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ABSTRACT Malware variants are generated using various evasion techniques to bypass malware detectors,
so it is important to understand what properties make them evade malware detection techniques. To do
this, a framework is proposed to effectively generate fully-working, unseen malware samples on Windows
portable executable (PE) files with various perturbations such as code obfuscation and benign section
addition. Using this framework, we were able to bypass various commercial anti-malware solutions (e.g.,
BitDefender, AVG, Kaspersky, and Avast) using the generated malware variants, with up to 86% more
evasiveness than the original malware samples, and up to 28% more evasive compared with our previously
proposed solution FUMVar. Our results are useful in terms of improving malware detection techniques,
by analyzing different perturbations and their effectiveness, which leads to a better understanding of how
malware variants could be generated that are more evasive and which malware categories they belong to.
We found that the most effective perturbation is the code obfuscation using XOR – the malware variants
generated by the code obfuscation can evade the detection of 28 anti-malware engines on average. Therefore,
our experimental results and observations would be useful to develop anti-malware solutions that would be
effective in detecting malware variants that have not been seen previously.

INDEX TERMS Malware detection, malware mitigation, malware analysis, malware generation, metamor-
phic malware, genetic algorithm.

I. INTRODUCTION
Various anti-malware techniques are available to prevent
malware infections [1], [2]. However, the majority of these
techniques lack the capabilities to detect new and unseenmal-
ware samples. Consequently, malware writers generate new
malware variants from existing malware samples through
polymorphic and metamorphic mutations for improved eva-
siveness [3]. For example, a Cerber’s variant was gener-
ated every 15 seconds [4], making it difficult to detect
all of its variants in practice. Therefore, it is important
to understand how evasive malware variants are gener-
ated and what makes them evasive first so that we can

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiafeng Xie.

enhance malware detectors and their capabilities to detect
malware variants generated using various malware evasion
techniques.

Several studies have presented various techniques to gen-
erate malware variants [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15]. For example, reinforcement learning was
used to generate malware samples against anti-malware prod-
ucts in [6], [13], and [14], as well as a genetic algorithm-
based framework named AIMED [8] that randomly applies
perturbations to generate malware samples. However, most
existing techniques do not ensure that the generated vari-
ants’ behaviors are identical to the original malware sample’s
behaviors. Jin et al. [11] proposed the framework called
FUMVar using a genetic algorithm (GA) with a fitness score
function that uses a publicly available malware detection
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system named VirusTotal1 to generate more evasive malware
variants against commercial malware detectors. In contrast
to previous works, the generated malware variants’ func-
tional behaviors are kept identical to the original malware’s,
achieved by analyzing them with the Cuckoo sandbox as
ensured by FUMVar. However, the number of possible per-
turbations was limited, and the malware behavior validation
step was inefficient, hindering its practical use.

In this paper, we extend and improve FUMVar [11] into
a more effective and practical one dubbed FUMVar-Ex with
(1) new perturbations reflecting the techniques used to gener-
ate real-world malware samples (2) a new malware behavior
validation method using aggregated evaluation that improves
the validation of generated malware variants’ functionality
and their equivalence to the original malware samples, and (3)
more comprehensive experiments and improved results using
FUMVar-Ex compared with FUMVar and other state-of-
the-art techniques. For the first extension, we introduce new
perturbation techniques modifying portable executable (PE)
sections directly, whereas, in FUMVar, we only implemented
the perturbation methods that only modified a few bytes of
the header field, which did not reflect more complex malware
perturbation methods used in practice.

For the second extension, we provide a more robust and
generalized malware behavior validation method consider-
ing the dynamically changing runtime behaviors of pro-
grams (i.e., malware samples), which was not considered in
FUMVar, and as a result, it did not fully guarantee the equiv-
alent functionalities for dynamic malware samples. Finally,
for the third extension, we show a significantly improved
malware bypass rate against anti-malware solutions using
FUMVar-Ex, by up to 28% more evasive against commer-
cial anti-malware solutions compared with FUMVar. Hence,
by considering the dynamically changing runtime behaviors,
we are able to capture and validate dynamic malware sam-
ples more effectively, and also improve the evasiveness of
malware when combined with more advanced perturbation
techniques implemented in this paper.

The effectiveness of FUMVar-Ex has been compared to
four state-of-the-art malware variant generation frameworks:
FUMVar [11], AIMED [8], RL [6], and MAB-MALWARE [13].
The experimental results demonstrate that FUMVar-Ex out-
performs the other frameworks, achieving a remarkable
improvement in evasiveness of up to 19% compared to the
second most effective framework, FUMVar [11]. Further,
the detection rates against commercial anti-malware products
(e.g., BitDefender, AVG, Kaspersky, and Avast) were evalu-
ated using the malware variants generated by FUMVar-Ex,
demonstrating that the detection rates for the variants signif-
icantly decreased by up to 86% compared with their original
samples. These results highlight some key shortcomings of
existing solutions in detecting malware variants in practice.
Further, we evaluate different malware categories and pertur-

1You can find more details about VirusTotal from
(https://www.virustotal.com/)

bations to generate evasive malware variants. Those exper-
imental results could be used to enhance the performance
of malware detection techniques with better evasive malware
samples. The key contributions of this paper can be summa-
rized as follows.

