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ABSTRACT Developing a secure information processing environment highly depends on securing all the
layers and devices in the environment. Edge/Fog computing environments are no exception in this case, and
the security of these environments highly depends on securing Internet of Things (IoT) devices which are the
most vulnerable devices throughout the environment. The adoption of Edge/Fog computing paradigms by
new emerging technologies has stimulated malware development for IoT platforms. Recent attacks initiated
by IoT malware show that these attacks have a tremendous impact on compromised systems in terms o
the Quality of Service because of the number of infected IoT devices. In the light of these developments,
there is an enormous need for efficient solutions. However, defense capabilities against these new malware
types are highly constrained by the limited understanding of these new emerging paradigms and the lack
of access to malware samples. This study mainly focuses on IoT malware to understand the behaviors of
malware in the most vulnerable layer of the Edge/Fog computing environments. Mainly, 64 IoT malware
families are identified from 2008 when the first known IoT malware emerged to October 2022. These
malware families are systematically characterized by various aspects, including target architecture, target
device, delivery methods, attack vectors, persistence techniques, and their evolution from existing malware.
During this characterization process, two different investigation frameworks, ‘‘Cyber Kill Chain’’ and ‘‘Mitre
ATT&CK for ICS,’’ have been adopted in the different investigation layers. This paper aims to bring light to
future researches with the presented features of the IoT malware.

INDEX TERMS Edge/fog computing, Internet of Things (IoT), malware, malware analysis, malware
phylogeny, security.

I. INTRODUCTION
The number of connected devices is increasing with colossal
velocity. It is estimated that Internet of Things(IoT) devices
will account for 50 percent (14.7 billion) of all networked
devices by 2023 [1]. This increase in ubiquitous devices also
brings new problem areas in terms of bandwidth consumption
and latency between these devices and cloud servers. Edge
and Fog Computing paradigms have emerged as a solution
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to this bottleneck [2]. The heterogeneous and distributed
structures of these paradigms reveal some security leaks.
As seen in previous newly emerging technologies, devices
inside these environments are becoming a new target for
malicious activities.

Moreover, Edge/Fog computing environments inherit all
the security vulnerabilities of previous technologies, which
enable these environments to evolve, such as wireless sensor
networks (WSNs), distributed P2P (peer-to-peer) systems,
and virtualization platforms. Moreover, these computing
environments take advantage of their layered structures to
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provide a solution to the bottlenecks in the internet infras-
tructure; however, each layer of these structures has novel
vulnerabilities. In this regard, one of the leading security
flows is the attacks initiated by malware. Because of the
heterogeneous architecture of the Edge/Fog Computing Envi-
ronment, these systems are targets for malware developed for
various architectures.

Edge devices are taking a big part with a huge number
of areas of utilization in these new computing ecosystems.
We believe that the constrained nature of edge devices makes
them the weakest point in the security chain of the Edge/Fog
Computing Environment. Only one exploit in one device may
pose a threat to all the devices in the same environment.
Recent reports have shown that IoT devices have become one
of the most popular targets among malicious people in recent
years. According to the Cyber Threat Report of Sonicwall,
57 million IoT malware attacks were detected in the first six
months of 2022 which indicates a 77 percent increase from
the first six months of the previous year [3]. This 6-months
attack volume is higher than the yearly attacks recorded in
each of 2018, 2019, and 2020. The number of IoT malware
families may be limited for now compared to malware that
infects conventional devices. However, the vast increase in
IoT devices will also lead to an increase in the number of
malicious software.

The recent attacks initiated by infected IoT devices have
revealed the importance of the situation. The infamous Mirai
attack is one of the most remarkable examples of IoT bot-
nets [4]. IoT devices infected by Mirai malware are used in
botnets to initiate one of the biggest Distributed Denial of
Service (DDoS) attacks in the history. The volume of the
generated data traffic is a new record in information technol-
ogy. During the peak of the attack, 600 Gbps data traffic is
generated by the least powerful devices [5].

Unfortunately, Mirai is not the last example of IoT botnets.
Quite the contrary, it was just the beginning of the era of
IoT botnets. In this research, we located 21 different mal-
ware families from 2008, when the first known IoT malware
‘‘Hydra’’ was firstly seen in the wild to the September 2016
‘‘First Seen In The Wild’’ date of Mirai malware. On the
other hand, 43 different malware families are located from
Mirai to October 2022. In addition, 29 of these 43 malware
families are variants of Mirai malware, which indicates that
these malware families inherited some features of Mirai mal-
ware. This huge increase in the IoT malware types is mainly
caused by the leakage of the Mirai source code on publicly
available code repositories. For this reason, the IoT malware
evolution process can be classified as ‘‘Before Mirai’’ and
‘‘After Mirai’’.

Even though there are some invaluable studies on the
IoT Malware domain, none of them reflect the entire attack
scope of IoT Malware. This study aims to reflect the state-
of-the-art IoT malware threat by utilizing research papers,
technical reports of antivirus (AV) vendors, and blog posts of
malware researchers. In the scope of this research, research
papers, technical reports of AV vendors, and blog posts of

malware researchers related to IoT malware are collected
for the period between 2008 and October 2022. During our
research, we assessed that the efforts of AV vendors are
far more informative than academia. AV vendors and some
malware researchers publish their analysis results in a timely
manner to warn their subscribers about recent threats in the
IoT malware domain. For this reason, this research provides
summarized information on all those reports in a framework
that will be described hereinafter.

The main motivation behind this research is to introduce
IoTMalware Families along with their behaviors and features
to bring light for further research, which aims to contribute
to the security of Edge/Fog Computing Environments by
securing IoT Devices. The main contributions of this research
are summarized in three stages.

• 64 different malware families that affect IoT devices
are located. This comprehensive collection reflects the
majority of IoT malware if it is not all. Besides, most of
thesemalware families are becoming a topic in academia
for the first time.

• A novel Phylogenetic Tree of IoT Malware is presented
in the scope of this research to gain an understanding of
the evolution of IoT Malware.

• Behavioral analysis of the located malware families is
presented in a three-layered approach. In this study,
The Cyber Kill Chain Framework and Mitre ATT&CK
(Adversarial Tactics, Techniques, and Common Knowl-
edge) for the ICS (Industrial Control Systems) matrix
are used collaboratively to present the behaviors of IoT
malware for the first time in the academia.

As previously stated, the main goals and contributions of
this study can be classified into three stages. First, this study
fulfills the need for presenting an extensive collection of IoT
malware families. Within this research, 64 different malware
families are located from 2008 to October 2022. We believe
that this collection reflects the majority, if it is not all, of the
known IoTmalware families by the date of the published time
of this paper. Most of these malware families are covered in
an academic research for the first time. Botnet attacks are the
most common attack type among the IoT malware families.
Infected IoT devices are used in a botnet to initiate DDoS
attacks. However, the attack types are not only limited to
creating botnets but also mining cryptocurrencies, and DNS
Poisoning attacks are in scope.

