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ABSTRACT Brain-Computer Interface (BCI) is a promising technique because of its wide variety of
applications, from treating cognition in humans to person authentication. Brain signals can be transmitted
straight to a prosthetic device from the BCI system, without the need for nerve or muscle activity. For
accurately identifying the transmitted signals at the prosthetic device, considering the nature of the Electroen-
cephalography (EEG) signal, and extracting the most informative features are effective keys. In this paper,
we studied the cyclostationarity of the Slow Cortical Potential (SCP) EEG signals for BCI applications,
following our previous studies. Cyclostationary analysis reveals the hidden periodicity in the signal and
provides a second-order statistical description in the frequency domain. We used the FFT Accumulation
Method (FAM), an effective computational algorithm, to extract the features of the Spectral Correlation
Function (SCF). The features are classified using SVM RBF, SVM polynomial, and K-Nearest Neighbor
classifiers, and they are considered with different pre-processing. Our research indicates that the SCP EEG
signal has cyclostationary properties and this idea is applied to the BCIs as well. The classification accuracy
on the BCI Competition 2003 dataset Ia’s increased considerably, by spotting the intrinsic correlation
between just two EEG signals.

INDEX TERMS Brain-computer interface (BCI), cyclostationary signal, spectral correlation function (SCF),
electroencephalography (EEG) classification, BCI competition 2003 dataset Ia.

I. INTRODUCTION
Research on the Brain-Computer Interface (BCI) began at the
University of California (UCLA) in the 1970s with animal
studies on how to build a direct link between external envi-
ronments (or gadgets) and the brain; the first human attempts
came in the 1990s [1]. Technologies based on BCIs were cre-
ated to assist people who have problems interacting with their
surroundings. In this application, brain signals are directly
transmitted from the BCI system to an external device, such
as a robotic arm, prosthetic device, or wheelchair, without
needing healthy or fully functional nerves and muscles. The
brain impulses used for computer-brain communication have
advanced from feelings and perceptions to higher levels
of thought with an improvement of neurotechnology and
artificial intelligence, transforming BCIs into a new gener-
ation of hybrid intelligence known as Brain-computer intelli-

The associate editor coordinating the review of this manuscript and

approving it for publication was Md. Kafiul Islam .

gence [2]. Human information processing, decision-making,
and perceptual skills can be enhanced by the collaboration of
Human Intelligence (HI) with Artificial Intelligence (AI) in
non-medical applications [3], [4], [5], [6], [7].

A BCI system goes through six basic processing phases:
data collecting, background noise removal, application-
specific feature extraction, selection of the most important
features, classification of the collected features to make deci-
sions, and delivering control commands to an end machine,
carrying out the orders, and providing feedback to the user
by machine. BCIs may not always use feature-selection and
feedback-sending techniques to minimize computations, but
those that look for salient features increase accuracy [8].
In particular, the preprocessing, feature extraction, and clas-
sification phases were the focus of many research efforts to
enhance their performance [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20].

Brain imaging data is collected while the person performs
an imaginary action, such as moving a hand, arm, tongue,
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TABLE 1. Neuroimaging approaches comparison.

FIGURE 1. Comparison of the temporal and spatial resolution for various
neuroimaging approaches [28].

or leg, tracking the movement of an imaging cursor, etc.
By analyzing these signals, we can distinguish different types
of mental tasks. The information can be gathered using a
variety of methods: 1) Functional Magnetic Resonance Imag-
ing (fMRI) [21], Positron Emission Tomography (PET) [22],
and Near-Infrared Spectroscopy (NIRS) [23], all of which
measure changes in the brain blood flow; 2) Magnetoen-
cephalography (MEG) [24] which measures the brain’s mag-
netic activity; 3) Electroencephalography (EEG) [11] and
Electrocorticography (ECoG) [25] which measure the brain’s
electrical activity; 4) Hybrid BCI (hBCI) [26], [27] which
combines the above-mentioned methods. MEG and fMRI
are currently prohibitively expensive, and PET necessitates a
radioactive injection, so NIRS and EEG are more widely uti-
lized signals [28]. Temporal resolution detects brain activity
in real time, whereas spatial resolution indicates the specific
position of the action. MEG and PET’s temporal and spatial
resolutions are high, fMRI and NIRS are low, and EEG has a
high temporal but low spatial resolution. A comparison of the
mentioned neuroimaging approaches is shown in table 1 [22]
and figure 1 [28].

