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ABSTRACT In this study, we proposed a multitask network architecture for three attributes, landmark,
head pose, and occlusion, from a face image. A 2-stacked hourglass with three task-specific heads is the
proposed network architecture. We also designed three auxiliary components for the network. First is the
feature pyramid fusion module, which plays a crucial role in facilitating contextual information from various
receptive fields. Second is the interlevel occlusion-aware fusion module, which explicitly fuses intermediate
occlusion prediction between subnetworks. The third is the gimbal-lock-free head pose head, which outputs
a rotation matrix from a 6D rotation representation. We conducted an ablative study of these auxiliary
components to determine their impacts on the network. Additionally, we introduced the landmark heatmap
scaling approach to avoid falling local minima. We trained the proposed network with a 300W-LP dataset
for landmark and head pose and a C-CM dataset for occlusion. Then, we fine-tuned the network using
the 300W or WFLW dataset, instead of the 300W-LP dataset for the landmark task. This 2-stage training
method contributes to enhancing the landmark detection accuracy and that of other tasks. In the experiments,
we assessed the performance of the proposed network on eight test datasets using task-specific metrics. The
results show that the proposed network achieved competitive performance across all the datasets and notably
outperformed the state-of-the-art methods on AFLW2000 and Masked 300W datasets.

INDEX TERMS Landmark detection, head pose estimation, occlusion segmentation, multitask learning,
deep neural networks, face analysis.

I. INTRODUCTION

For a face recognition system, facial landmark detection, head
pose estimation, and occlusion segmentation tasks are chal-
lenging and actively researched problems. Face recognition
systems outperformed humans with the advent of the deep
convolutional neural network (CNN); however, in practice,
it is still necessary to enhance the robustness to noises, such
as pose, occlusion, or expression. If these types of noises
are examined, noise-robust approaches such as face frontal-
ization [1], [2], [3] or occlusion-aware approaches [4], [5],
could be applied to the face recognition system. To ana-
lyze facial landmarks, head pose, and occlusion (FaceLPO),
we can follow one of two methods: single-task learning (STL)
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and multitask learning (MTL). The STL method requires
training three independent networks, one for each task. The
network can be easily optimized and fine-tuned by focus-
ing on a single task; however, it becomes less memory and
computationally efficient if the number of tasks is increased.
In contrast, the MTL method shares one network for multiple
tasks, making it more memory and computationally effi-
cient. However, optimizing the shared network can be more
challenging.

In this study, we first introduce the MTL method to inves-
tigate FaceLPO. The network architecture and the locations
of each task are two of the most crucial components of
the MTL method. According to [6], the head pose is a
global attribute and requires a low-resolution feature map,
whereas landmark and occlusion tasks are position-sensitive
and require a high-resolution feature map. We designed
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multitask encoder-decoder architecture based on a stacked
hourglass (HG) network [7] to satisfy these characteristics,
with the head pose task located at the end of the encoder
and landmark and occlusion tasks located at the end of the
decoder.

Additionally, we proposed three auxiliary components
to enhance the performance of each task. First, we pro-
posed a feature pyramid fusion (FPF) module. Previous stud-
ies [8], [9], [10] demonstrated that contextual information
helps enhance the accuracy of semantic segmentation tasks.
Inspired by the previous studies, we reinforced the contextual
information by fusing numerous feature maps with different
resolutions in a decoder. Second, we added an interlevel
occlusion-aware fusion (IOAF) module. A stacked HG net-
work passes the outputs of the previous subnetwork to the
next subnetwork. The IOAF module fuses the intermediate
outputs, landmark heatmap, and occlusion mask to enhance
occlusion awareness of the network. Third, we applied
gimbal-lock-free 6D rotation representation instead of 3D
Euler angles. Euler angles are not an optimal representation of
the head pose due to the gimbal-lock problem [11]. We mod-
ify the head pose head to output 6D rotation parameters and
convert it to a rotation matrix using Gram—Schmidt orthonor-
mal process [12].

A publicly available training dataset that simultaneously
supports FaceLPO labels is needed to jointly train the pro-
posed network. However, we could not find that type of
dataset. Instead, we selected 300W-LP [13] and C-CM [14]
datasets. 300W-LP provides landmark and head pose labels
and C-CM provides occlusion segmentation labels. We also
adopt a 2-stage training approach. This contributes to enhanc-
ing the accuracy of all tasks by employing pretrained weights.
Additionally, it mitigates the bias of landmark points,
as mentioned in [15].

We assess our model for eight test datasets; 300W [16],
WFLW [17], Masked 300W [18] for landmark detection,
AFLW2000 [13], BIWI [19], AFLW2000-SO for the head
pose estimation, COFW [20], and RealOcc-Wild [14] for
occlusion segmentation. Masked 300W and AFLW2000-
SO datasets are used to assess the occlusion robustness of
our model in landmark detection and head pose estimation.
We generated AFLW2000-SO by artificially applying sim-
ulated occlusions to the AFLW2000 dataset, inspired by
Borghi et al. [21]. Our model achieved the best accuracy
for AFLW2000, Masked 300W, and second-best for WFLW,
COFW, and RealOcc-Wild. Furthermore, we conducted an
ablative study for the proposed three auxiliary components.
The study demonstrates that FPF and IOAF modules can
enhance the accuracy for all tasks, but 6D rotation represen-
tation did not show the difference.