This research’s second goal and contribution is to reveal
the evolutionary progress of the IoT malware families. As a
state-of-the-art, Phylogenetic Tree of IoTMalware is built up.
Four different malware families Hydra, Tsunami, Gafgyt, and
Mirai, are determined as parent malware families and highly
inherited by other malware families.

Last but not least, the third goal and contribution of
this research is presenting a behavioral analysis of the
detected malware families. We analyzed the behaviors of the
IoT malware in a three-layered approach. The Cyber Kill
Chain framework is adopted as a high-level investigation
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framework. TheMitre ATT&CK framework which is becom-
ing an industry standard knowledge base for presenting
adversarial tactics and techniques for different platforms was
adopted as a mid-level framework. The Mitre framework is
not only becoming an industry standard but also academia
started to apply this framework to researches. Gittins and
Soltys utilize theMitre framework to present only Persistence
tactics and techniques used by malware [6]. Al-Shaer et al.
developed a tool called as Cyber Threat Dictionary which
offers solutions for the threats by mapping Mitre ATT&CK
framework to the NISTCyber Security Framework [7]. In this
study, the Mitre Framework is used for presenting the behav-
ioral analysis of IoT malware for the first time in academia.
In addition, this research presents the most comprehensive
utilization of theMitre ATT&CK framework for IoTmalware
with covering all of the attack phases of the Cyber Kill Chain
Framework. Finally, as a low-level investigation, the attack
vectors, communication ports, and protocols are presented.
The low-level behavioral analysis shows that brute force
attacks are the most common attack vector for gaining initial
access to the victim devices. Themost common attack vectors
to compromise target devices are flooding attacks used for
DDoS. Except for the five P2P communicating malware, all
the rest of the malware communicates with a C2 (Command
and Control) server to obtain the attack commands.

The remainder of this paper is organized as follows. The
next section is about previously conducted studies by other
researchers. The Methodology of this research is explained
in Section III. Malware types affecting IoT devices are intro-
duced in Section IV. The evolution of IoT malware types is
summarized in Section V. Behavioral Analysis of Detected
Malware Families is given in Section VI. Finally, in Sec-
tion VII, open issues are highlighted, and new directions for
the research community to help them develop more precise
detection mechanisms have been proposed.

II. RELATED WORK
The previous studies conducted in the IoT malware domain
are presented in three subcategories as surveys and general
informative research papers, IoT malware datasets, and IoT
malware analysis and detection researches.

A. IoT MALWARE SURVEYS
Wang et al. categorized IoT malware only according to infec-
tion techniques and analyzed only three families as an exam-
ple [8]. Vignau et al. present features of the most commonly
seen IoTmalware families in the first 10 years of the IoTMal-
ware History and they present a Phylogenic Graphwhich con-
tains 16 malware families [9]. In that research, they focus on
attack vectors and feature propagation between the malware
families. Two years later, Vignau et al. presented another sur-
vey research that investigates IoT malware between 2008 and
2019 [10]. They again presented feature propagation between
the malware families but this time their research was not only
limited to attack vectors; they also added other features of the
malware such as infection method, C2 communication, and

persistence methods, etc. Their research contains 28 different
IoT malware families. Even though, they state that their mal-
ware collection reflects all active botnets between 2008 and
2019, they only covered 28 malware families, while we are
able to locate 42 different malware families for the same
period. Alrawi et al. compared IoT malware with desktop
and mobile malware. They presented general insights about
some features of IoT malware such as infection methods,
attack vectors, and persistence techniques, but their work did
not contain specifically adopted techniques by each malware
family [11].

During our research on previously conducted survey stud-
ies on IoT Malware, we found that these studies provide a
general perspective of IoT malware behaviors. These studies
cover only a limited number of malware families. Besides,
they present only a few characteristics of the malware fam-
ilies, and there is no behavioral information regarding most
IoTmalware families. In our study, we aim to present detailed
information on our malware collection, and to the best of
our knowledge, our study covers all of the IoT malware
families since 2008. A comparison of the survey studies on
IoT malware is presented in Table 1.

B. IoT MALWARE DATASETS
The rampant growth of IoT malware, as hereinbefore stated,
shows that effective mitigation methods or defense mecha-
nisms are urgently needed. The key to protecting systems
effectively highly depends on understanding the attacks.
However, the lack of a comprehensive IoT malware dataset
makes it almost impossible for researchers to understand
IoT malware attacks. There are only a few publicly avail-
able IoT malware datasets. One of the publicly available
datasets created for IoT malware was presented by Pa et al.
They deployed a honeypot called IoTPot to collect active
IoT malware [12]. They have published their findings and
collected malware binaries with a dataset that contains
86.496 malware binary files. Another dataset was presented
by Azmoodeh et al. that contains only 128 malware sam-
ples of ARM-based IoT applications between February 2015,
and January 2017 [13]. Also, capturing network traffic that
belongs to compromised IoT devices is an applicable method
for creating datasets. Meidan et al. presented the N-BaIoT
dataset [14]. Their dataset was created by injecting Mirai and
Bashlite malware into nine commercial IoT devices which are
very few in number to present the general of the IoT malware
cluster. The dataset contains 7062606 instances of network
traffic data. Garcia et al. presented the IoT-23 dataset that
includes network traffic from 20 malware families, which are
again very few to present the general of the IoT malware
cluster [15]. Pour et al. also present a highly comprehen-
sive dataset that contains 3.6TB of network traffic created
by 440.000 compromised IoT devices [16]. Trajanovski and
Zhangpresented one of the most recent and most compre-
hensive IoT malware dataset [17]. They proposed an IoT
Botnet Detection and Analysis (IoT-BDA) framework which
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TABLE 1. Comparison of IoT malware surveys.

TABLE 2. Comparison of IoT malware datasets.

combines a honeypot and a sandbox. During 7months period,
their framework collected 4077 malware samples and they
presented the analysis results with a dataset that covers static
analysis features, dynamic analysis (System Calls and Net-
work Traffic Capture), and malware sample files (ELF Bina-
ries). Nevertheless, their static analysis only covers binary
analysis results such as symbols and linking information but
lacks OPCODE sequences which is the main output of a static
analysis. Another popular technique among researchers is
creating their own datasets for their research. This method is
highly effective in evaluating the proposedmethods; however,
the lack of a commonly adopted dataset prevents comparing
the evaluation metrics of the proposed methods. Botacin et al.
presented challenges and pitfalls in the malware research area
and highlight the usage of non-publicly available datasets
limits reproducibility and prevents comparison of evaluation
metrics [18]. The comparison of IoT Malware datasets is
presented in Table 2.