Electroencephalography (EEG) is a non-invasive tech-
nique for collecting brain electrical activity. Typically, EEG
electrodes are placed on the scalp surface in a 10–20 global
deployment pattern as shown in figure 2 [7]. Each electrode
records a one-dimensional vector of raw EEG data as the
signals are recorded on the three-dimensional scalp surface.
The EEG data is noisy due to hair, fatty tissue, and eye blink-
ing. In addition, artifacts could be created by the recording
equipment’s power connections and electrode movement.

FIGURE 2. EEG electrode placement according to the 10-20 system. The
related motor imagery (MI) electrodes are identified in blue color [7].

Consequently, a large amount of weak and low signal-
to-noise ratio data is recorded. As a result, signal classi-
fication and interpretation get more difficult. Despite its
drawbacks, raw EEG has certain benefits over other brain
imaging methods, such as low cost, portability, and the
lack of side effects because it is non-invasive. Hence,
EEG offers many applications, including screening and
hypothesis-based diagnosis such as diagnosis of depres-
sion [29], Alzheimer’s [30], epileptic seizures [31], neuro-
marketing [32], neuro-entertainment [33], [34], borderline
personality disorder [35], sleep stage classification [36],
robot-assisted therapy [37], wheelchair control [38], person
identification and authentication [39], [40], [41], social inter-
action [42], speech BCIs [43], [44], [45], [46], driver drowsi-
ness detection [47], and so on.

Assistive studies typically use EEG data from the motor
cortex region, whose electrodes are indicated in blue in
figure 2 [7]. Researchers studying BCIs are interested in EEG
signals such as Slow Cortical Potentials (SCP) [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20], [48], [49], Steady-
State Visual Evoked Potentials (SSVEP) [50], [51], motion
onset Visual Evoked Potential (moVEP) [52], P300 [53],
[54], [55], and others.

The classification of Slow Cortical Potential (SCP) sig-
nals is crucial not only for BCI but also for several other
disciplines, including stroke rehabilitation [56] and neuro-
science research [57], [58], [59]. Furthermore, SCP signals
are strongly correlated with Attention Deficit Hyperactivity
Disorder (ADHD) [60], [61], [62], and numerous studies have
shown that teaching patients to modify their SCP signals
dramatically raises their test results for behavior, focus, and
Intelligence Quotient (IQ) [63].

Extracting application-specific features is an important
step in BCIs, and a variety of features have been proposed
to improve classification accuracy. For accurate detection
of mental activity, the ability of the extracted features to
discriminate between them is crucial. To achieve the highest
degree of accuracy, several features must be combined in
most cases. The BCI competition II dataset Ia [64], detailed in
Section II, is a commonly used dataset for SCP EEG signals,
and here’s a brief overview of the studies that have been
published using it:
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Mensh et al. [48], the 2003 BCI competition winners,
looked at the time-domain and frequency-domain averages
for six EEG channels and used four features in their classifi-
cation algorithm based on the statistical significance between
each trial of two classes. The features were the SCP ampli-
tude of channels 1 and 2 as time-domain analysis, and the
Gamma-band powers of channels 4 and 6 as frequency-
domain analysis. The results of five classifiers are presented,
with the best Correct Classification Rate (CCR) of 88.70%
for SCP plus multi-taper classification.