• We present a framework dubbed FUMVar-Ex, a sig-
nificant extension from the FUMVar framework [11],
that efficiently generates fully workingmalware variants
with improved evasion techniques to bypass malware
detectors. The link to our source code can be found from
https://github.com/FUMVar/FUMVar-Ex;

• We introduce new and complex perturbation methods,
which mimic more practical perturbations used in real-
world that improves the evasiveness of malware variants
significantly;

• We propose an aggregated evaluation method consid-
ering the dynamically changing runtime behaviors to
improve the validity of checking the equivalent behav-
iors between the generated malware variants and their
original malware samples;

• We compare the performance of FUMVar-Ex against
the state-of-the-art malware variant generation frame-
works FUMVar, AIMED, RL, and MAB-MALWARE;

• We select seven commercial anti-malware solutions and
compare their robustness against the malware variants
generated by FUMVar-Ex, achieving an improved eva-
siveness of up to 86% than the originalmalware samples;
and

• We analyze the effectiveness of various perturbation
methods and malware types and examine evasive mal-
ware variants’ characteristics, which can be used to
enhance anti-malware solutions.

The rest of the paper is organized as follows. Section II
provides the background information about the Windows PE
format and the Cuckoo sandbox. Section III describes the
overview of FUMVar-Ex, and the perturbation techniques
are described in Section IV. In Section V, we present the
experimental results. Section VI discusses our findings and
limitations. Section VII presents related work on malware
variant generation. Finally, Section VIII concludes this paper.

II. BACKGROUND
A. WINDOWS PORTABLE EXECUTION (PE)
The PE format contains the information for Windows OS
loader [16] to handle the executable code. The official website
describes the detailed specification (https://docs.microsoft.
com/en-us/windows/win32/debug/pe-format). Fig. 1 illus-
trates the PE format structure at a high level, which con-
tains the following sections: Disk Operating System (DOS)
header, PE header (DOS stub, Common Object File Format
(COFF) file header, optional header, and section table), and
PE sections.

The DOS header and the DOS stub are needed to support
backward compatibility with DOS. The COFF file header
represents the type of machine for which the file is intended
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FIGURE 1. PE format structure.

to execute, the type of the file (e.g., execution or object files,
or shared library), and the number of sections. The COFF
file header additionally provides optional information such
as timestamps and the number of symbols. As a result, these
fields may be modified to maintain compatibility with the PE
file format in the COFF file header.
The optional header defines instructional data to load exe-

cutable to the memory, which has three parts: standard fields,
Windows-specific fields, and data directories. The standard
fields cannot be edited as it is required for all COFF files.
However,Windows-specific fields have 21 fields for the linker
and loader information. Out of the 21, we found that 15 of
them can be modified without violating the validity of the PE
file format. Similarly, the data directories part represents the
address and size of the tables and strings that Windows OS
uses, which were all modifiable without breaking the PE file.

The section table, also often called a section header, spec-
ifies the section body information. The section table has
10 fields that specify program activities. Here, we select two
fields to apply perturbations as examples, which are virtual
and raw data sizes. The program uses other fields, such as
a virtual address, which cannot be modified. There are still
more fields that can be modified, such as the rich header
field [17], [18], [19].

B. CUCKOO SANDBOX
Cuckoo sandbox [20] is an open-source malware analysis
tool that provides a detailed behavior report of an execu-
tion file, including Windows PE format. It automatically
executes a suspicious execution file inside an isolated envi-
ronment and monitors its behaviors. It can trace API calls
and dump all traffic using a virtual switch, which for-
wards the traffic of the isolated environment to the host.
The Cuckoo sandbox uses signatures to extract suspicious
behaviors from low-level information, such as API calls and
captured traffic. A signature is a piece of information that
corresponds to low-level API calls or traffic to high-level
information. It includes a high-level description, severity
score, and patterns of low-level information. For example,
it identifies suspicious behavior, such as unidentified thread
injection, if the API calls include CreateRemoteThread
or CreateRemoteThreadEx. To identify suspicious net-
work traffic, it uses a blocklist, including malicious IP
addresses and URLs.

TABLE 1. Field information of Cuckoo sandbox report.

Cuckoo sandbox provides a detailed behavior report of a
suspicious execution file. Cuckoo sandbox report has various
fields to express the analysis of a suspicious file, and they can
be divided into two main types of fields: static and dynamic.
Table 1 shows the list of fields in a Cuckoo sandbox report and
the information they contain. Static type fields include file
hash, strings, and PE file format. Dynamic type fields include
the behavior of a file, such asAPI calls, dropped files, and net-
work traffic during the file’s runtime. Signatures is one of the
dynamic type fields that includes the list of suspicious behav-
iors identified by signatures. We used the signatures field to
validate malware variants’ behaviors because they behave the
same as the original. Each suspicious behavior represented
in the signatures field consists of various information, such
as timestamp, name, and description. We excluded some
irrelevant information, such as a timestamp or process ID, that
does not contribute to the behavior of the malware sample.