C. IoT MALWARE DETECTION
IoT malware detection is a relatively new research area com-
pared to classical PCs and mobile devices. However, as it
is mentioned in the previous sections, the impact of IoT
malware should not be regarded as small, quite the contrary,
the Mirai example shows that it can be more dangerous than
classical malware. Even though there is still a long way to
go to secure IoT devices against malware attacks, there have
been successful efforts for detecting IoT malware. Most of
the IoTmalware detection studies are based on static analysis.
Haddadpajouh et al. used their own OPCODE based dataset
called as IoT Dataset with Recurrent Neural Network (RNN)
and achieved an accuracy rate of 98,18% [19]. Su et al used
the IoTPoT dataset and converted the malware binary files
into gray-scale images [20]. They used Convolutional Neural
Network (CNN) algorithm for classification and achieved
an accuracy rate of 94%. Alasmary et al. created their own
dataset and compared the characteristics of IoT malware and

Android malware which are also mainly based on Linux by
utilizing Control Flow Graphs [21]. Also, they proposed a
detection mechanism based on CNN which achieves a very
high accuracy rate of 99.66%. Dovom et al. used the IoT
Dataset and achieved an average accuracy rate of 96.41%
with Fuzzy Pattern Tree algorithm [22]. Darabian et al. used
the IoT Dataset with Decision Tree, KNN, Random-Forest,
Multi-Layer Perceptron (MLP), Support Vector Machine
(SVM), andAdaBoost algorithms and they achieved the high-
est accuracy rate of 99,80% with the Decision Tree classifier
[23]. Vasan et al. presented a Cross-Architecture IoTMalware
Detection method called as MTHAEL [24]. They built their
own dataset and their method is based on Neural Network
Advanced Ensemble Learning combining RNN and CNN
with a very high accuracy rate of 99.98%. Another research
for securing the Edge Computing ecosystem against IoT
malware is conducted byHaddadpajouh et al. [25]. They used
their previous dataset called as the IoTDataset and proposed a
malware detectionmechanism for a cloud-edge gateway layer
based on SVM by utilizing Grey Wolf Optimization (GWO)
for feature selectionwith a very high accuracy rate of 99.72%.

On the other hand, there have been some efforts based
on dynamic analysis, and most of them are based on the
investigation of network traffic. Meidan et al. used their own
dataset N-BaIoT with Artificial Neural Network (ANN) and
achieved TPR rate of 100%, and FPR rate of 1% [14]. Jeon
et al. conducted a dynamic analysis for malware detection
based on Convolutional Neural Network (CNN) [26]. They
used their own dataset and convert the behavioral data of
IoT malware into images to analyze and detect malware, and
with this effort, they reach a high accuracy rate of 99.28%.
Rey et al. used the N-BaIoT dataset to detect IoT Malware
[27]. They applied Federated Learning (FL) for two different
models as supervised and unsupervised models, for the super-
vised model they applied MLP which obtains an accuracy
rate of 99,38%, and for the unsupervised model, they applied
ANN which obtains a TPR rate of 99,98%, and TNR rate of
91,78%. The comparison of IoTMalware Detection Research
is presented in Table 3.

III. METHODOLOGY
This study follows a systematic methodology to provide a
comprehensive approach for revealing malware threats on
the edge devices layer of edge/fog computing environments.
In this regard, firstly to identify the names of IoT malware
families, exhaustive research has been conducted on aca-
demic papers, malware databases such as VirusTotal and
MalwareBazaar, malware threat alarms of AV vendors, and
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TABLE 3. Comparison of IoT malware detection research.

FIGURE 1. General overview of methodology.

OSINT(Open Source Intelligence) sources such as social
media platforms and forums. Secondly, malware analysis
reports of the identified malware families are collected from
academic papers, technical reports of AV vendors, and blog
posts of malware researchers. Besides, the source code of
some of these malware families are publicly available on the
code repositories such as GitHub. These source codes are also
added to our collection. As a result of this step, we col-
lected 470 academic studies and industrial reports which
were published between 2008 and October 2022. Finally,
these scientific papers and industrial reports are investigated
manually. During this investigation, the scientific papers and
industrial reports which does not contain information related
to the contribution of this research are excluded. Moreover,
the industrial reports may raise an issue regarding the validity
of the provided information. For this reason, reports which are
only generated by reverse engineering efforts and supported
by screenshots of the conducted steps are taken into consid-
eration while the others are omitted from the collection. As a
result of these efforts, our collection contains 91 records con-
taining eight source codes, 13 scientific papers, and 70 indus-
trial reports. The general overview of our methodology is
shown in Fig. 1.
The scientific papers, industrial reports, and source codes

within the collection are reviewed to achieve the goals of
this research. Firstly, 64 IoT malware families are located
and investigated in terms of ‘‘First Detection Date,’’ ‘‘Tar-
get Architecture,’’ ‘‘Target Device’’ and ‘‘Attack Type.’’ The
‘‘First Detection Date’’ is determined by comparing the

‘‘First Seen In The Wild’’ value of VirusTotal and the detec-
tion date mentioned in the relevant report. According to
this comparison, the earliest date is assessed as the ‘‘First
Detection Date’’ because sometimes the researchers may
submit malware samples after their malware analysis process.
The ‘‘Target Architecture’’ is determined by combining the
findings of the relevant reports and the ‘‘ELF Header Infor-
mation’’ section of the VirusTotal. The ‘‘Target Device’’ and
‘‘Attack Type’’ information are extracted from the findings
of the relevant reports. As a result, general information about
the malware families which affects IoT devices is presented
in Section IV.
Secondly, the Phylogenetic Tree of IoT Malware is gen-

erated to provide an understanding about the evolvement of
IoT Malware. Computer Virus Phylogenies was first intro-
duced by Goldberg et al. in 1998 by inspiring biological
species evolution. They define Malware Phylogenies as the
‘‘evolutionary history of computer viruses’’ [28]. Besides,
Allix et al. showed that most of the malware families are gen-
erated by slight modifications in the source code of existing
malware [29]. From this point of view, the inherited features
between the malware families are collected from scientific
papers, industrial reports, and source codes of the malware.
The results of these efforts are presented in Section V.

Lastly, the third goal of this research is to illustrate the
behavioral analysis of malware families by adopting an inves-
tigation framework from the high level to the low level. The
ICS Cyber Kill Chain framework of the SANS organization
has been adopted for high-level investigation of IoT Mal-
ware [30]. This framework contains five main and seven sub-
phases.