Sun et al. [13] looked at the possibility of classifying EEG
signals using common low-level features in audio/speech
signal processing. Seven low-level features were generated
from each 0.5 seconds subframe of six channels, and the
most efficient features were selected by averaging the CCR
for each channel and per each feature on the training set.
It resulted in a CCR of 90.44%, obtained by fusing the
selected features with DC potentials.

Wang et al. [65] proposed a method with Wavelet Packet
Transform (WPT) and Artificial Neural Networks (ANNs).
Using wavelet packets, SCPs are combined with the energy of
the time-frequency domain in the beta-band. The classifica-
tion consists of a three-layer perceptron established by Back-
Propagation (BP) and Support Vector Machines (SVMs)
for channels 1 and 2. The best classification accuracy was
91.47% for the BP network.

Li et al. [14] studied the EEG classification by chaos
theory. As EEG is a complex time series that behaves like
an unstable unusual attractor in a chaotic system rather than
a random signal [66], the chaos theory may provide helpful
quantitative descriptions. Because the complexity measures
may characterize the complexity of a chaotic system, two
additional characteristics are presented to analyze EEG sig-
nals in the BCI system: Kolmogorov and C0 complexity
measures. The success rate of the experiment was 90.3%CCR
using the two most important channels (channels 1 and 2).

Approaches based on polynomial fitting coefficients were
proposed by Kayikcioglu et al. [15] and Hou et al. [19]. The
coefficients of a second-order polynomial fitted to just one
EEG channel (channel 1) produced the feature vector in [15].
Still, the simulation results for two channels (channels 1 and
2) are also shown. The K-Nearest Neighbor (KNN), Multi-
ple Layer Perceptron (MLP), and Support Vector Machine
(SVM) algorithms are used to assess the performance of
the extracted features. The best outcome for one-channel
processing and the KNN classifier is 92.15% CCR. The
method presented in [19] extracts the features by fitting a
second-order polynomial to the wavelet coefficients of SCP
signals. Then, a voting system based on the optimal training
parameters of the SVM (VSVM) enhances the classification
accuracy. In this algorithm, the best CCR for just one EEG
channel (channel 1) is 94.50%.

Wavelet Packet Decomposition (WPD) is used by
Hu et al. [16] to extract features. The wavelet packet decom-
position means that the energy of a specific sub-bands

serves as the coefficients. Using Fisher Discriminant Anal-
ysis (FDA), the separable features are selected. The chosen
features from the six channels are then combined to form the
feature vector. The K-Nearest Neighbor (KNN) algorithm
is then used to classify the attributes. This study’s CCR is
90.10%.

Duan et al. [17] extracted features using Linear Discrim-
inate Analysis (LDA) and Principal Component Analysis
(PCA). According to their earlier research [67], only signals
from channels 1 and 2 are utilized. The raw data was divided
into nine sections. Each segment is linked to PCA, and the
optimal data string is chosen based on a 99% Accumula-
tive Contribution Rate (ACR). LDA then processes the fea-
tures, and the classification is carried out by a Voting-based
Extreme Learning Machine (V-ELM). The accuracy of the
classification is 93.52%.

Nguyen et al. apply wavelet coefficients [18]. This tech-
nique combines wavelet modification with an Interval Type-2
Fuzzy Logic System (IT2FLS). The most valuable coeffi-
cients are inputs to the IT2FLS for the classification step
after wavelet coefficients are sorted according to the statis-
tics of the receiver operating characteristic curve criterion.
Feedforward neural networks, SVMs, k-nearest neighbors,
AdaBoost, and adaptive neuro-fuzzy classifiers are used for
comparisons. The highest rating, 90.10%, belongs to IT2FLS.

PCA and LDA are combined by Duan et al. [20] to extract
features. The first step is to utilize the PCA algorithm to
minimize the data’s dimension. Then, after determining the
best projection direction for channels 1 and 2, LDA is used
to produce a collection of projective feature vectors for the
training samples that have the biggest between-class scatter
and the least within-class scatter. After that, the Multilayer
Extreme Learning Machine (ML-ELM) classifies the fea-
tures. A 94.20% performance rating has been given.