In summary, we first propose, LPONet, a multitask
encoder-decoder network for FaceLPO tasks. This demon-
strated competitive performance over the other SOTAs.
We visualize our predictions for some images with occlusion
or large pose in WFLW, AFLW2000, and RealOcc-Wild
datasets, as shown in Figure 1. This study is organized as

VOLUME 11, 2023

FIGURE 1. Visualization of simultaneous FaceLPO predictions on three
different datasets. WFLW test set, AFLW2000, and RealOcc-Wild from left
column.

follows: Section II includes previous studies related to each
facial landmark detection, head pose estimation, and occlu-
sion segmentation. Section III describes the proposed archi-
tecture, three auxiliary components, and the loss function.
In Section IV, we evaluate the proposed model and compare
its performance with SOTAs. Finally, Section V concludes
the study.

Il. RELATED WORKS

In this section, we review previous studies related to the
MTL-based analysis of facial attributes, STL-based landmark
detection, head pose estimation, and occlusion segmentation.

A. MULTITASK LEARNING

Numerous multitask methods [6], [22], [23], [24] have been
used in face detection, alignment, and analysis problems.
Zhang et al. [22] developed a 3-stage cascaded structured
CNN and trained it with regression loss for the facial
bounding box and five landmarks. To examine face align-
ment, the head pose, gender, age, and expression from a
cropped face, Ranjan et al. [23] proposed a single multitask
CNN. The network consists of two subnetworks; one is
for subject-independent tasks and the other is for subject-
dependent tasks. They trained all tasks simultaneously in an
end-to-end manner. Furthermore, Ranjan et al. [24] proposed
a HyperFace network for four tasks; face detection, align-
ment, pose estimation, and gender recognition. Valle et al.
[6] proposed U-Net [25] based multitask architecture for
a head pose, 68 landmarks, and visibility. These studies
demonstrated that multiple face attributes can be effectively
examined using a single model with the MTL method, and
even achieved superior performances by developing synergy
among correlated tasks. However, the MTL method for the
FaceLPO tasks had not yet been investigated.

B. LANDMARK DETECTION

The landmark detection task is to determine the locations
of the eyes, nose, mouth, and jaw from a face image.
In detail, this task comprises two categories; 2D and 3D
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landmarks. In this study, we only focus on 2D landmark
detection. Recently, several studies [15], [17], [26], [27],
[28], [29], [30], and [31] on 2D landmark detection have
been performed. Bulat and Tzimiropoulos [15] proposed a
heatmap regression method based on a stacked HG network.
They pointed out the difference in ground-truth landmark
points between datasets and proposed fine-tuning approach
to reduce this labeling bias. Guo et al. [26] designed a land-
mark coordinate regressor employing MobileNet [32] block.
In the benchmark test employing an ARM processor, they
achieved 37 FPS for the default model and 140 FPS for a thin
model.

Loss functions are also crucial parts when training neural
networks. In either coordinates or heatmap regression, it is
an issue that the error becomes too small when the network
is trained. Thus, the network became early saturated. Wing
loss [27] and adaptive wing loss [28] have been proposed to
address this issue. Wing loss is designed to have a significant
influence when the error gets smaller. The goal of adaptive
wing loss is the same as wing loss, except that it is designed
for heatmap regression. Adaptive wing loss applied a modi-
fied logarithm function to the foreground pixel and an L2 loss
function to the background pixel. This causes the network to
focus on the error in foreground pixels than the background,
as training goes on.

Wu et al. [17] designed a boundary-aware face alignment
framework that combines coordinate regression and heatmap
regression methods. The framework first outputs bound-
ary heatmap, instead of landmark heatmap and sends it to
the encoder network, which outputs landmark coordinates.
Hsu et al. [29] investigated the characteristics of heatmap and
coordinates-based methods. Thus, they designed a hybrid
loss function with pixel-wise classification loss and coor-
dinate regression loss. Jin et al. [30] proposed a Pixel-in-
Pixel network (PIPNet) based novel hybrid method. PIPNet
is encoder-only architecture with a PIP regression head. The
PIP regression head is attached to the medium-resolution
layer that outputs both the coarse grid heatmap and offsets in
each grid. Furthermore, they proposed a neighbor regression
module that uses the interrelationship between a landmark
point and some neighbors. Bulat et al. [31] identified quan-
tization errors when encoding ground-truth heatmaps from
coordinates. They addressed the problem using a continuous
heatmap encoding approach and achieved the best landmark
detection accuracy.

C. HEAD POSE ESTIMATION
Studies on head pose estimation include both RGB image-
and depth-based approaches. Depth-based methods can be
more accurate but require special cameras, which are not
always available [33]. Therefore, we only focus on RGB
image-based methods in this study.

Traditionally, head pose estimation has been handled
by POSIT [34], which exploits correspondence between
3D head models and 2D landmarks. Recently, the deep
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learning method is widely employed to estimate the head
pose. The training dataset is crucial for the deep learning
method. Liu et al. [35] developed a 3D synthetic head pose
dataset employing a rendering tool and proposed a CNN,
which directly regresses Euler angles; pitch, yaw, and roll.
Ruiz et al. [36] proposed a multi-loss method. The multi-loss
combines a binned pose classification loss and a regression
loss. Zhou and Gregson [37] extended the HopeNet [36] to
deal with wide yaw. Zhang et al. [38] developed a feature
decoupling module to decrease dependency among feature
spaces for each angle. They also designed cross-category cen-
ter loss to increase intra-class compactness and inter-category
separability, simultaneously.