For the mid-level investigation, Mitre ATT&CK for ICS
framework has been adopted [31]. This framework is a knowl-
edge base that contains malicious TTP (tactics, techniques,
and procedures). Mitre ATT&CK has three different inves-
tigation matrices for enterprise devices, mobile devices, and
ICS systems. The enterprise and mobile device matrices are
also divided into subcategories in terms of the target operating
system. Unfortunately, there is no matrix for IoT devices
and there are two different approaches for investigating IoT
malware with Mitre’s frameworks. Since all of the located
malware families for IoT devices based on Linux, enter-
prise framework for Linux is adopted by some AV vendors.
However, we believe that this framework is more applicable
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FIGURE 2. Behavioral analysis framework.

to enterprise devices. In this research, ATT&CK for ICS
has been adopted because ICS devices are more similar to
target devices of located malware families. ATT&CK for ICS
framework has a comprehensive matrix to point out adver-
sarial behaviors on the target device. This matrix consists of
11 tactics and 96 techniques. On the matrix, tactics represent
the tactical objective of malicious activity while techniques
represent the performed action to reach that tactical objec-
tion. For example, the adversaries’ tactical objective is to
manipulate, interrupt, or destroy the target system, defined
as the ‘‘Impact’’ tactic in the ATT&CK matrix. To achieve
this tactical objective, the attacker could benefit from one or
more of the 11 techniques under this tactic.

For low-level investigation attack vectors, exploited vul-
nerabilities, communication ports, and services are presented
in a systematic manner. As a result of this three-layered inves-
tigation, a novel behavioral analysis framework is generated.
The first layer covers the ICS Cyber Kill Chain Framework.
In the second layer, the tactics and techniques of each phase
in the ICS Cyber Kill Chain Framework are presented. In the
third layer, attack vectors are highlighted as a part of the tech-
nique. The overview of our behavioral analysis framework is
shown in Fig. 2 and the results of the behavioral analysis are
presented in Section VI.

IV. MALWARE FAMILIES AFFECTING IoT DEVICES
The Hydra malware, the first known malware affecting IoT
systems, started a new era for malicious code developers.
After the source code of this malware was released publicly
on the code repositories [32], new malware families evolved
based on this source code. Since 2008, the number of IoT
malware families increased with colossal velocity. The first
goal of this research is to present the majority, if it is not all,
of the IoT malware families to provide a deep understanding
of the behaviors of these malware families for the research
community to develop more precise defense mechanisms.
As a result of our efforts, 64 different malware families are
identified. By the date of the published time of this research,
we believe this collection reflects the state of the art of IoT
malware. Brief information about these malware families is
provided in Table 4.

IoT malware is generally used for creating botnets to
initiate DDoS attacks. The 51 (80%) malware families
are used for creating botnets. However, the attack types
are not only limited to creating botnets but also include

FIGURE 3. Target architecture distribution.

cryptocurrency mining, DNS Poisoning, Permanent Denial
of Service (PDoS), and Data Exfiltration attacks are in
scope. Besides, 12 (19%) of the malware use more than
one attack type to compromise the target. Another dra-
matic statistic is that 13 (20%) of malware families (Carna,
Linux.Darlloz, Linux.Wifatch, Brickerbot, PNScan, Moose,
Linux.MulDrop, VPNFilter, LiquorBot, Silex, Sora, Zuo-
RAT, and Shikitega) which represents 20 percent of our
collection, are not used for DDoS attacks. Moreover, there
are two White-Hat Trojans in this collection (Carna and
Linux.Wifatch). TheseWhite-Hat Trojans were developed by
security professionals to emphasize the security flows of IoT
devices.

Most of the malware families target more than one CPU
architecture, and they have different binary files for each of
the target architectures. This diversity in the target creates
a new challenge for signature-based detection approaches.
Because the binary executables of the malware change
according to the target CPU architecture, there are different
signatures for the same malware family. Besides, most of
the IoT malware detection methods are based on machine
learning models. As it is discussed in Section II most of these
efforts are based on OPCODEs which are obtained by static
analysis ofmalware. Since IoT devices have diversity in terms
of CPU architecture, the OPCODEs also vary according to
the executed CPU architecture. This situation maintains a
significant challenge in building an effective malware detec-
tion method based on OPCODE. Developing an anti-malware
tool based on machine learning techniques requires separate
training processes for each of the target CPU architectures.

ARM and MIPS are the most commonly used target archi-
tectures for IoT malware. There are 49 malware families
which are targeting ARM, while this number is 48 for MIPS-
based devices. Intel architectures are also on target with
41 malware families. PowerPC, Motorola, and Sparc archi-
tectures are susceptible to malware as well. Besides, some
malware families like LuaBot and BrickerBot target only
specific architectures to attack. The distribution of the target
architecture is shown in Fig. 3.
Network devices such as routers are the leading target

devices for IoT malware. The list of target devices is given
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FIGURE 4. Yearly distribution of IoT malware development.

in Table 4; however, we believe that the target devices are
not limited to these devices. IP cameras, DVRs (Digital
Video Recorders), toys, CCTV cameras, and TV receivers are
infected by IoT malware as well. We assess that IoT malware
can infect any device if they have relevant vulnerabilities.

V. EVOLUTION OF MALWARE FAMILIES
As it is mentioned hereinbefore, Hydra is the first known
malware family for edge devices. It is not surprising to see
the development of other malware families after the public
release of the source code of the Hydra malware. After 2014,
the rate of increase in IoT malware increased as IoT devices
getting popular. After the infamous Mirai attack in 2016,
the IoT malware threat takes the attention of all information
security sector. Fig. 4 shows the yearly distribution of IoT
Malware development to denote the IoT malware growth
better.

Some of the previous studies provide insight into the evolu-
tion of IoT malware [9], [125], [126], [127], [128]. Angrishi
presents 14 malware families from Hydra to IRCTelnet on a
timeline [125]. On the other hand, Donno et al. also present
13 malware families from Hydra to Mirai on a timeline
while showing the relationship between the malware families
[126]. Vignau et al. present features of the most commonly
seen IoT malware families on the first 10 years of the IoT
Malware History and they present a Phylogenic Graph which
contains 16 malware families [9]. One of the latest research
in this field performed by Ngo et al., the relationship between
12 malware families from Hydra to VPNFilter is presented
on their research [127]. Researches [125] and [126] analyzed
13 and 12 malware families from 2008 to 2016 timeframe;
in our research, we located 24 malware families for the same
timeframe. We believe that the lack of resources causes this
difference in the malware family numbers for the newly
emerging malware families. Besides, Cozzi et al. presented
a lineage of IoT malware families [128]. They benefit from
machine learning techniques to find the similarities between
the source codes of malware families. Their results were
awe-inspiring; most of the malware families in their dataset
share common functions. Kim et al. proposed a malware
classification method based on ‘‘Recursive Feature Elimina-
tion (RFE)’’ [129]. Even though they applied their proposed

method only to windows-basedmalware, we believe that their
methodology could also be used to classify IoT malware.