Log Energy Entropy of wavelet packet analysis was used
by Göksu [68] to create the features. The feature vectors are
fed into a Multilayer Perceptron (MLP) classifier, and the
MLP’s performance is compared to that of theKNN and SVM
classifiers. The approach delivers 92.8% accuracy.

Paranjape et al. [11] investigated the feature extracted by
correlating EEG data with SCP of the most efficient chan-
nels (channels 1 and 2) via a cross-correlation approach.
First, the reference signal is chosen according to a crite-
rion rather than the randomly chosen ways. After that, the
discriminative characteristics are obtained from each cross-
correlated sequence. Peak value, peak value number, cen-
troid, equivalent width, and mean square abscissa construct
feature vectors, then classified using SVM and KNN clas-
sifiers. The authors recommended creating an ensemble of
SVM classifiers trained with complementary feature sets to
improve classification accuracy. The highest score is 94.54%.

The categorization methods created by Annaby et al. [12]
are based on graph-theoretic models. A directed graph of the
EEG channels is connected by multivariate autoregressive
models. Additionally, Gaussian-weighted distances between
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graph nodes are used to build models of undirected graph
signals. The Fourier transform is then applied to a new
graph iteration between the directed and undirected graph
models. The transform coefficients are used to extract the
distinctive features. Also, to improve the discriminative
power of features, the principal components, comparable spa-
tial patterns, and polynomial representations were applied.
Extreme Learning Machine (ELM) classifiers significantly
improved their performance and produced a classifier with
an accuracy of 96.58% using fully connected and weighted
directed graph features computed on delta-.band EEG
data.

Although various BCI algorithms have been examined,
research on efficient feature extraction by considering
the essence of EEG signals is still ongoing. Accord-
ing to Kumar et al. [69], the almost constant presence of
non-stationarities in EEG signals degrades BCI performance.
In an information theoretic context, the authors suggested a
novel strategy based on Joint Approximate Diagonalization
(JAD) to optimize stationarity for multiclass motor imagery
BCIs. In particular, they estimate the subspace in the sug-
gested manner that maximizes the discriminability between
classes while simultaneously maintaining stationarity within
the classes. On an orthogonal manifold, they use gradient
descent optimization to find the subspace for the suggested
technique. Results on BCI competition IV dataset IIa indicate
an improvement in the average classification accuracy over
the baseline methods, which is crucial for reducing non-
stationarities within sessions.

As pointed out by Sadatnejad et al. [70], in the current BCI
systems, between-session non-stationarity poses a significant
performance issue. They investigated the application of the
channel selection technique with Riemannian BCI classifiers
to reduce between-session non-stationarity. To exclude the
least significant channels, a sequential floating backward
selection search method was used. The suggested methods
were evaluated using three multi-session and multi-class
Mental Tasks based (MT-based) BCI datasets. They obtained
noticeable performance enhancements compared to using all
channels. They concluded that Riemannian BCI classification
accuracy could be significantly increased by reducing non-
stationarity through channel selection.

Some phenomena, such as brain and heart activity, are
incapable of being formulated. The cyclostationarity hypoth-
esis of the EEG and Electrocardiogram (ECG) signals cannot
currently be proven; but intuitively it can be understood, even
though it is not clear, and that is why such periodicity is
called hidden periodicity. We investigated this theory, and
the findings support it. In this study, we investigated the
cyclostationarity of the Slow Cortical Potentials (SCP) EEG
signals, following our previous studies on ECG [71] and
EEG [72] signals. Cyclostationary signals are continuous
random signals that undergo periodic changes in their sta-
tistical features across time [73]. The Spectral Correlation
Function (SCF), which is the cross-spectral of a signal and
its frequency-shifted version, produces a second-order sta-