Based on a 2-stream network, Yang et al. [33] proposed
a fine-grained structure aggregation network (FSA-Net).
It aggregates two intermediate feature maps from each stream
employing an attention mechanism. Each stream consists of
10 layers and each layer is a depthwise separable convolution
layer. FSA-Net demonstrated competitive performance with
previous SOTAs despite 1MB tiny model. Zhou et al. [12]
mentioned that the discontinuity of 3D or 4D rotation repre-
sentation for full range hinders optimizing neural networks.
To address the issue, they proposed a new 6D continuous
rotation representation. Hempel et al. [11] applied the 6D
rotation representation to the head pose estimation task and
showed superior accuracy.

D. OCCLUSION SEGMENTATION

A representative semantic segmentation network is a fully
convolutional network (FCN) [39], which turns the clas-
sification network into the segmentation network. FCN is
based on encoder-only architecture such as AlexNet [40] or
VGGNet [41]. FCN selects and upsamples multiple low-
resolution feature maps to get a high-resolution feature
map. Then, pixel-wise classification is executed. Afterward,
numerous researchers tried to obtain more accurate segmen-
tation mask predictions. Chen et al. [42] and [43] pointed out
that the deeper layer has abundant contextual information, but
less spatial information, leading to the inaccurate boundary
of the mask. They proposed to employ atrous convolution as
decreasing pooling layers.

Some studies [8], [9], [10] also attempted to employ long-
range context information. Zhao et al. [8] proposed a pyramid
scene parsing network (PSPNet) with a pyramid pooling
module, which uses context information from different sub-
regions through multiple pooling layers with varying kernel
sizes. Zhao et al. [9] proposed a point-wise spatial attention
network (PSANet) and achieved better performance than
PSPNet. Zhu et al. [10] designed an asymmetric non-local
network with a non-local block [44] fused with a pyramid
pooling module. With ResNet [45] backbone, it achieved
better performance than PSANet.

Meanwhile, encoder-decoder architectures [25], [46], [47]
have been investigated. U-Net [25] is designed to have a
decoder which is symmetric to an encoder and won the ISBI

VOLUME 11, 2023



Y. Kim et al.: Facial Landmark, Head Pose, and Occlusion Analysis Using Multitask Stacked Hourglass

IEEE Access

Feature Pyramid Fusion

Inter-level Occlusion-Aware Fusion

0o 0,

|:| 5 1
16
32

256 | 64

v
GAP [ 1xl Comv

]

o -+

——— Residual Block

FIGURE 2. Overall network architecture of LPONet.

cell tracking challenge in 2015. DeconvNet [46] modified
upsampling approach from bilinear interpolation to decon-
volution. SegNet [47] proposed a memory-efficient max-
unpooling approach for upsampling. Furthermore, there are
some unique architectures; HRNet [48], which employs low-
and high-resolution feature maps in parallel, and SegFormer
[49] based on vision Transformer [50].

Face occlusion segmentation tasks [14], [S1], [52], [53]
employ the above semantic segmentation approaches. Par-
ticularly, Voo et al. [14] opened their face occlusion dataset,
based on CelebAMask-HQ [54]. They obtained binary seg-
mentation masks from original labels and manually corrected
the wrong ones. They also classified the images as clean and
occluded faces. Consequently, they synthesized face images
with hands, COCO [55] objects, or random shapes. Yin and
Chen [53] also synthesized a face occlusion dataset based on
CelebAMask-HQ, but it is currently unavailable.

IIl. NETWORK ARCHITECTURE

In this section, we introduce our proposed multitask stacked
HG network called LPONet. Furthermore, we describe three
auxiliary components. First is the FPF module to enhance the
performance of the landmark and occlusion tasks. The second
is an IOAF module to enhance the occlusion robustness of all
tasks. The third is the gimbal-lock-free 6D rotation represen-
tation head.

A. LPONET

The proposed network should have a structure appropriate
for all three tasks, FaceLPO. According to previous stud-
ies, landmark detection and occlusion segmentation tasks
are suitable for encoder-decoder architecture, which out-
puts high-resolution feature maps. However, the head pose
task is suitable for encoder-only architecture, which outputs
an embedding vector containing global context information.
Thus, we selected a stacked HG network, which is a rep-
resentative encoder-decoder architecture as a backbone, and
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located task-specific heads at the end of the encoder and
decoder.

A stacked HG network consists of a stem block and n HG
subnetworks. The stem block starts with a 7 x 7 convolu-
tional layer with stride 2, followed by a residual block, max-
pooling and two more residual blocks. The 256 x 256 input
image is downsampled to a 64 x 64 feature map through
the stem block. Then, HG subnetworks are repeated n times.
The subnetwork has encoder and decoder parts. The encoder
part encodes the 64 x 64 input feature map to the out-
put 4 x 4 feature map through seven layers. The decoder part
upsamples the encoded feature map to the 64 x 64 feature
map. The encoder’s feature maps are added to the decoder’s
corresponding feature maps by lateral skip connection when
upsampling. It could compensate for the positional informa-
tion lost by pooling. Each layer is composed of a residual
block, the number of output channels C is 256, and the
number of stacks n is 2.

As shown in Figure 2, the proposed LPONet is based on a
2-stacked HG with three task-specific heads. The head pose
head applies global average pooling to the encoder’s output
followed by a fully connected (FC) layer, which outputs a
256D embedding vector. Then, one more FC layer is applied
and outputs 3D head pose parameters P. In the landmark
head, it applies a 1 x 1 convolutional layer to the decoder’s
output and obtains 64 x 64 x 68 landmark heatmap Limm.
In the occlusion head, it applies a 1 x 1 convolutional layer
to the decoder’s output shared with the landmark head and
obtains a 64 x 64 x 2 occlusion mask O. Landmark coordi-
nates L can be obtained by applying channel-wise argmax to
the I:hm-

B. FPF

Landmark and occlusion analysis must be a position-sensitive
task. However, contextual information is also crucial to
enhance performance even in position-sensitive tasks. In the
previous studies [8], [9], [10], they employed contextual
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information from multiple sub-regions of feature maps
through pyramid pooling or spatial attention. Inspired by [8],
we propose the FPF module. Since the pyramid pooling [8]
employs the intermediate feature map of the encoder model,
such as the existing ResNet, it was designed to employ mul-
tiple pooling operations with different kernel sizes. However,
LPONet is an encoder-decoder architecture, and there already
exist feature maps with multiple resolutions. Particularly,
feature maps in the decoder include denser information since
it is augmented by a lateral skip connection.