When Tables 4 and 7 are investigated deeply, it provides
insight into the evolution of malware families. For example,
from Hydra to Tsunami (2008-2010), mostly MIPS archi-
tecture was targeted. After Aidra, other architectures have
started to become targets for malware families. Also, if the
service used for communication with the C2 server under the
Management (Mngt) phase of Table 4 is investigated, it can
be seen that the IRC service is used for C2 communication
from Hydra to Tsunami. After Aidra, other services started to
be used for communication with the C2 server. This finding
indicates that Aidra contains some new features for other
architectures, and it has a different module for communicat-
ing with C2 Server. In this context, the Phylogenetic Tree of
the IoT Malware Families is built-up and shown in Fig. 5.
Our Phylogenetic Tree of IoT Malware is an acyclic graph.
The nodes contain malware families, and their edges map
ancestors. The numbers above the nodes show the inherited
features that are defined in Table 5.

Our Phylogenetic Tree is created in a time-series manner.
It can be observed from our Phylogenetic Tree that the mal-
ware development for IoT devices is grown up at a slow pace
until 2014, and in 2016 after the infamous Mirai attack, the
pace of the IoT malware boomed. From 2008 to 2016 (from
Hydra to Mirai), 21 different malware families are located.
On the other hand, after Mirai to October 2022, 42 different
malware families were identified. Also, 29 of these 42 mal-
ware families are variants of Mirai, and we assume that there
may be dozens of smaller Mirai variants. For this reason, the
IoTmalware evolution process could be classified as ‘‘Before
Mirai’’ and ‘‘After Mirai.’’

One of the critical aspects obtained from the Phylogenetic
Tree is the parent malware families. Four different malware
families, Hydra, Tsunami, Gafgyt, and Mirai, are determined
as parent malware families where some features of these
malware families are highly inherited by other malware fam-
ilies. Besides, there are some small branches on the tree.
Carna and Wifatch create a small branch as they are clas-
sified as ‘‘White-Hat Trojans.’’ Also, VPNFilter inherited
some features from BrickerBot. On the other hand, there are
12 malware families without any relationship and similarities
with other malware families. The inherited features of the
malware are discussed below.

A. INHERITED FEATURES FROM HYDRA
Three malware families Psyb0t, Chuck Norris, and Tsunami
inherited some features from Hydra. All of these malware
families target the same CPU architecture; however, we do
not see that as an inherited feature as it is only related to the
compile process of malware. The most significant inherited
feature is the C2 technique. These malware families used
Internet Relay Chat (IRC) channels to send commands to
malware [32], [33], [36], [37], [39], [41], [42]. For this rea-
son, these malware families are also known as IRC Botnets.
Besides, the ‘‘Readme’’ file of the Hydra malware contains
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TABLE 4. Summary of IoT malware.

some evidence about the nationality of the developer. The
e-mail address of the developer most probably belongs to an
Italian person or organization [33]. Moreover, the IP address
of the C2 server of Chuck Norris and Tsunami are the same,

and the location of this IP address is in Italy [36]. Even though
the location of the developers gives us strong evidence of
the inspiration from the previous malware, we did not take
this feature as an inheritance. However, Tsunami inherited the
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FIGURE 5. Phylogenetic tree of IoT malware families.

TABLE 5. Inherited feature definitions.

C2 server and obfuscation and encryption keys from Chuck
Norris [36].

B. INHERITED FEATURES FROM TSUNAMI
Seven malware families are located with inherited features
from Tsunami. We analyzed the source codes of Tsunami
and Aidra to detect the similarities between these two mal-
ware [41], [45]. The Aidra has two attack vectors, SYN

Flood and ACK Flood. During our source code analysis,
we detected that Aidra uses exactly the same source codes
with Tsunami for these attack vectors. Reverse engineering
efforts of other researchers also showed that Setag, Dofloo,
and XoRDDoS malware families inherited SYN and UDP
flooding attack vectors of Tsunami [62], [65], [73]. Besides,
XoRDDoS uses a similar control panel with Dofloo which is
based on HTTP File Server (HFS) [74]. The successful attack
vectors of Tsunami are also adopted by the Gafgyt malware,
however more sophisticated initial access and C2 commu-
nication techniques differ these malware families from each
other [69]. Amnesia and Radiation have different attack vec-
tors than other Tsunami variants, but they have the same C2
technique with Tsunami [86], [91]. Moreover, Radiation has
the same dictionary (contains credentials for gaining initial
access) with the Tsunami to be used for gaining initial access
to the victim machine.

C. INHERITED FEATURES FROM GAFGYT
Eight malware families are located with inherited features
from Tsunami. Analysis of the Remaiten revealed the com-
ments of the developer on the source code. According to
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the comments of the developer, Remaiten adopted the ‘‘Tel-
net Scanning’’, ‘‘Malware Delivery’’, and ‘‘SYN Flooding’’
modules from Gafgyt; and ‘‘ACK Flooding,’’ ‘‘UDP Flood-
ing,’’ and ‘‘C2 Communication’’ from Tsunami [84]. New
Aidra also inherited some features from three previous mal-
ware. New Aidra adopted the ‘‘C2 Communication’’ module
from Tsunami; ‘‘Telnet Scanning’’ and ‘‘Malware Delivery’’,
modules from Gafgyt, and it has the same dictionary from
Mirai [103]. Hajime also inherits some features from Gafgyt
and Mirai. Hajime adopted the scanning module from Gafgyt
and the dictionary from Mirai [100], [101]. The infamous
Mirai malware was also derived from Gafgyt. The dictionary
used in the Gafgyt contains six usernames and 14 passwords.
On the other hand, Mirai has 62 credentials which also
include the Gafgyt’s set [5]. Mozi, Vbot, and Sbidiot inherit
the attack vectors [63], [64], [80], [98], [99]. Enemybot also
inherits attack vectors along with C2 module. [110]

D. INHERITED FEATURES FROM MIRAI
As it is mentioned hereinbefore, we are able to locate 29 mal-
ware families inspired by Mirai. The key features behind the
huge impact of the Mirai attacks can be listed as:

1) Scanning module for finding new victims,
2) Dictionary of credentials to be used for the brute-force

attack to gain initial access,
3) Simple but effective attack vectors,
4) Killing other processes which use Telnet, SSH, and

HTTP services to avoid any performance loss and get-
ting detected.

5) Lightweight obfuscation with encryption and decryp-
tion with XoR operation of strings.