tistical representation of the signal in the frequency domain.
The SCF is also referred to as the cyclic spectrum, and the
theory behind it is covered in references [74], [75], [76].
The fundamentals of time and frequency smoothing meth-
ods are the same in spectral correlation analysis [73], [77].
The Strip Spectral Correlation Analyzer (SSCA) and the
FFT Accumulation Method (FAM), are two time smoothing
techniques that utilize the computation efficiency of FFT.
They were both developed in [76] and discussed in [78].
The effectiveness of cyclostationary analysis has been tested
in several disciplines. Amirani et al. [79] demonstrated that
modulation classification based on cyclic spectrum analysis
performs well, and [80] and [81] showed that this concept
could also be applied to texture classification. Each image
provides two one-dimensional signals by sorting pixels row
by row and column by column. The SCF of each signal is
then calculated using the FAM. According to the results of
the experiments, the suggested method improves the retrieval
accuracy, and the CCR of the recovered features is more
distinct compared to typical discrete wavelet transform tech-
niques. Mihandoost et al. [71] and [72] presented the SCF
analysis as a feature extraction approach for ECG repre-
sentation and epilepsy diagnosis, respectively. The authors
use FAM for SCF calculation and also employ a statis-
tical model called Generalized Autoregressive Conditional
Heteroscedasticity (GARCH), as a describing model by tak-
ing into account the heteroscedastic quality of SCF coef-
ficients, and also to decrease the number of features. The
experimental findings show that the proposed approach is
effective.

We investigated the cyclostationarity of the Slow Cortical
Potentials (SCP) EEG signals and our studies suggest that
BCIs can also benefit from this concept. The SCF takes
advantage of the nature of EEG as well as current BCI
research problems including optimum feature selection and
multiple-channel processing. The proposed method was eval-
uated on the BCI Competition 2003 dataset Ia and the results
showed that it can classify the EEG signals for BCIs appli-
cations precisely. Additionally, considering the aforemen-
tioned works [12], [17], [20] and also our earlier article [82],
we investigated the effects of feature preprocessing using
PCA and LDA techniques.

The rest of this paper is organized as follows. In Section II,
the employed EEG dataset is briefly described. Section III
discusses the SCF and FFT accumulation methods.
In Section IV, the experimental setup and results are pre-
sented. Section V concludes with research suggestions for
the future.

II. DATASET
The EEG recordings submitted for dataset Ia of the BCI Com-
petition 2003 were made by a healthy subject [64]. A1-Cz,
A2-Cz, 2 cm frontal of C3, 2 cm parietal of C3, 2 cm frontal
of C4, and 2 cm parietal of C4 were the six locations where
EEG data were recorded, as shown in figure 3 (a). The subject
was asked to move the cursor on the computer screen while
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FIGURE 3. (a) The six locations where EEG electrodes [17] and (b) the
layout of the trial [11].

his cortical potentials were being measured. Each reading
is expressed in microvolts. The recording gave the subject
visual feedback on his slow cortical potential. Depending on
whether the cortical state is positive or negative, the pointer
on the screen oscillates between lower and higher positions.
Each trial lasted six seconds. In each trial, a target was
highlighted at the top or bottom of the screen to represent
negativity (Class 0) or positivity (Class 1), respectively. After
0.5 seconds, the stimulation began, and it lasted until the
trial was complete. With a 256 Hz sampling rate and a 3.5 s
recording time, 896 samples per channel were taken from
each trial. Figure 3 (b) depicts the layout of the trial. The
268 trials for the training dataset, 135 of which were in Class
0 and 133 of which were in Class 1, were recorded and
tagged over two distinct days and then mixed randomly. For
the test dataset on the second day, 293 trials were recorded,
including 147 trials for Class 0 and 146 trials for Class 1. The
vertical eye movement artifacts were removed from the SCP
measurements, according to [83].