As shown in Figure 2, the proposed FPF module employs
m feature maps of the encoder and decoder. To maintain the
weight of the decoder’s output, the number of channels of
each feature map is reduced to C/m using a 1 x 1 convo-
lutional layer and upsampled to 64 x 64 resolution. Then,
m feature maps are concatenated with the original decoder’s
output. Finally, we obtain a fused feature map with 64 x
64 x 2C. The number of inputs to the FPF module can be
varied. In the experiment, we compare the performance when
m =4 using 4 x 4,8 x §, 16 x 16, 32 x 32 feature maps
and m = 2 using 4 x 4, 16 x 16 feature maps.

C. IOAF
Occlusion is a primary reason for the deterioration of the
performance of face recognition or face analysis. The pro-
posed network employs a shared layer, so we can expect that
landmark and occlusion tasks have complemented each other.
However, a more reliable way is to explicitly use occlusion
information. In stacked HG [7], heatmap information is fused
when passing the output of i-th HG to (i+1)-th HG. Inspired
by that, we propose the IOAF module.

The IOAF module generates input of (i+7)-th HG using
heatmap and occlusion predictions of i-th HG, as shown
in Figure 2. Formally, let the input and output of i-th HG

be Xl(i), Xg), then our IOAF module can be formulated as
Equation 1.

10AF (x{7, X{7) = x/*"

- (fW (Xgi)) +fw (Z,ﬁ’j,) + X(i_l)) 109
ey

where fiyis 1 x 1 convolution, iﬁii = fw (X(oi)) L0 =

fw Xg) . The IOAF module contributes to the overall per-
formance of LPONet by explicitly employing occlusion
prediction.

D. GIMBAL-LOCK-FREE HEAD POSE

Euler angles representation has the advantage of being intu-
itive and easy to understand. However, it has a gimbal-lock
issue, in which there are numerous rotation parameters for
the same visual head pose appearance [11]. Figure 3 illus-
trates the difference between the ground-truth (GT) label and
predicted values in terms of Euler angles and rotation matrix.
In the rotation matrix visualized with three axes, two values
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are almost the same, while in Euler angles, the difference is
28° on average. This ambiguity can have a negative effect on
optimizing networks [11].

We use a rotation matrix, instead of Euler angles to address
the problem. Previous studies [11], [12] proposed a con-
tinuous conversion function between 6D representation and
rotation matrix based on the Gram—Schmidt-like process in
Equation 2. It converts 6D representation to the 3 x 3 rotation
matrix, satisfying the orthogonality constraint. We modify
the head pose head of the LPONet to output six parameters
and obtain rotation matrix Re 6R>*3 from the six parameters
by applying Equation 2. In the experiment, we compare the
performances of these two representations.

fes||arax || =| b1 b2bs | =R
[ Ll
a
1 = _9
llaill
uz
2= ——,uy =ay — (b - az) by,
lluz
bz =b) X by 2)

Pitch | Yaw Roll

GT 24 84 20

Pred -17 89 -18

Error 41 5 38

(a) GT (b) Predicted

(c) Error in Euler angles(*)

FIGURE 3. Example about ambiguity in Euler angles. In (a), (b), we plot
head pose axes with rotation matrix.

E. LOSS FUNCTIONS

We define loss functions for each task to train the LPONet.
Head pose loss is defined as a mean absolute error (MAE)
like Equation 3.

N

@®=%Z

=

P —P; 3)

where N is the mini-batch size, P; is a GT head pose, 13,' isa
predicted head pose. P; can have 3 or 9 parameters depending
on the head pose representation. In the case of a rotation
matrix, the following geodesic loss [11] can be used.

N tr (RRT) — 1
LR = cos”! jig—— )
i=1

where R; represents a GT rotation matrix and R; represents
a predicted rotation matrix. The geodesic loss represents the
geodesic distance between the rotation matrix and is in [0, r].

We followed the heatmap method for the landmark detec-
tion task. We converted 68 landmark coordinates to 64 X
64 x 68 landmark heatmap as a GT label to generate a
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heatmap. Each pixel of the heatmap is set to 0 as a background
pixel or 1 as a foreground pixel depending on the existence of
the landmark point. To smooth the heatmap, 7 x 7 gaussian
kernel is applied channel-wise. Based on this heatmap, land-
mark heatmap loss is defined as a pixel-wise mean squared
error (MSE) like the following equation.

) 1 N HWC o
L) = S ; Zj (wLij — Liy) (5)

where H, W, and C represent the height, width, and channels
of a heatmap, respectively. L; represents a GT landmark
heatmap and L; represents a predicted landmark heatmap.
We also applied a weighted loss map [28] to focus on fore-
ground pixels and difficult background pixels which is close
to foreground pixels. First, the loss map mask is defined as
Equation 6.

M= 1 whereL; > 0.2 ©)

0 otherwise

where L, is generated from GT heatmap L by 3 x 3 dilation.
The loss map mask M assigns foreground pixels and difficult
background pixels 1, and other pixels 0. Then, the weighted
loss map is formulated by substituting the squared error term
in Equation 5 to the weighted squared error like Equation 7.

