMENTAL EVALUATION
This section presents 3 different datasets, each of them
with its purpose and uniqueness for an appropriate experi-
ment. Table 3 summarizes the datasets used for each of the
experiments.

B. ANOMALY DETECTION USING CLASS-WEIGHTS
Recall that in our dataset, 85% of the samples were labeled as
Normal. In contrast, only 15% of the samples were labeled
as Anomaly (Section III), which leads to an imbalanced
dataset situation. The problem that arises from an imbalanced
dataset, i.e. the example ratio from the Anomaly and Normal
classes, should be addressed before any further progress. Sup-
pose that our classifier would always produce ‘‘normal-state’’
as an answer for all the test examples, i.e. always predict
Normal. Even though it would obtain ∼ 85% of Accuracy,
over our dataset (as ∼ 85% of the dataset contains Normal
examples), it would still perform poorly [88] when examin-
ing the Precision and Recall measures which indicate how
successful the model is (the accuracy, precision, and recall are
discussed thoroughly in the continuation of this section). As a
result, we used a class-weighted cross-entropy loss function
which was introduced with each class’s weight, as the inverse
ratio of the number of examples of each class in the dataset,
i.e. |Anomaly|−1 for class Anomaly, and |Normal|−1 for
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FIGURE 11. A graphical illustration of the VGG-16 architecture. It consists of 5 blocks composed of 2 or 3 convolutional layers followed by a pooling
layer, and 3 dense layers before the output layer.

FIGURE 12. A graphical illustration of the architecture proposed in this
work.

class Normal. Since our aim is to detect anomalies, the ratio
mentioned above is normal. Therefore, we also tested the
use of non-weighted binary-cross-entropy [89] loss function
on the Transformer.

C. CROSS-ENTROPY & BINARY-CROSS-ENTROPY
Next, we present the loss functions considered for themodels’
construction in this work. We used both the Binary Cross
Entropy (BCE), and the regular Cross Entropy (CE) one,
as follows:

The BCE compares a target y with a prediction p in a
logarithmic and hence exponential fashion. In neural network
implementations, the value for y is either 0 or 1, while p can
take any value between 0 and 1. The formula of the BCE loss
is presented in Eq.(1):

BCE = −(log(p)y+ (1 − y)log(1 − p)) (1)

When visualizing BCE loss for a target value of 1, the loss
increases exponentially whenever the prediction approaches
the opposite - 0. This suggests that small deviations are
punished albeit lightly, whereas big prediction errors are
punished significantly. This fact makes the BCE loss as a
good candidate for binary classification problems, whenever
a classifier has two output classes. The Sigmoid activation
function receives the last layer output (logits) as an input
and outputs a single value between 0 and 1 which represents
the probability of class 1 being the target class (while the
probability of class 0 = 1 - P(class 1)). The BCE loss function
except for a single input feature between 0 and 1. Therefore,
the Sigmoid activation function is commonly used for binary
classification problems as it can ensure the output of a neural

network fits the BCE loss function’s input expectations. The
formula of the Sigmoid is presented in Eq.(2):

Sigmoid =
1

1 + exp (−x)
(2)

The CE loss [90] on the other hand, compares a hot-dot
target 1-dimensional vector y with a 1-dimensional probabil-
ity vector p, both of them in a logarithmic and exponential
fashion. In neural network implementation, the target vector
consists of i = 1, 2, . . . ,M entries such that exactly M − 1
entries are equal to 0, and the entry representing the correct
class is equal to 1, while the prediction vector consists of M
entries with values between 0 to 1. The CE loss is given as
follows in Eq.(3):

CE = −

M∑
i=1

ylog(p) (3)

As for the output layer, we used the Softmax activation
function that receives a 1-dimensional vector (logits) and
outputs a 1-dimensional probability vector that contains the
probability of each class in the vector. Therefore, using a
Softmax activation function over the last layer output will
ensure that the output of the model will fit the CE loss
function. This fact, makes the CE a good candidate for Multi-
class classification problems, whenever a classifier has more
than 2 classes. Yet, it is possible to use the CE for binary
classification problems, as it is a private case. The equation
of the Softmax activation function is given by Eq.(4):

Softmax =
exp (x)∑
exp (x)

(4)

where x is a specific element in the 1-dimensional output
vector of the Softmax activation function. Next, we discuss
in Sections V-D and V-E the models constructed in this
experimental evaluation.