III. SPECTRAL CORRELATION FUNCTION
For a discrete-time real-valued signal x(n), the cyclic auto-
correlation is defined by [73]:

Rα
x (k)

= lim
N→∞

1
2N + 1

N∑
n=−N

[x(n+ k)e−jπα(n+k)][x(n)ejπαn]∗

(1)

the Fourier transform of the cyclic autocorrelation function,

Sα
x (f ) =

∞∑
n=−∞

Rα
x (k)e

−j2π fk (2)

is called the Spectral Correlation Function (SCF). Since the
multiplication of a signal by e±jπαn shifts the spectral con-
tent of the signal by ±α

/
2, the cross-spectrum of the pair

of complex-valued frequency-shifted signals x(n)e−jπαn and
x(n)ejπαn provides a suitable interpretation of the SCF. In this
explanation, the parameter α, called the cyclic frequency,
is the relative frequency shift and f is the cross spectrum
frequency variable. The number of alpha values or Sα

x (f ) ̸= 0
is countable if the signal has finite average power [74]. The
ordinary power spectrum is obtained by α = 0, as:

Sx(f ) = S0x (f ) =

∑
k

R0x(k)e
−j2π fk (3)

Clearly, the SCF offers more comprehensive features
regarding ordinary power spectral density. Two inherent prop-
erties of SCF for real-valued signals indicate that the entire
function is determined by {0 ≤ f ≤ 1

/
2, 0 ≤ α ≤

1 − 2f }, where f is the normalized frequency. The first
property is symmetry relationships Sα

x (−f ) = Sα
x (f ) and

S−α
x (−f ) = Sα

x (f )
∗ and the second is periodicity associated

with discrete-time for any integer m and n, Sα+n
x (f + m +

n
/
2) = Sα

x (f ). These qualities can be easily proved using the
definition of SCF.

Several computationally efficient cyclic spectral analysis
algorithms have been proposed, which are categorized by
average frequency (frequency smoothing methods) or aver-
age time (time smoothing methods). The FFT Accumulation
Method (FAM) algorithm, belonging to the time smoothing
category, is used in this article. Therefore, we only explain
the fundamentals of time smoothing algorithms, and the
more extensive discussion can be found in [73]. The all-time
smoothing procedures are based on the time smoothed cyclic
cross periodogram [75]:

Sα
xT (n, f )1T =

1
T

〈
XT

(
n, f + α

/
2
)
,X∗

T
(
n, f − α

/
2
)〉

1T

(4)

The correlation of spectral components of x(n) over a
time span of 1t seconds is the physical interpretation of the
time smoothed cyclic periodogram. The complex envelopes
of narrow-band, bandpass components of a signal, called
complex demodulates, are represented by the spectral compo-
nents XT

(
n, f + α

/
2
)
and X∗

T

(
n, f − α

/
2
)
. A data tapering

window of length T slides over the data for a period of 1t
to calculate the Sα

xT (n, f )1T . The complex demodulation of
the data within the window are calculated at each instant.
Then, by time-averaging conjugate products for 1t seconds,
the correlation is done, and the estimates of the cyclic spec-
trum function are obtained. The correlation of demodulates
separated in the frequency domain by the amount α0 and
centered on a midpoint of f0 is used to estimate the cyclic
spectrum at the point (f0, α0). The point estimate’s time and
frequency resolutions are denoted by the quantities 1t and
1f , respectively.

XT (n, f ) =

N ′/2∑
n=−N ′/2

a(r)x(n− r)e−j2π f (n−r)Ts (5)

where a(r) is a data tapering window of length T = N ′Ts.
The complex demodulates then correlated over a 1t seconds
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time span:

Sα0
xT (n, f0)1t =

∑
r

XT (r, f1)X∗
T (r, f2)g(n− r) (6)

where g(n) is a data tapering window of width 1t = NTs,
f1 = f0+α0/2 and f2 = f0−α0/2. The time-smoothed cyclic
cross periodogram converges to the cyclic cross-spectrum if
the time windows a(n) and g(n) are appropriately normal-
ized, as 1t → ∞ followed by 1f → 0, [84]. Therefore,
if