WSE = (wLij —Lij)" ® (W -M + 1) %

where ® is element-wise multiplication, and W is a scalar
hyperparameter. We set W to 10 in our experiments.

The pixel-wise MSE loss has an issue in that if the error is
reduced below a certain level, the gradients become rapidly
smaller and the training is converged early. Previous studies
[27], [28] proposed new loss functions based on the logarithm
function to address the problem. We suggest another solution,
MSE loss with heatmap scaling. The naive method to increase
gradients is to scale loss value directly. However, it is easy to
fall into the local minima in the early stage since it increases
both the magnitude of the error and the slope of the gradient
function. However, heatmap scaling multiplies GT heatmap
by w to extend the domain range of loss function from [0, 1] to
[0, @]. This prevents the error from rapidly decreasing while
maintaining the slope of the gradient function. We plot the
training losses and test errors to compare the loss scaling and
heatmap scaling methods, as shown in Figure 4. In the case of
the loss scaling, it shows a significant loss in the early stage
and rapidly converges. Therefore, the final error is the largest.
It can be interpreted as falling into the local minima. In the
case of the heatmap scaling, it shows a stable loss curve and
the smallest error.

Occlusion segmentation loss is defined as a pixel-wise
binary cross entropy loss like Equation 8.

1 N HW2

Lo0)=——=>">" 0;;log 0, ®)
NHW =1 o
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where O; represents a GT occlusion mask, and @i represents
a predicted occlusion mask.

Finally, our multitask loss is defined as a weighted sum of
three task-specific losses like Equation 9.

L(L,P,0) = aLli(L) + BLW(P) + yLo(O)  (9)

M — a=1, w=1 10

7w
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FIGURE 4. Training curves of landmark loss (solid) and test error (dotted).
Blue is baseline, orange is loss scaling, and green is heatmap scaling.

IV. EXPERIMENTS
In this section, we describe the experimental environment and
evaluation findings of the proposed LPONet.

A. DATASETS

No public dataset that provides a landmark, head pose,
and occlusion labels, simultaneously. Therefore, we use two
datasets; 300W-LP and C-CM. 300W-LP provides 61,225
yaw-augmented face images and corresponding 68 land-
mark and 3D head pose labels. C-CM is constructed from
CelebAMask-HQ, which provides 30,000 high-resolution
images and annotated segmentation masks of facial parts.
C-CM is developed by Voo et al. [14] who converted the orig-
inal masks to binary masks with only face and background
classes. C-CM does not provide landmark or bounding box
labels.

Two test datasets per task are used for evaluation. (300W,
WFLW), (AFLW2000, BIWI), and (COFW, RealOcc-Wild)
are employed for the landmark, head pose, and occlusion
tasks, respectively. 300W annotates five datasets, including
LFPW, AFW, HELEN, XM2VTS, and IBUG, with 68 land-
marks. We follow [17], which divides the dataset into a
training set with 3148 images and a test set with 689 images.
The test set is split into 554 and 135 images as a common and
challenging set, respectively. WFLW, which was introduced
by Wu et al. [17], provides bounding boxes and 98 landmarks
of 10,000 faces in the WIDER FACE dataset [56]. It consists
of training and test set, each has 7500 and 2500 faces. The
test set is split into six subsets; pose, expression, illumination,
make-up, occlusion, and blur. Our model targeted 68 land-
marks, so we converted 98 landmark points to 68.
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AFLW?2000 annotates the first 2000 images from AFLW
[57] dataset with 3D head pose and landmark. We excluded
31 images whose poses are not in [—99, 99] degrees.
BIWI annotates 24 videos, 15,678 frames with a head
pose, collected from 20 subjects in a controlled envi-
ronment. It provides a head pose label as a rotation
matrix.

COFW annotates 1345 occluded faces with 29 landmarks
and an occlusion segmentation mask. Currently, only a train-
ing set with 500 images is publicly available, as men-
tioned in [14]. Its definition of occlusion is slightly different
from that of the C-CM we follow. Thus, we modified
some segmentation masks. The beard was modified from
the background to the face and the transparent lens of
glasses was modified from the face to the background.
RealOcc-Wild was introduced by Voo et al. [14]. It consists of
270 high-resolution occluded face images and segmentation
masks.

We cropped the faces from the images with bounding
boxes or landmark labels. If those labels are not provided
(e.g., C-CM, BIWI, RealOcc-Wild), we use LSFD [58] detec-
tor and get face bounding boxes. We also enlarged the bound-
ing boxes by 10% on both sides.

Furthermore, Masked 300W and AFLW?2000-SO datasets
are used to assess the occlusion robustness of landmark detec-
tion and head pose estimation tasks, respectively. Masked
300W is a synthesized masked face dataset based on a 300W
test set. AFLW2000-SO is generated by occluding cropped
faces with five types of rectangles (left, top, right, bottom,
and middle), inspired by Borghi et al. [21].

B. IMPLEMENTATION DETAILS

The proposed network employs a 256 x 256 input image.
We optimized the network with RMSPROP with an initial
learning rate of 10~*during training. We iterate for 40K
with batch size 64, and the learning rate is decreased to
1073 after 30K iterations. We used a 2-stage training method
for fine-tuning the network. In the first stage, we train the
network employing both 300W-LP and C-CM datasets. The
mini-batch is sampled from each dataset with a 1:1 ratio.
In the second stage, the 300W train set or WFLW train set
depending on the test set for the landmark, 300W-LP for the
head pose, and C-CM for occlusion are employed for training.
The mini-batch is sampled from each dataset with a 4:3:3
ratio. Loss weights were experimentally determined while
heatmap scaling (w = 60) is applied. In the first stage, o« = 1,
B =1,y =10areset,and ¢ = 0.1, 8 =0.1, and y = 40 are
set in the second stage. The weighted loss map is only applied
in the second stage.