D. SPECTROGRAMS AND CNN
A spectrogram is a visual representation of the spectrum of
frequencies of a signal as it varies over time. Spectrograms are
widely used in speech processing [91] and phoneme recogni-
tion. It is because when using spectrograms, it is possible to
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TABLE 3. Datasets statistics for each of the experiments in this section.

distinguish a specific frequency and its decibels over time.
This can be very useful for recognizing the vocal anomalies
of a flying UAV.

The first thing that comes to mind is how to adjust the
dataset, so the CNN can be trained and evaluated on it. Since a
spectrogram can be saved as an image, we could insert it into
the CNN as input. Hence, for each recorded sample, we gen-
erated a spectrogram. The spectrograms are generated by
NFFT (Non-equispaced Fast Fourier Transform) [92], with
a sample rate of 16,000Hz. Each frame of audio is windowed
using the Hann function [93] into a window of length 512,
and the number of points of overlap between frames is 384.
Such as, each spectrogram is represented as an image of size
320 × 240 pixels.
The ‘‘new’’ dataset contains the spectrograms and their

labels. Each spectrogram was loaded into the dataset as grey-
scale images since RGB images are not 2-dimensional. The
data set was then shuffled and split into 3 subsets: training
set (80% of the entire dataset which contains 8832 sam-
ples), validation set (10% of the entire dataset which con-
tains 1104 samples), and test set (10% of the entire dataset
which consists 1104 samples). It is important to note that
the proportion between the output classes is kept. Next, the
CNN model uses the Adam optimizer [48] with a learning
rate of 0.0001, with the BCE loss function. The CNN was
trained with our training set for 10 full epochs, with a mini-
batch size of 16. At the end of each epoch, we evaluated the
CNN’s performance by validating its stats with our validation
set. The mini-batch size of the validation epoch is also 16.
Before starting a new epoch, we took the measurements of
loss and accuracy for the training and validation sets. After
the training session ended, we evaluated the model using
the testing set. Next, Figure 13 demonstrates that the non-
weighted BCE loss function outperforms the weighted-class
cross-entropy loss function. We provided the training process
both for the CE and BCE loss functions for 8 epochs. One
can note from Figure 13 that after 1 epoch only, the BCE
loss already converges intominimal value, yet for comparison
purpose its loss is presented up to 8 epochs as the CE loss
function.

E. Wav2Vec2 OVER CNN
The Wav2Vec2 group of Transformers provides a set of
pre-trained Transformers, such as Wav2Vec2-Base [32]. that
was pre-trained on 960 hours of unlabeled audio from
LibriSpeech dataset, and Wav2Vec2-ASR-Base-960H that
was pre-trained on the same 960-hours dataset, and was fine-
tuned for an Automatic Speech Recognition (ASR) task. The
usage of pre-trained transformers allows us to fine-tune the
Transformer with a small dataset (our dataset consists of

FIGURE 13. Comparison between non-weighted BCE loss function and
weighted Cross-Entropy loss function over 8 epochs.

∼ 3 hours of labeled audio). When using pre-trained models
to perform a task, in addition to instantiating the model with
pre-trained weights, one also needs to build pipelines for
feature extraction and post-processing, in the same manner,
they were done during the training. To build this pipeline,
we used the torchaudio.piplines module which contains pre-
pared pipelines for each of the Wav2Vec2 models. The idea
of Transfer Learning is widely used in this section via the
Transformer which is designed to transfer its input sequence
to another one with the help of two parts (Encoder and
Decoder [94]) and the CNN model.