Mirai inspired most of the IoT malware families from
various aspects. Some of the inspired malware families
inherit all of the mentioned features while some of them use
only one feature. Reaper only inherits the scanning mod-
ule [112]. Persirai inherits the scanning module, and UDP
flooding [107]. Brickerbot and Manga inherit the scanning
module and the dictionary [105], [106]. Satori, FBot, Shinoa,
Miori, EchoBot, Ttint, Dark Nexus, Hoho, Katana, ZHtrap,
Scsihelper, Beastmode, and RapperBot inherit the DDoS
attack vectors of Mirai [34], [38], [51], [52], [57], [59],
[60], [75], [85], [89], [90], [102], [108], [116], [117], [123],
[130], [131]. Along with DDoS attack vectors, Shinoa and
Miori also inherit the scanning module, ZHtrap inherits the
dictionary, and Echobot, Ttint, and Scsihelper inherit the
obfuscation technique of Mirai. EchoBot also has the same
C2 server IP address with Mirai. Dark Nexus also inherits
additional features from Mirai, it has the same IP address
of C2 and malware download servers and inherits the scan-
ning module and the killing other botnets feature. Liquor-
Bot inherits different features of Mirai. It has the same C2
server, download module, and string obfuscation technique
withMirai [40].MooBot,Mukashi,Manga, Enemybot inherit
the scanning module and dictionary of Mirai [46], [47],
[48], [77], [78], [106], [110], [111]. Additionally, MooBot

inherits the obfuscation technique, Mukashi inherits attack
vectors, and Enemybot inherits killing other botnets features
of the Mirai. Rhombus and Zuorat inherit the scanning mod-
ule and obfuscation technique while AirdropBot and Vbot
only inherit the obfuscation technique with the same XoR
key of the Mirai [54], [72], [80], [119]. Sora, Unstable and
Dark.IoT inherits the dictionary and obfuscation technique
of Mirai [59], [60], [67], [132]. Besides, Sora and Unstable
have the same malware download server IP address of Mirai.

VI. BEHAVIOURAL ANALYSIS OF MALWARE FAMILIES
Most of the malware families located within the scope of
this project follow a common threat pattern. The common
threat pattern contains five phases to compromise the target
machine. As the first step of the attack, malware scans the
network to find a target via its built-in scanningmodule. In the
second phase, the malware attempts to establish initial access
to the target. There are two different techniques adopted by
the malware to succeed in this phase. One of these techniques
is trying default password and username combinations in a
brute-force attack and the other technique is exploiting known
vulnerabilities of a running service on the victim machine.
After establishing successful initial access, the third phase of
the attack begins. In this phase, the malware communicates
with the C2 server or P2P host to download malware ELF
files to the victim device. After downloading the malicious
ELF file, the malware waits for the fourth phase of the
attack. In this phase, malware listens to the dedicated port for
commands from the C2 server to conduct malicious activities.
The fifth and last phase does not apply to all the malware
families in our collection. Some of the malware families try
tomaintain their presence on the target device or avoid getting
detected or analyzed. For this reason, malware families apply
different techniques such as killing other malware processes,
blocking some ports, or even wiping the target device. The
common threat pattern of the IoT malware is shown in Fig. 6.

As a result of our efforts, we present the behavioral anal-
ysis IoT malware families by adopting a layered investiga-
tion framework. By utilizing this framework, the tactics of
the adversaries to exploit the target devices, and techniques
(along with ID numbers) used for conducting the mentioned
tactics are given below and in Table 7. Besides attack vectors,
exploited vulnerabilities, communication ports, and services
are presented. Our investigation framework of the Behavioral
Analysis of IoT Malware Families is presented in Table 7 in
Appendix A.

A. PLANNING
• Common Tactic: Discovery: The attacker tries to col-
lect information about the target device.

• Techniques: There are two different techniques to
achieve the ‘‘Discovery’’ tactic.

– Remote System Discovery (T0846): Detection of
running hosts by IP address, hostname, or other
logical identifiers on a network.
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FIGURE 6. Common threat pattern of IoT malware families.

FIGURE 7. Distribution of techniques on planning phase.

– Network Service Scanning (T0841): Conducting
port scanning to locate running services on the vic-
tim host.

In the planning phase for reconnaissance, all 64 malware
families are using the discovery tactic on Mitre ATT&CK
for ICS. To conduct this tactic, they used two different tech-
niques which are, ‘‘Remote System Discovery’’ and ‘‘Net-
work Service Scanning,’’ regarding their attack vector in the
Preparation phase. All themalware families used their built-in
scanning modules to accomplish the reconnaissance phase.
The distribution of the used techniques is shown in Fig. 7.

B. PREPARATION
• Common Tactic: Initial Access: The attacker tries to
get access to the target device.

• Common Technique: Internet Accessible Device
(T0883): Attackers gain access to Edge/Fog computing

environment through devices exposed directly to the
internet.

In the preparation phase, malware is weaponized; and tar-
get hosts are set based on the results of the previous phase.
The applied tactic in this phase is the same for all malware
families. All the malware families attempt to establish an
‘‘Initial Access’’ to the victim host. To implement this tac-
tic, all the malware families used the ‘‘Internet Accessible
Device’’ technique to establish a first connection with the
victim host. Malware families differ according to the attack
vectors during this phase. In order to gain initial access to
the victim machine, some malware families use publicly
known built-in credentials for the Brute-Force attacks. For
example, the infamous Mirai malware has a dictionary con-
sisting of 61 credential pairs to brute force the victim device.
Another attack vector is exploiting the vulnerabilities of a
target device. All of the exploited vulnerabilities are shown
in Table 7. While some of the malware families use only one
attack vector, others use both attack vectors. The distribution
of the used attack vectors is shown in Fig. 8.

C. CYBER INTRUSION
The Cyber Intrusion phase contains two sub-phases as Deliv-
ery and Exploitation.

1) DELIVERY
• Common Tactic: Persistence: The attacker tries to get
access to the target device.
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FIGURE 8. Distribution of attack vectors on preparation phase.

• Common Techniques: Program Download (T0843):
Performing a program download to transfer malicious
software

All malware families follow a common tactic and tech-
nique in this sub-phase. One of the essential capabilities of
malware is to be able to achieve persistence. The persistence
tactic is used by attackers tomaintain their presence in the vic-
tim device after gaining initial access in the previous phase.
The ‘‘Program Download’’ technique is used to conduct this
tactic. Attackers attempt to infect the victim device with a
malicious code. There are two different attack vectors in this
subphase, after the initial access to the victim device, most
of the malware families attackers download their malicious
code from their servers to ensure their presence on the system.
On the other hand, instead using a centralised malware down-
load server, five of the malware families (Wifatch, Hajime,
Hide and Seek, Mozi, and HeH) deliver malware with P2P
connection.

2) EXPLOITATION
• Tactics: There are four different tactics in Exploitation
Subphase

– Inhibit Response Function: Preventing the target
device’s safety, protection, quality assurance, and
operator intervention functions from responding to
a failure, hazard, or unsafe state.

– Impact: Aims to manipulate, interrupt, or destroy
target device.

– Execution: Running malicious code on the victim
host.

– Persistence: Maintaining presence in the victim
device.

• Techniques: There are eight different techniques to
achieve relevant tactics.

– Denial of Service (T0814): Performing Denial-of-
Service (DoS) attacks to disrupt expected device
functionality.

– Manipulation of Control (T0831): Manipulation
on communication or commands of victim host.

– Loss of View (T0829): Causing permanent loss of
view where the target IoT device requires local,
hands-on operator intervention.