Data augmentation is performed using random rota-
tion (£30°), random translation (£25 pixels), random scale
(£10%), horizontal flipping, gaussian blur. We also syn-
thesize occluded faces with masks, hands, and sunglasses.
We used the open-source tool MaskTheFace [59] for masks
and sunglasses, which uses some facial key points. Because
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C-CM does not provide landmark labels, we used the land-
marks one of our pretrained models predicted.

During inference on landmark coordinates, we use a sim-
ilar approach in [7] and [28], which is a weighted sum of
two locations with the highest scores. The only difference is
that we employ heatmap scores as weights, instead of fixed
weights.

C. EVALUATION METRICS
To evaluate the landmark detection error, we employed the
normalized mean error (NME) metric,

NME = -0 100 ZZ H(” ”)”

i=1 j=1

(10)

where N represents the number of images and i,-,j, l; j rep-
resent the j-th predicted and GT landmark coordinates. The
error is normalized with the inter-ocular distance, d.

To evaluate the head pose estimation error, we used the
MAE metric,

MAE =

1 N
= > |pi —pil (11)
N i=1

where p;, p; represent the predicted and GT head pose
parameters.

To evaluate the occlusion segmentation accuracy, we used
the mean intersection of union (mloU) metric,

1 X2 5 No;
mloU = — L ” 12
2N§§ (0i,c U oic) (12

where 0;  and o; . represent the predicted and GT segmenta-
tion masks for class c.

D. ABLATION STUDY

In this subsection, we conduct the ablative study for the three
proposed auxiliary components of the network; FPF module,
IOAF module, and gimbal-lock-free head pose.

1) FPF

The goal of the FPF module is to advance the performance of
the decoder by fusing feature maps with different receptive
fields. We designed two variants; FPF_Full, which uses all
feature maps (m = 4) in the decoder, and FPF_Half, which
uses two feature maps (m = 2) in the decoder. The landmark
and occlusion accuracy were increased in both cases com-
pared to the baseline, as shown in Table 1. Particularly, occlu-
sion segmentation accuracy is significantly increased in the
RealOcc-Wild dataset. FPF_Half achieved around 1% higher
accuracy than the baseline. Meanwhile, the FPF module
also affects the head pose accuracy. FPF_Half shows almost
the same accuracy as the baseline, but FPF_Full lowers the
accuracy.
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TABLE 1. Ablative results of the LPONet with regard to the FPF and I0AF modules.

Landmark NME (%) Head Pose MAE (°) Occlusion mloU (%)
Method TME

300W test WFLW test AFLW2K BIWI COFW ftrain RealOcc-W
LPONet-Baseline 4.76 428 3.49 431 93.06 92.37 5.24
LPONet + FPF_Full 4.74 425 3.57 4.42 93.23 93.10 5.11
LPONet + FPF_Half 4.74 4.24 3.46 429 93.14 93.36 5.04
LPONet + FPF_Full + IOAF 4.72 4.19 3.53 438 93.17 93.28 5.06
LPONet + FPF_Half + IOAF 4.72 4.18 3.56 4.22 93.17 93.31 5.03

To compare overall performances, we also defined total
mean error (TME) as Equation 13, and the FPF_Half module
shows better TME than the FPF_Full.

TME = (NME + MAE + (100 — mloU))/3 (13)

To sum up, the FPF module makes a positive impact on the
landmark and occlusion tasks, and it is more effective in
the occlusion task. Additionally, the FPF_Half module can
achieve better performance than the FPF_Full in terms of both
accuracy and efficiency.

TABLE 2. Error comparison of two head pose representations in
AFLW2000 and BIWI datasets.

MAE in Euler (°) Geo. Dist. (rad)

Pose Rep. AFLW AFLW

K BIWI Mean K BIWI Mean
3D Euler 3.52 4.24 3.88 0.093 0.142 0118
6DRotRep 3.49 4.31 3.90 0.093 0.146  0.120
010
o 008
§ 0.06
é 0.04
0.02
09 1% s 50 25 0 s 50 3 100

Yaw

FIGURE 5. Yaw angle distribution in AFLW2000.

2) 10AF

We add IOAF modules to the networks; LPONet + FPF_Full
and LPONet + FPF_Half. For both cases, it indicates an
improvement in accuracy for all three tasks. Although the
improvement is marginal in terms of TME, it is meaningful
that IOAF increases the accuracy in a simple way. That means
concatenating the occlusion mask to the input of the HG sub-
network in LPONet could help increase overall performance.

3) GIMBAL-LOCK-FREE HEAD POSE
Theoretically, 3D Euler angles have a gimbal-lock prob-
lem, as we mentioned in Section III-D. In [11], head pose
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estimation with 6D rotation representation achieved better
accuracy than that with Euler angles. However, there was
little difference in accuracy between those representations in
our experiment using LPONet-Baseline, as shown in Table 2.
We also employed the geodesic distance introduced in [12]
as another evaluation metric. Even in this case, the difference
between the two representations was negligible.

The rotation matrix has merit to address the ambiguity
of Euler angles and supports the full range of head pose.
However, we could not determine the merit since the test sets
rarely include the faces whose poses are out of the range of
490°, as shown in Figure 5. Therefore, we can conclude that
if the head pose is in the range of 90°, both representations
have no meaningful difference in terms of accuracy.