∑
a2(n) =

∑
g(n) = 1, then

lim
1f→0

lim
1t→∞

Sα0
XT (n, f0)1t = Sα0

X (f0) (7)

The Fourier transform is used to smooth time in the FAM
algorithm. If the frequency is shifted from α0 to α0 + ε, the
output of the system is provided by:

Sα0+ε
XT (n, f0)1t

=

∑
r
XT (r, f1)X∗

T (r, f2)g(n− r)e−j2πεrTs (8)

by discretizing the value of the script ε to ε = q1α, the
sum evaluation can be simplified. So, the algorithm’s result
is stated as:

Sα0+q1α
XT (n, fj)1t

=

∑
r
XT (r, f1)X∗

T (r, f2)g(n− r)e−j2πrq/N (9)

This expression evaluates the sum with an N -point FFT.
Fourier, transforms the product sequences instead of aver-
aging them separately; point estimates with constant cycle
frequency can be obtained in blocks, which increases the
algorithm’s speed. A bank of bandpass filters is required
to cover the bi-frequency plane and generate the necessary
complex demodulates. An efficient method based on a sliding
FFT [85] can be used. The frequencies of the filter bank are
discretized in this method to:

fk = k
(
fs
/
N ′

)
, k = −N ′/2, . . . ,N ′/2 − 1 (10)

An SCF estimation is located at the frequencies, and cycle
frequencies associated with the complex demodulates (fj, αi):

fj = (fk + fl)
/
2 = (k + l)(fs

/
N ′)/2 (11)

αi = fk − fl = (k − l)(fs
/
N ′) (12)

A N ′-point channelizer can have (N ′)2 possible combi-
nations of channelizer streams; thus, there is at most (N ′)2

estimation region (diamond region). Because of symmetry,
only (N ′)2/4 diamond areas are required to estimate the cyclic
spectrum of a real signal (one quadrant of the bi-frequency
plane).

1- Four reference signals are chosen to represent the classes
‘‘up’’ and ‘‘down’’ of two channels, similarly to [11]. The ref-
erence signal is the signal whose mean and standard deviation
values are closest to the class averages.

IV. THE EXPERIMENTAL SETUP AND RESULTS
Finding the most similarity between data from the same
class or the most dissimilarity between data from different
classes, or both, is necessary to solve classification problems
successfully. In this research, we studied the applicability
of the Spectral Correlation Function (SCF) in BCIs because
it uncovers the hidden periodicity and intrinsic correlation
between two signals. By changing the correlation algorithm
in the feature extraction block, the performance of the
methodology described in [11] was significantly enhanced.

TABLE 2. Feature packs.

FIGURE 4. Flowchart of the proposed classification method.
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TABLE 3. The classification accuracies for total features.

TABLE 4. The classification accuracies per various feature packs.

TABLE 5. The classification accuracies per various feature packs of the
channel1 train dataset.

TABLE 6. The classification accuracies per various feature packs of the
channel1 test dataset.

Only the data from channels 1 and 2 are used following [11]
and considering previously published successful research.
A description and flowchart of the suggested method and its
outcomes are provided below. Classification steps are:

2- Correlated signals are produced by spectral correlating
the reference and train/test signals.

3- The correlated signals are used to construct the five
expressed features at [11]. The features are peak value, instant
at which peak occurs, centroid, equivalent width, and mean
square, as follows:

centroid =

∑(N−1)
l=−(N−1) lC(l)∑(N−1)
l=−(N−1) C(l)

(13)

euivalent width =

∑(N−1)
l=−(N−1) C(l)

peak value of C(l)
(14)

mean square abscissa =

∑(N−1)
l=−(N−1) l

2C(l)∑(N−1)
l=−(N−1) C(l)

(15)

where the variable l is the cross-spectrum frequency variable
and C(l) is the spectral-correlated signal.