In order to implement the idea of transfer learning on
our models (Transformer and CNN), the pipeline includes
both models. The following sections describe the fine-tuning
process while emphasizing the transfer learning idea in it as
well. That is, Section V-E1 describes the fine-tuning process
using an already fine-tuned (to a different problem) Trans-
former; Next, Section V-E2 presents the idea of fine-tuning a
pre-trained Transformer for AD in UAVs acoustic problems
without it ever been introduced to a similar problem before.

1) FINE-TUNING Wav2BC+ WITH Wav2Vec2-ASR-960H
The following model consists of a pre-trained Transformer
(Wav2Vec2-ASR-Base-960H) which has been fine-tuned to
ASR problems and a CNN. The input for the Transformer is
a 1-second waveform with a shape of a 1-dimensional array
and a sample rate of 16000Hz. The waveform is transferred
to a tensor with a shape of [1], [29], and [49] (Transformer’s
output) and inserted as an input to the first layer of the CNN
model.

Next, the fine-tuning process begins as the CNN model
starts its training loop over the outputs from the Transformer.
The CNN was trained for 10 full epochs, with a mini-batch
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FIGURE 14. Comparison between non-weighted BCE loss function and
weighted Cross-Entropy loss function over 8 epochs.

size of 16. By the end of each epoch, we evaluated the CNN’s
performance by validating its stats using the validation set.
One can note from Figure 14 that the non-weighted BCE loss
function outperforms the weighted-class CE loss function.

2) FINE-TUNING OF Wav2BC+
The following model consists of a pre-trained Transformer
(Wav2Vec2-Base) and a CNN. The input for the Transformer
is a 1-second waveformwith a shape of a 1-dimensional array
and a sample rate of 16000Hz. The waveform is transferred
to a tensor with a shape of [1, 49, 768] (Transformer’s output)
and inserted as an input to the first layer of the CNN model.
Notice that the output of Wav2Vec2-Base and the output of
ASR-960H-Wav2BC+ has different shapes, which is a direct
result of the last Transformer being already fine-tuned to a
specific case (as ASR).

The CNNwas trained for 10 full epochs, with a mini-batch
size of 16. By the end of each epoch, we evaluated the CNN’s
performance by validating its stats using the validation set.
After the training session ended, we evaluated the model
using the testing set. One can note from Figure 15 that the
non-weighted BCE loss function outperforms the weighted-
class CE loss function.

F. RESULTS & MODELS COMPARISON
In order to measure how good a model is, there are many
different metrics that can indicate the quality of a model. For
classification problems with a balanced ratio of the classes
present in the training dataset, accuracy is good enough and
can indicate quite well how good a model is at a certain task.
Accuracy aims to answer the question of how close a given set
of measurements (observations or readings) are to their true
value. The formula for computing the Accuracy is presented
in Eq.(5):

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(5)

where True Positive (TP) is the number of inputs true and the
model is classified as true, True Negative (TN) is the number

FIGURE 15. Comparison between non-weighted BCE loss function and
weighted Cross-Entropy loss function over 8 epochs.

of inputs that are false and the model is classified as false.
False Positive (FP) is the number of inputs that are false but
the model classified as true and False Negative (FN) is the
number of inputs that are true but themodel classified as false.

However, accuracy is not a good enough indicator when-
ever the data is imbalanced, meaning that there are much
more occurrences of a class relative to other classes. In this
paper, the dataset is highly imbalanced (see Section III), i.e.
the anomalies are by definition uncommon, hence naturally
they occur infrequently in our dataset. Therefore, we use a
different metric, called F1-score, which is a better metric
for classification performance measurements in imbalanced
datasets [95]. The F1-score uses two other metrics called
Precision and Recall, to present a more precise reflection of
the models’ performance.