E. COMPARISON WITH SOTA

The proposed LPONet is the first multitask model for
FaceLPO tasks. Thus, it is compared with SOTA for each
task since there is no comparison group for the same method.
We selected the LPONet with FPF_Half and IOAF modules
as our best model because it showed the best accuracy in the
ablative study. LPONet only achieved the best accuracy in the
AFLW?2000 head pose dataset and a little bit lower accuracy
in other datasets, as shown in Table 3. In the following
subsections, we examine the performance for each task, in
more detail.

1) LANDMARK DETECTION

We assessed the landmark NMEs on 300W and WFLW test
sets. Table 5 shows the evaluation results of the 300W test
set. The proposed LPONet achieved 3.39% NME, which is
around 15% lower than SOTA [31]. In Table 4, the pro-
posed model achieved 4.18% NME on WFLW test set, which
is the second-best accuracy compared to SOTA methods.
It also demonstrated good accuracy across all six subsets.
The WFLW test set is more difficult than the 300W dataset
according to [28]. Nevertheless, our model showed relatively
better results on WFLW than 300W.

2) HEAD POSE ESTIMATION

We evaluated the head pose MAEs on AFLW2000 and
BIWI datasets. The evaluated model is the same as the one
employed in the landmark evaluation. The proposed LPONet
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TABLE 3. Overall comparison of landmark NMEs, head pose MAEs, and occlusion mloUs with task-specific SOTAs.

#Params Landmark NME (%) Head pose MAE (°) Occlusion mloU (%)
Method Model
M) 300Wtest ~ WFLWtest —~ AFLW2K BIWI COFW train ~ RealOcc-W

SubPixel [31] 2-HG 6.3 2.94 3.72 - - - -

MNN [6] Mod. U-Net - - - 3.83 3.66 - -
Voo et al.[14] SegFormer 84.7 - - - - 94.87 95.16
LPONet f.t. with 300W 2-HG 6.8 3.39 7.63 3.74 432 93.21 93.17
LPONet f.t. with WFLW 2-HG 6.8 4.72 4.18 3.56 422 93.17 93.31

TABLE 4. Comparison of Landmark detection NMEs(%) on WFLW dataset.

Method Test Pose Expression Illumination Make-up Occlusion Blur
LAB [17] 5.27 10.24 5.51 5.23 5.15 6.79 6.32
Wing [27] 5.11 8.75 5.36 493 541 6.37 5.81

HR-Net [48] 4.60 7.94 4.85 4.55 429 5.44 542

Awing [28] 4.36 7.38 4.58 4.32 427 5.19 4.96
LUVLI [60] 4.37 - - - - - -
SubPixel [31] 3.72 - - - - - -

LPONet (Ours) 4.18 7.05 4.44 4.23 3.95 5.16 4.94

TABLE 5. Comparison of landmark detection NMEs(%) on 300W dataset.

Method Common Challenge Full
LAB[17] 2.98 5.19 3.49
DU-Net [61] 2.90 5.15 335
HR-Net [48] 2.87 5.15 332
Awing [28] 2.72 4.52 3.07
LUVLI [60] 2.76 5.16 323
SubPixel [31] 2.61 4.13 2.94
LPONet (Ours) 2.96 5.19 3.39

TABLE 6. Comparison of occlusion segmentation mloUs(%) on COFW and
RealOcc-Wild datasets.

Method Backbone #P(al\r:)m s Ct%I;:V Re\i}ggc-
PSPNet 68.1 91.82 91.33
Voo et al. [14] DeepLabv3+ 62.7 92.77 91.01
SegFormer 84.7 94.87 95.16
LPONet (Ours) 2-HG 6.8 93.17 93.31

achieved 3.56° MAE on AFLW2000, which outperforms
the previous SOTA [6], as shown in Table 7. Particularly,
the MAE of the yaw angle was significantly improved by
around 15%. However, the MAE on the BIWI dataset is
4.22°, which is 22% lower than the previous SOTA [11].
Even though it is the same model, it demonstrated rela-
tively higher performance on AFLW?2000 than on BIWI. It is
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probably interpreted that the training dataset, 300W-LP, has
been biased against AFLW?2000 since those two datasets are
labeled by the same algorithm [13].

3) OCCLUSION SEGMENTATION

We evaluated the occlusion segmentation mloUs on COFW
and RealOcc-Wild datasets. The evaluated model is the
same as the one used in the landmark evaluation. The
previous SOTA on these two datasets is only one [14].
Voo et al. [14] benchmarked the performances with PSPNet
[8], DeepLapv3+ [63], and SegFormer [49] trained with the
C-CM dataset. The proposed LPONet had the second-best
accuracy on both datasets in Table 6. Although our model
has around 2% lower accuracy than SegFormer, it has an
advantage in terms of efficiency because its model size is
about 12 times smaller.

F. OCCLUSION ROBUSTNESS

The proposed LPONet can be robust to occlusion because it
is based on a multitask learning method that shares layers
for all tasks, including occlusion segmentation. To assess the
robustness of our model in terms of landmark detection and
head pose estimation, we use Masked 300W and AFLW2000-
SO datasets.

As shown in Table 8, we achieved the best accuracy
on Masked 300W. Compared with the GlomFace [65], our
LPONet shows a 23% improvement in performance. It is
noted that we augmented 300W training set by synthesizing
occluded faces with masks, hands, and sunglasses. According
to Zhu et al. [18], they trained their networks without using
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TABLE 7. Comparison of head pose estimation MAEs(°) on AFLW2000 and BIWI datasets.