4- As shown in table 2, features are packed in the five ways
described in [11].
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TABLE 7. The classification accuracies per various feature packs of the
channel2 train dataset.

TABLE 8. The classification accuracies per various feature packs of the
channel2 test dataset.

TABLE 9. The CCR comparison for the channel1 train dataset.

TABLE 10. The CCR comparison for the channel2 train dataset.

TABLE 11. Performance measures comparison.

5- In addition to the method described in [11], the feature
packs are processed using PCA, LDA, and their composition
to investigate the effect of feature preprocessing.

6- Three classifiers receive the features in five formats:
not-preprocessed, PCA, LDA, LDA after PCA, and PCA
after LDA preprocessed. According to [11], the implemented
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TABLE 12. The CCR comparison with the other proposed methods.

classifiers include SVM RBF, SVM polynomial, and K-
Nearest Neighbor, and 10-fold cross-validation was used to
analyze the accuracy.

The method’s flowchart is shown in figure 4.
The classification accuracy for the not-preprocessed fea-

tures from the training and testing datasets is shown in
tables 3 and 4. The classifiers in the first research are fed
with all of the extracted features from both channels, and in
the second study, the classification accuracy per each pack of
features is evaluated. It has been observed that in general, the
performance of the packs with more features is superior. The
highest performance was 99.83% and the lowest was 49.81%
CCR.

Additionally, we looked at the performance of the classi-
fiers individually for each pack of features extracted from
each channel. Tables 5 to 8 illustrate the performance of
this analysis, with the best performance being 100% CCR
for pack1 of channel 2 of the training dataset across all
classifiers and the worst performance being 33.21% CCR for
the PCA-preprocessed pack3 of the training dataset via SVM
Polynomial classifier. The classification accuracy is typically
decreased by lonely channel feature preprocessing. This is the
result of classifying the data using only the remaining features
after removing the features from the second channel and also

eliminating the distinguishing features through preprocessing
techniques.

Tables 9 and 10 and Figures 5 and 6 compare the pro-
posed method’s accuracy to that of [11] for features that
have not been preprocessed, to have a fair comparison.
As can be observed, choosing the appropriate method at the
correlation block by taking into account the inherent char-
acteristics of SCP EEG signals, considerably improved clas-
sification performance. The Spectral Correlation Function
(SCF) reveals the fundamental correlation between signals,
generating important information for BCI-oriented EEG clas-
sification. Table 11 presents the comparison of the best results
for the proposed method and [11] for various performance
measures, via not-preprocessed features of the train and test
datasets. The BCI Competition 2003 dataset Ia is compared
in Table 12 in terms of the number and types of features,
the number of channels, the types of features, and classifiers
used.

V. CONCLUSION
In this paper, the applicability of cyclostationary analy-
sis at EEG-based Brain-Computer Interfaces (BCIs) was
investigated. Following our previous research, we stud-
ied the cyclostationarity for Slow Cortical Potential (SCP)
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FIGURE 5. Comparison of the classification accuracy between the
proposed method and [11], for not-preprocessed features of the test
dataset of channel1.

FIGURE 6. Comparison of the classification accuracy between the
proposed method and [11], for not-preprocessed features of the test
dataset of channel2.

EEG signals and the findings support it. By choosing the
appropriate method at the correlation block of the fea-
ture extraction phase, the classification performance was
greatly improved. The hidden periodicities and fundamen-
tal correlation between SCP signals are revealed by the
Spectral Correlation Function (SCF), producing significant
features for BCI-oriented EEG classification. We also stud-
ied the influence of feature preprocessing by Linear Dis-
criminate Analysis (LDA), Principal Component Analysis
(PCA), and their combination at the Correct Classifica-
tion Rate (CCR). Our finding on the dataset Ia from the
BCI Competition 2003 showed that the generated fea-
tures may correctly classify the SCP EEG signals for BCI
applications.
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