The Precision, is a measure of how many of the positive
predictions made are correct (TP), and its formula is pre-
sented in Eq.(6), as follows:

Precision =
TP

TP+ FP
(6)

The Recall, (or Sensitivity) is a measure of how many of
the positive cases the classifier correctly predicted, over all
the positive cases in the data, and its formula is presented in
Eq.(7), as follows:

Recall =
TP

TP+ FN
(7)

Finally, the F1-score is a metric that combines both Pre-
cision and Recall. It is generally described as the Harmonic-
Mean [96] of these two. A harmonic mean is a way to calcu-
late an average of values, generally described asmore suitable
for ratios (such as precision and recall) than the traditional
arithmetic mean. The idea is to provide a single metric that
weights the two ratios (precision and recall) in a balanced
way, requiring both to have higher values for the F1-score
to rise. The formula of the F1-Score is presented in Eq.(8),
as follows:

F1 − Score = 2 ·
Precision · Recall
Precision+ Recall

(8)
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In order to create a fair and precise comparison between
the 3 Models tested in this paper, each Model was measured
using the following metrics: (i) Accuracy; (ii) Precision;
(iii) Recall; and (iv) F1-Score. Table 4 presents each model’s
performance, based on each of these four metrics:

At first glance, the results of these 3 different models
trained as part of this study, it is not very clear which one
produces better results in the test set. After a deeper under-
standing of the results, it is possible to evaluate which model
yields better results for different types of tasks. The decision
to train the models over 10 epochs is a result of the nature
of the models, they start to divergence after 5-8 epochs,
as presented in Figures 13, 14, and 15.

Since our dataset is imbalanced, the accuracy is inap-
propriate enough performance measure for the problem we
study. The main reason is that the overwhelming number of
examples from the majority class (Normal) will overwhelm
the number of examples in the minority class (Anomaly),
meaning that even poor and untrained models can achieve
accuracy scores of 90 percent and above. Therefore, compar-
ing the accuracy of the models is effective, compared to other
measurement metrics, as mentioned in Section V-F.

1) TRANSFORMER BASED MODEL VS CNN BASED MODEL
A comparison between the models from Entries (1) - (2)
which implements the idea of Transfer learning in Table 4,
and the model presented in Ent.(3) which implements the
classic idea of CNN (VGG) based model, is sufficient to
this study as it tests our thesis regarding the importance of
using Transformers in order to detect anomalies in acoustic
emitted from UAVs. Considering the Precision of each model
in the Table, it can be clearly seen that the Transfer learning
idea presented by Ent.(1) and Ent.(2) in Table 4 yields better
performance, compared to the classic technique mentioned
in Ent.(3). One can conclude from this that these models are
almost never wrong when they detect an Anomaly.
In terms of Recall, Ent.(2) yields a value that is very close

to the performance in Ent.(3). Yet, The model from Ent.(3)
yields better Recall values than Entries (1) - (2). Despite of
the tiny gap between the Recall of Ent.(3) and Ent.(2), it is
possible to say that the Transfer Learning technique yields
a model that manages to identify a fairly high number of
Anomalies, which is more important to the problem presented
in this work.

Next, and as can be seen from Ent.(2), a Transformer over
CNN is a better model for tasks that focus onminimizing false
positives, while the model from Ent.(3) is better for tasks that
focus on minimizing false negatives. In imbalanced datasets,
the goal is to improve Recall without hurting the Precision.
Based on that, we might conclude that the Transformer over
CNN model did better in the test compared to the classic
model. However, neither Precision nor Recall tells the whole
story, i.e. a model might have excellent Precision with terrible
Recall and vice-versa. Thus, the F1-Score provides a manner
to express both concerns with a single score. One can note
from Table 4 in Entries (2) - (3) that the model that performed

better is the Transformer over CNN, since its F1-Score is
higher than the CNN Model.