AFLW2000 BIWI
Method

Yaw Pitch Roll Mean Yaw Pitch Roll Mean

HopeNet(a = 1) [36] 6.92 6.64 5.67 6.41 4.81 6.61 3.27 4.90
FSA-Net [33] 4.50 6.08 4.64 5.07 4.27 4.96 2.76 4.00
QuatNet [62] 3.97 5.62 3.92 4.50 2.94 5.49 4.01 4.15
FDN [38] 3.78 5.61 3.88 4.42 4.52 4.70 2.56 3.93
MNN [6] 3.34 4.69 348 3.83 3.98 4.61 2.39 3.66
6DRepNet [11] 3.63 491 3.37 3.97 3.24 4.48 2.68 347
LPONet (Ours) 2.83 4.56 3.30 3.56 4.94 4.87 2.85 422

TABLE 8. Comparison of landmark detection NMEs(%) on Masked 300W
dataset.

Method Common Challenge Full
HGs [7] 8.17 13.52 9.22
FAN [15] 7.36 10.81 8.02
LAB [17] 6.07 9.59 6.76
SRN [64] 5.78 9.28 6.46
SAAT[18] 542 11.36 6.58
GlomFace [65] 5.29 8.81 5.98
LPONet-RP 4.74 7.97 5.37
LPONet (Ours) 4.07 6.82 4.61

TABLE 9. Comparison of head pose estimation MAEs(°) on AFLW2000-SO
dataset. ‘None’ refers to the head pose estimation performance on
AFLW2000 dataset.

Occluded part Yaw Pitch Roll Mean
None 2.83 4.56 3.30 3.56
Left 447 5.01 3.75 441
Top 3.67 5.87 4.39 4.65
Right 5.32 6.13 4.67 5.37
Bottom 2.76 5.00 3.76 3.84
Middle 2.96 4.82 342 3.73

masked faces, but using handcrafted occlusion patch. For fair
comparison, we trained our network using 300W training
dataset augmented by random patch (RP). This network is
named LPONet-RP and shows 13% higher accuracy than
GlomFace. In consequence, the proposed LPONet shows
best performance in occlusion-robust landmark detection
task.

Table 9 shows the evaluation results of LPONet using
AFLW2000-SO dataset. The dataset has been generated by
removing parts of a face image to simulate occlusions as
depicted in Figure 6. Because this dataset is first introduced
in this work, we could not compare the results with pre-
vious SOTAs. Instead, we could provide our results as a
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baseline for future works. The lowest accuracy was 5.37°
MAE when occluded part is right. It is 51% lower perfor-
mance compared to the original AFLW2000 dataset, which
has not been applied simulated occlusions. The occlusion
types in the AFLW2000-SO dataset have different impacts
on the performance. The left, top, and right part occlusions
significantly increase the errors. Specifically, the absence of
the left or right part of the face increases the error of the yaw
angle, while the absence of the top or right part increases the
error of the pitch angle. Alternatively, the bottom and middle
part occlusions had a lesser impact on performance than the
other three parts.

FIGURE 6. Visual examples of AFLW2000-SO dataset. None, left, top,
right, bottom, and middle part occlusions from left column.

V. CONCLUSION

In this study, we proposed LPONet, a multitask encoder-
decoder network, to examine FaceLPO. It was constructed on
a 2-stacked HG network for three tasks. First, the landmark
detection task follows a heatmap-based method that regresses
a heatmap generated from landmark coordinates. Second, the
head pose estimation task is based on direct regression to
3D Euler angles. Third, an occlusion segmentation task is
a pixel-wise binary classification with face and background
classes. Particularly, we proposed a landmark heatmap scal-
ing approach and experimentally demonstrated that it can
help avoid local minima.

Furthermore, we designed three auxiliary components to
enhance the LPONet’s accuracy. First, we designed an FPF
module for the decoder part of our network to employ
more contextual information. It demonstrated a performance
improvement in landmark and occlusion tasks, which are
related to the outputs of the decoder. Particularly, it was
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remarkable for the occlusion segmentation task. Second,
we proposed an IOAF module that explicitly delivers an
intermediate occlusion mask between subnetworks. It also
demonstrated an additional improvement in performance.
Third, we used a 6D rotation representation for the head
pose task instead of 3D Euler angles. Theoretically, Euler
angles have intrinsic ambiguity in a large pose. Thus, neural
networks have difficulties optimizing accurate head pose.
However, in our experiments, there were few differences
in the accuracy between Euler angles and 6D rotation
representation.

Datasets are crucial for neural network training. Currently,
no publicly available dataset supports FaceLPO-related labels
simultaneously. Therefore, we trained our network using
300W-LP and C-CM datasets. Additionally, we fine-tuned the
network using another landmark dataset, 300W or WFLW,
instead of using 300W-LP. In the experiments, we assessed
our network, LPONet, for each task. For the head pose,
LPONet achieved 3.56° MAE, which is the best accuracy
in the AFLW2000 dataset. For landmark, it achieved 4.18%
NME, which is the second-best accuracy in the WFLW
dataset. For occlusion, it also achieved the second-best accu-
racy in COFW and RealOcc-Wild datasets.

Furthermore, we showed our network is robust to occlu-
sion in landmark detection and head pose estimation, using
Masked 300W and AFLW2000-SO datasets. Although the
proposed network did not have the best performances across
all datasets, the findings could be satisfactory for the first
multitask approach to FaceLPO tasks. Additionally, it is a sin-
gle network with only 6.8M parameters, making it practical
for real-world applications where computational resources
are limited.
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