FIGURE 9. Distribution of tactics on exploitation phase.

– Theft ofOperational Information (T0882): Steal-
ing important data.

– Loss of Availability (T0826): Disrupting essential
components or systems.

– Command Line Interface (T0807): Utilizing
command line interfaces (CLIs) to interact with
victim device and execute commands.

– Scripting (T0853): Using scripting languages to
execute arbitrary code.

– Program Download (T0843): Performing a pro-
gram download to transfer malicious software.

In this sub-phase, all malware families differ from each
other in terms of Tactics, Techniques, and Attack Vectors.
Malware families use four different tactics (Inhibit Response
Function, Impact, Execution, and Persistence ) to compro-
mise the victim device. The distribution of used Tactics is
shown in Fig. 9.

Eight different techniques are used to implement those
tactics. The DDoS technique is used for the Inhibit Response
Function tactic. For the Impact tactic, Manipulation of Con-
trol, Loss ofView, Theft of Operational Information, and Loss
of Availability techniques are used. For the Execution tactic,
Command Line Interface and scripting techniques are used.
Lastly, for the Persistence tactic, the Program Download
technique is used. The distribution of the attack vectors by
techniques is shown in Fig. 10.
IoT malware families used 18 different attack vectors

to exploit the victim device. Eight of these attacks are
the ‘‘flooding attacks’’ for DDoS attacks. After the DDoS
attacks, the most commonly used attack type is DNS Spoof-
ing. Some malware families such as Ttint and LuaBot were
detected to be used for Socket Secure (SOCKS). With the
newly emerging paradigm Malware-as-a-Service (MaaS),
these botnets are rented to malicious people to route their
malicious traffic over these victim devices as proxy servers.
Another interesting attack vector is cryptocurrency mining.
These devices are highly constrained in terms of computation
power. For this reason, it is impossible to mine Bitcoin,
which requires high computational power. However, there
are a few other crypto coins like ‘‘Monero,’’ which do not
require too much computation power for mining activities.
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FIGURE 10. The distribution of attack vectors by techniques on exploitation phase.

Eight of the malware families (13%) have an attack vector
of cryptocurrency mining. There are two malware families,
‘‘Chuck Norris’’ and ‘‘Brickerbot’’, which make the victim
devices unusable without operator intervention. ChuckNorris
re-configures the device firmware and requires a user to
reboot the device. On the other hand, ‘‘BrickerBot’’ wipes
the partial or whole of the device memory and attack with
the ‘‘Permanent Denial of Service (PDoS)’’ attack vector.
After the ‘‘BrickerBot’’ attack, more expertise intervention
is required to make the device operable again. The other
attack vectors are ‘‘Download Another Malware,’’ ‘‘Social
Media Hijacking,’’ ‘‘Eavesdropping,’’ ‘‘Man in the Middle
(MITM),’’ ‘‘Creating Backdoor,’’ and ‘‘Executable Installer.’’

D. MANAGEMENT
• Common Tactic: Command and Control(C2): The
attacker tries to communicate and control the victim
machine to use it for malicious purposes.

• Techniques: There are two different techniques to
achieve this tactic.

– Commonly Used Port (T0885): Communicating
on a commonly used port to not get detected
by firewalls or network detection systems and to
hide behind normal network activity to avoid more
detailed inspection.

– Connection Proxy (T0884): Using a connection
proxy to direct network traffic between systems or
act as an intermediary for network communications.
Also, this definition of a proxy can be expanded
to encompass trust relationships for P2P networks
consisting of hosts or systems that regularly com-
municate with each other.

During the management phase, all the malware families
adopt the same Tactic. Malware developers use ‘‘Command
and Control Tactic’’ to conduct their malicious activities on
the infected device. They need to establish communication
to send their commands to malware and run this command

in the victim device. Two different techniques are applied
for achieving this tactic. Most malware families apply the
‘‘Commonly Used Ports’’ technique to hide behind normal
network data packets.

On the other hand, five of the malware families apply the
‘‘Connection Proxy’’ technique. Malware families Wifatch,
Hajime, Hide and Seek, Mozi, and HeH use P2P network
communication to communicate with the infected device.
This new technique makes it impossible to centrally disin-
fect these malware families because malware researchers and
security companies generally disable malicious C2 servers.
Since P2P botnet malware does not need such a central
C2 server, it is much more difficult to disinfect them cen-
trally [133].

All the malware families adopted the same approach in
this phase and apply the ‘‘Commonly Used Port’’ technique.
After the victim machine gets infected, the malware estab-
lishes communication with C2 servers to get commands and
download extra malicious files if needed. However, malware
families get differ on the attack vector side. Fourteen differ-
ent ports and seven different services are used by malware
to communicate with their server. IRC, Telnet, TCP, UDP,
DHT, SSH, and WSS services are used for this purpose. The
distribution of the used ports is shown in Fig. 11. On the other
P2P IoT botnet malware families do not have any central C2
servers, and their communication ports and services may vary
by the command. The details of the communication protocols
of the P2P botnets could be found in the relevant analysis
researches [63], [87], [118].

E. SUSTAINMENT/EVASION
• Tactics: There are five different tactics for sustainment
on the target or evasion of the target to avoid detection
or removal from the device.

– Inhibit Response Function: Preventing the target
device’s safety, protection, quality assurance, and
operator intervention functions from responding to
a failure, hazard, or unsafe state.
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FIGURE 11. Distribution of used ports on management phase.

– Impair Process Control: Trying to manipulate,
disable, or damage running processes.

– Evasion: Avoiding to get detected.
– Persistence: Maintaining presence in the victim

device.
– Impact: Aims to manipulate, interrupt, or destroy

target device.

• Techniques: There are five different techniques to
achieve relevant tactics.

– Block Serial COM (T0805): Blocking access to
serial communication ports to prevent instructions
or configurations from reaching target hosts.

– Service Stop (T0881): Stopping or disabling ser-
vices on a system to render those services unavail-
able to other users.

– Indicator Removal on Host (T0872): Attempting
to remove artifacts of their presence on the target
host to cover their tracks.

– System Firmware (T0857): Exploiting the
firmware update feature on accessible devices to
upload malicious or out-of-date firmware.

– Manipulation of View (T0832): Attempting to
manipulate the information reported back to oper-
ators or controllers.

As in the Exploitation sub-phase, all malware families
differ in Tactics, Techniques, andAttackVectors in this phase.
Five different tactics are used bymalware families for sustain-
ment or avoiding detection purposes. It can be observed from
Table 7 that malware families before 2016 (before Remaiten)
do not have any sustainment or evasion tactics generally.
Only two of the malware families, Wifatch and Setag, used
sustainment tactics. If we take into consideration thatWifatch
is a ‘‘White-Hat-Trojan’’ and aims to protect IoT devices
from getting infected by other malware, Setag is the first
malware that uses sustainment tactics to maintain its presence
on the target host. Even though some new malware types
emerged between Setag and Remaiten, none of them applied
any tactics for sustainment and evasion purposes.