These results support the thesis of this paper since it claims
that Transformer based model would perform better than
a CNN Model. The reason for this difference between the
results is based on the structure of the models. The Trans-
former based Model is using self-attention layers, which
helps the Model identify important features in the input and
emphasize them. On the other hand, CNNs in their nature
are not searching for important features in their input, but
search for patterns over the entire input instead, which makes
the detection process harder since there is no attention to the
important details. Thus, the exploitation of Transfer Learning
with the Transformer and the CNN allows the CNN to train
and look for patterns over the important features and thus
improve its performance.

2) Wav2Vec2-ASR-BASE-960H VS Wav2Vec2-BASE
The performance comparison of Entries (1) - (2) in Table 4
provides us with a deeper understanding of the selection of
the Transformer. In addition, it shed light on whether using a
fine-tuned (to a different problem such as ASR) model, that
might result in underperformance compared to a regular pre-
trained Model.

According to Table 4, in terms of accuracy, Ent.(2) yields a
more accurate model (0.92) compared to Ent.(1) which yields
0.90. Since our dataset is imbalanced, the accuracy mea-
surement method is not a good enough metric for this case.
Therefore, the other metrics such as the Precision, Recall, and
F1-Score are more accurate metrics.

As for the Precision, Ent.(1) yields a precision of 0.85,
while Ent.(2) yields a Precision of 0.87. Similarly, the Recall
value is higher in Ent.(2) which is 0.89, while Ent.(1) ends
up with a Recall of 0.82. As a result, the F1-Score in Ent.(1)
is 0.84 which is lower than the F1-Score in Ent.(2) which is
0.88.

Considering the results of the models that correspond
with Entries (1) - (2), it is possible to say that the regular
pre-trained Transformer (Ent.(2)) performed better than the
already fine-tuned Transformer (Ent.(1)). The main reason
for this gap in results between these 2 models is the fact
that fine-tuning a Transformer to a specific problem (ASR)
reduces the number of output features that the Transformer
feds the CNN with. As a result, the CNN receives a small
number of features to search for patterns on, which leads the
model to under-performance, compared to the model with the
regular Transformer. Therefore, one can conclude that the
Wav2Vec2-Base Transformer over a CNN (VGG) model is
the best, out of these two.

G. RESULTS - OUT OF DISTRIBUTION EXPERIMENT
A vital criterion for deploying a powerful classifier in many
real-world AI-based applications is the ability to detect test
instances that are considered sufficiently far away from the
training-set distribution. Many classification problems, such
as speech recognition, visual object detection, and Anomaly
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TABLE 4. Results table for the comparison of the Transformer Wav2Vec2-ASR-Base-960H + CNN (VGG-based), Transformer Wav2BC+ (VGG-based), and
the CNN (VGG-based) on spectrograms. Ent.(3) represents an ablation study [97] with respect to Entries (1)-(2), that examines the performance of the
model, whenever the removal of the Wav2Vec2 component occurs. It is important to note that Entries (1)-(2) are based on the Wav2Vec2 model which is
based on self-supervised learning, while in Ent.(3) is only exploited a CNN-based model, which corresponds to supervised learning.

Detection in general, have gained great accuracy metrics by
using neural networks. However, determining the uncertainty
of a specific prediction is still a difficult problem. Predictive
uncertainty ability that is well-calibrated, is crucial since it
can be used in a variety of AI-based applications.

Neural networks employing the Softmax (Eq.(4)) activa-
tion layer that is exploited for AD problems as in this work,
are known to produce results that are relative to the train-
ing and test sets distribution. Yet, whenever it is possible,
an effective AI framework has to be able to generalize in front
of Out Of Distribution (OOD) [98], [99] cases, by flagging
the ones that are beyond their capacity, as well as request
human intervention. In the world of Anomaly Detection, the
concept of OOD can be manifested in problems such as
binary classification, or even one-class classifier [100]. One
of the acceptable approaches to transforming IC into an OOD
detection problem is adding an ‘unknown’ class to a classifi-
cationmodel. However, this procedure requires apriori tagged
OOD data for training, which is an unbound amount of data
in theory - a difficult problem whenever the dataset to train
is (i) limited, and (ii) bounded by the data collection process
time-frame, i.e. the time and conditions of the data collection.
Thus, when designing an architecture for a classification
problem, one of the penetration-test that should be considered
before detecting anomalies has to test OOD cases that might
have been recorded in different time-frames and conditions.

As such, and in order to prove the robustness of our
Transformer-based approach, we have recorded additional
dataset by using the drone, and the same recording set,
except for a different environment from the one described
in Section III. That is, the new dataset has been recorded
when musical songs are being played from a microphone,
very close to the drone whenever it flies. Clearly, it is an
OOD situation, since the initial dataset did not consider such
a scenario at all. These audio recordings contain additional
300 test samples of size 1-seconds, such that 11% of the test-
samples are representing the Anomaly class and 89% of the
audio recordings are considered asNormal. The ratio between
the Anomaly class samples and the Normal class samples
is approximately 1:10, which simulates the real-world AD
problem where Anomalies appear rarely. Finally, both the
Transformer-based approach that was suggested in this paper,
as well as the CNN-only-based one (VGG-16) were tested,
by the same data pre-processing and inference processes as
presented in Sections III and IV-D, with a Softmax threshold
of 0.5, for the OOD computation.

Both the models yield slightly lower results when tested
over the new samples of the experiment, as a result of the

samples being recorded in a new and different environment
than the ones on which the models were trained on. One can
note from Table 5 that the Transformer-based model yields
better results compared to the CNN-based model. These
results support our thesis and prove that the Transformer
based model is more robust and accurate than the CNN-based
model.

H. REAL-TIME & EMBEDDED EXPERIMENT
To determine the feasibility of the proposed model in real-
time scenarios, an inference of the model was deployed on
a Raspberry Pi single-board computer. As aforementioned
(in Section IV), an earbud was placed on top of the Tello
quadrotor. The main idea of this experiment is to test the
Wav2Vec2 model capabilities in real-time mode, on mini-
computers that are equipped with basic hardware. An earbud
was connected via Bluetooth to the Raspberry Pi, and thus it
generated real-time audio samples. Next, each audio sample
of length 1-second has been converted into a spectrogram,
and fed to the input layer of the Wav2Vec2 model, to get
a classification of the audio sample as an Anomaly or as a
Normal sample.

The entire experiment consisted of running the feed-
forward function of the Wav2Vec2 and the CNN models, for
exactly 5 minutes were recorded in real-time and generated
300 audio samples online. Later, and to test the real-time
results, these audio samples were manually tagged sample-
by-sample, i.e. second-by-second, such that each audio sam-
ple was tagged either as an Anomaly or as a Normal sample.
These real-time audio samples contain exactly 300 test sam-
ples of length 1-seconds, such that 33 of them are of class
Anomaly, and the remaining 267 are of class Normal. Again,
we encounter the anomalous situation, in which the ratio
between the Anomaly samples and the Normal ones is
again ≈ 1:10.
The duration of the whole real-time experiment (with-

out any optimizations) was 60 seconds; i.e., 0.2 seconds on
average per one-second audio sample. That is, after record-
ing each audio sample of length 1-second as a WAV file,
it took 0.2 seconds on average to (i) turn the audio samples
into spectrograms; (ii) turn the spectrograms into an input-
matrix to feed the input layer of the Wav2Vec2 model; and
(iii) apply the feed-forward function of both the Wav2Vec2
model and the CNN models, and get a classification for
the audio-sample (Anomaly, or Normal). In order to allow a
fully real-time solution, the overall processing time should be
lower than the sampling time. The major runtime component
in the suggested system is the use of Transformers.
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TABLE 5. Result for the OOD experiment.

TABLE 6. Results of the real-time & embedded experiment on both Raspberry Pi device and mobile device.

FIGURE 16. Seeed Studio XIAO nRF52840 Sense: a ≈ 2cm*2cm, and less
than 2 grams micro-controller, equipped with an IMU, a digital
microphone, and a BlueTooth 5.0 communication module. Such a
micro-controller can be used to run TinyML or TensorFlow Lite, and thus
is a suitable candidate for implementing our sound analysis method.