Also, five different techniques are used to conduct those
tactics. For the Inhibit Response Function tactic, the ‘‘Block
Serial COM’’ technique is used. Using this technique, mal-
ware blocks some specific ports that are generally used by
other malware. As mentioned hereinbefore, IoT devices are
highly constrained devices in terms of computation power,
and running more than one malware may result in perfor-

FIGURE 12. Distribution of attack vectors by techniques on
sustainment/evasion phase.

mance loss. This performance loss may be noticed by the
user, and the user may take some prevention against it. With
this understanding, this technique is generally used for the
prevention of other IoT botnet malware infecting the device.
Also, the ‘‘Service Stop’’ technique under the Impair process
control is used for the same purpose. With this technique,
if there is any other botnet malware on the victim host,
it would be killed before beginning any other malicious activ-
ity.

Another technique used in this stage is ‘‘Indicator Removal
on Host’’ to conduct the ‘‘Evasion’’ tactic. With this tech-
nique, the malware tries not to get detected on the victim
device. To avoid getting detected, different attack vectors are
used by malware families. Remaiten and Liquorbot delete
themselves or some of the downloaded malware files from
the C2 server. Amnesia has a very particular attack vector.
If it detects that it is running in a Virtual Machine, It wipes the
VM to avoid being exposed and getting analyzed. Birckerbot,
VPNFilter, Silex, and HeH wipe some part or whole of the
host device.

Only one malware family uses the System Firmware tech-
nique to implement the Persistence tactic. VBot has a feature
to update itself automatically, like a firmware update. Another
technique used by only one malware is the Manipulation of
View. This technique is applied only by Katana to conduct the
‘‘Impact’’ tactic. This malware prevents the infected device
from restarting to maintain its existence. The distribution of
attack vectors by techniques is shown in Fig. 12.

F. LESSONS LEARNED
Defense-in-depth approach needs to be applied to defend
against IoT malware. An efficient defense mechanism should
aim to defend the whole computing environment for every
phase of the malware attack. In the first phase of the attack,
two different attack vectors are applied by the malware. Both
of these attack vectors are based on network scanning. One
of these attack vectors is discovering the running hosts on the
network and the other one is discovering running services on
these hosts. Defending against both of these attack vectors is
very easy by configuring a firewall properly.

The second phase also contains two different attack vec-
tors. Defense against these attack vectors requires the aware-
ness of the users. Most of the malware uses default username
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TABLE 6. The defense-in-depth approach for IoT malware.

and password tuples to gain initial access. Changing default
usernames and passwords can easily provide security against
these malware families. The other attack vector is exploiting
vulnerabilities to gain initial access. To defend against these
malware families, the best action is to apply patches in a
timely manner.

The third phase contains two sub-phases. The first
sub-phase is delivery. Blocking the known IP addresses of
known malware download servers may partially provide
security. Another solution is deploying anti-malware tools
based on static analysis. Nevertheless, there are no prevailing
anti-malware tools for IoT devices. The second sub-phase is
the exploitation sub-phase. There are two different defense
solutions for this phase. One of these solutions is to apply
proper firewall configuration. The other solution is again
deploying an anti-malware tool, but in this sub-phase, the tool
should be based on the dynamic analysis of malware and to
the best of our knowledge there is no such anti-malware tool
that runs on IoT devices for now.

In the fourth phase, the applicable defense mecha-
nism is very similar to the delivery sub-phase. Block-
ing the IP address of the known C2 servers prevents
communication between the malware and the C2 server.
Additionally blocking unnecessary ports is an efficient
solution.

The last phase contains the sustainment techniques of the
malware. Similar to the exploitation sub-phase, a dynamic
analysis based anti-malware tool should be used to detect sus-
tainment techniques, such as killing other processes, blocking
some ports, or deleting some files. The defense-in-depth
approach for IoT malware is presented in Table 6.

VII. CONCLUSION
IoT malware poses a severe threat to all devices in Edge/Fog
computing environment. These ecosystems are still far from
being secure, and there is much progress that needs to be

done for securing edge devices. Serious steps have to be
taken for developing efficient defense mechanisms against
malware for edge devices. We believe that developing an
effective anti-malware mechanism is possible only with a
high understanding of malware behaviors. This paper aims
to bring light for future researches with presented features of
the IoT malware.

This research fills three important research gaps for an
improved understanding of defending IoT devices against
malware attacks. As a first step, 64 different malware fam-
ilies have been introduced to familiarise IoT malware. These
64 different malware families cover the majority, if it is
not all, of existing IoT malware ranging from its debut in
February 2008 to recent ones by the published date of this
paper. Then, the evolutionary development of these malware
families are presented with a phylogenetic tree. Four different
malware families Hydra, Tsunami, Gafgyt, and Mirai, are
determined as parent malware families. Those malware fami-
lies could be assessed as milestones in IoT Malware develop-
ment and their features are highly inherited by other malware
families. Lastly, a methodical characterization of existing IoT
malware families is presented. Themalware families are char-
acterized by various aspects, such as target architecture, evo-
lution, delivery techniques, attack vectors, and sustainment
methods. Further detailed analysis of IoT malware shows that
the velocity of newly emerging malware families, increased
sophistication, and newly applied techniques such as P2P
communication and obfuscation techniques pose significant
challenges for IoT malware detection.

Considering the significant malware threat for IoT devices,
it is surprising to see that the literature lacks a fundamental
methodology to guide malware analysis and development of
anti-malware tools in the IoT domain.We believe that the first
step for securing IoT devices highly depends on the under-
standability of the malware behaviors. During the literature
review, we surprisingly realize that there is only a limited
number of studies on the IoT malware analysis domain.
Most of the studies focused on malware detection based on
machine learning. Developing efficient anti-malware tools
requires combining the efforts of two different disciplines
which are Malware Analysis and Machine Learning. These
two disciplines require different skills. Specifically, malware
analysis mostly requires reverse engineering skills along with
knowledge of operating systems and network communica-
tion, while machine learning requires mostly statistics. In this
regard, a malware analysis framework that combines static
and dynamic analysis methods is highly needed for providing
a dataset for the training process of machine learning-based
approaches.

Despite the novel approach of this study, it is worth men-
tioning some remaining challenges and limitations. Securing
edge devices against malware is insufficient for providing a
secure ecosystem in Edge/ Fog computing. This research only
presents the malware threat on the edge devices layer. Similar
research also has to be conducted for the other layers of the
Edge/Fog computing environment. Providing end-to-end
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security on all over the Edge/Fog Computing ecosystem is
only possible by securing all the layers.

APPENDIX A
MALWARE BEHAVIORAL ANALYSIS FRAMEWORK
FOR EDGE DEVICES
See Table 7.
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