In order to use theWav2Vec2-Base pre-trained transformer
in a mobile environment, performing quantization on it might
be a necessary step. Thus, the model has been converted to a
qint8 dynamic (i.e. weights-only) quantized model, a com-
mon solution for heavy models requiring significant RAM
allocation - which is inapplicable for mobile devices. This
operation shrunk the Wav2Vec2-Base model into a lighter
version, from 360MB to 80MB, making it a more tailored
model for edge-mobile usages. Next, we tested our approach
on two embedded platforms, designed for real-time scenarios.
As can be seen in 6, Ent.(1) presents the real-time experiment
where the Wav2Vec2 model in the Wav2BC+ framework
is the Wav2Vec2-Base transformer, on top of a CPU-based
computation. Since such a model is too heavy for mobile
devices, we repeated the same experiment as presented in
this section (Ent.(2)), on top of the embedded device. As the
lighter and quantized Wav2Vec2 model is smaller than the
Base version regarding RAM allocation, we could expect a
slight degradation in the accuracy metrics, while the average
processing time per audio sample remains the same, thus
making it applicable for mobile devices as well.

Finally, one can note from Table 6 that the Transformer-
based model preserved the level of results from the last
two experiments (Sections V-F and V-G). Moreover, the
Wav2Vec2 method is suitable for real-time edge computing
platforms such as Raspberry Pi and can be adapted to run on
even smaller System on Chip (SoC) platforms.

VI. CONCLUSION AND FUTURE WORK
In this paper, we presented Wav2BC+, a framework to
detect anomalies in sound waves emitted from a UAV
using deep-learning methods, and focused on the benefits
of transfer-learning to construct an improved model for the
anomaly detection problem in UAVs. We have shown that
by using a Transformer based model, followed by a CNN,
one could achieve better results in detecting anomalies in
UAVs using sound waves, compared to the well-known VGG
(CNN-based) over spectrogram approach. That is, we have
developed a real-time approach that outperformed two base-
lines, so that our suggested compressed version of the well-
known VGG-16 framework, is extremely smaller in terms of
the number of parameters in the neural network, and is capa-
ble of yielding high accuracy in anomaly detection in UAVs
as well. In terms of performance metrics, the Wav2BC+
maintains high accuracy metrics in all of the experiments,
and reduces the number of parameters of the well-known
VGG from 138M, into a shrunk version of the VGG with
only 3.6M parameters. Moreover, we employed our tech-
nique over an extremely small dataset, which is a problem
on its own due to a lack of information. In addition, the
compressed version for CNN suggested in our approach,
enables us to apply it on top of tiny devices that cannot
cope with high-consuming applications. For industrial pur-
poses, one can assimilate our transfer-learning framework on
top of any kind of drone or UAV that is able to run such
architectures.

Even though obtaining better results, the AD problem is
still not entirely addressed. Hence, one possible direction
for future research would be addressing the AD problem
from an external sound source as well; i.e., creating a dataset
of sound waves emitted by a UAV from different distances
and not only from its top. Another possible direction for
future research would be to classify anomalies per type by
training the model with a larger dataset containing different
examples of anomalies, labeled by their different types. From
the architectural standpoint, another future work could be
the construction of an actual acoustic sensor and analyzers
for drones. Such devices may be implemented using a tiny
micro-controller capable of running TinyML (as shown in
Figure 16). The availability of such devices may help the
community to construct a comprehensive dataset for a wide
range of UAVs [18].
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In addition, in terms of the neural networks’ perfor-
mance, more sophisticated deep-learning techniques can be
of great utility, especially for the real-time scenario. Among
such techniques, one can find depth-wise separable convolu-
tion [101], atrous spatial pyramid pooling [102], and attention
mechanisms [103], [104], as well as improvement in the
transformers themselves.
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