III. FUMVar-Ex: AN OVERVIEW
This section presents a high-level overview of FUMVar-Ex
consisting of five modules (see Fig. 2). The Parser module
ensures the validity of the PE file given to the framework.
The Modifier module will select perturbation(s) and apply
them to mutate the input PE file. The Verifier module checks
the validity/operational status of the output PE file from
the Modifier module (which can be corrupted after being
modified). The Validator module checks the behavior of the
modified malware sample against the original one to ensure
their identical behaviors. Lastly, the Scorer module computes
the evasiveness score of the generated variants against mal-
ware detectors. We explain each module’s functionalities in
detail in the following subsections.

A. PARSER - EXTRACTING SECTIONS IN PE FILES
Amalware sample in PE format is inputted to theParser mod-
ule. The input sample is then examined to identify sections
and fields (as described in section II) to be perturbed by the
Modifier module (as described in Section III-B). So the key
tasks in this module are identifying those mutable sections
and tagging the fields.

B. MODIFIER - APPLYING MUTATIONS TO PE FILES
The Modifier module applies perturbations in an iterative
manner to modify a given malware sample with the pertur-
bations selected using a GA.
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FIGURE 2. Overview of FUMVar-Ex.

1) PERTURBATIONS ON PE FILES
FUMVar-Ex uses 14 perturbation techniques (see Section IV
for details). TheModifiermodule selects one or more pertur-
bation techniques based on their effectiveness (as described in
Section V-C) and applies them to the sample during the GA
process. We used LIEF [21], a popularly used tool to parse
and modify several program execution files (including the PE
format), to implement perturbations on PE files.

2) GENETIC ALGORITHM
FUMVar-Ex uses a GA to ‘‘evolve’’ malware variants with
a randomly selected perturbation at every mutation. The GA
receives the feedback from the Scorer module (see Sec-
tion III-E), which is used as the fitness value in order to guide
themalware variant generations to decrease the detection rate,
as well as to minimize the similarity to the original malware
sample. As the malware goes through the GA multiple times,
many random perturbations are applied, leading to enhanced
evasiveness while reducing the similarity with the original
input.

In the first step, the original input (i.e., themalware sample)
is copied to initialize the population. After an iteration, the
top n fittest members are selected from the population. All
the malware variants generated from the GA are sent to
the Verifier module to filter out malfunctioning ones prior
to being sent to the Scorer module. The next generation is
selected based on the scores received from the Scorer module.
Algorithm 1 shows the process in detail. The population

is initialized in the outer for-loop. Note that the loop is
terminated with a predetermined generation number. Here,
PL represents the whole population as a set; PLs is a subset
populated with top ns malware variants based on the fitness
scores measured; PLr is a subset populated with nt randomly
selectedmalware variants. Algorithm 1 uses the Selection and
Mutate functions. The definitions of those functions are as
follows:

Algorithm 1 Generating Malware Variants Using GA
1: VT : VirusTotal detection rate
2: PS: Random perturbation selection function
3: FN : Functionality of the malware variant
4: b: Input malware bytes
5: psize: Population size
6: gmax : Maximum generation
7: PL ← []: population list
8: sol ← []: solution list
9: function GA(b,psize,gmax)
10: for i← 1 to psize do ▷ Initialize population
11: perturbation← PS(perturbations)
12: PL.append(Mutate(b, perturbation)
13: end for
14: for g← 1 to gmax do ▷Main loop
15: for i← 1 to psize do
16: ifFN (PL[i]) = True andVT (PL[i]) = 0 then
17: sol.append(PL[i])
18: end if
19: end for
20: PLs← Selection(PL,Fitness(PL), ns)
21: PLr ← Selection(PL − PLs,Random(PL −

PLs), nt )
22: for pl in PLs + PLr do
23: PL.append(Mutate(pl,PS(perturbations)))
24: end for
25: PL ← Selection(PL,Fitness(PL), psize)
26: end for
27: return sol
28: end function

• Selection(p, c, n): This function selects n elements from
population p based on the criteria c.

• Mutate(b, p): This function applies the perturbation p to
the byte code b.

C. VERIFIER - CHECKING CORRUPTED VARIANTS
Applying perturbations can result in the malware being
corrupted, which should be avoided for generations.
To check the corruption of the generated malware
via perturbations, we inspect the debug information
produced by the Cuckoo sandbox. If the PE file
is corrupted, the Cuckoo sandbox shows the follow-
ing error message: ‘‘CuckooPackageError: Unable
to execute the initial process, analysis
aborted.’’ Therefore, we run the Cuckoo sandbox with
a generated malware instance and check whether the above
error message was displayed.

D. VALIDATOR - CHECKING MALWARE BEHAVIORS
To generate effective malware variants, we must ensure
that the generated malware variants’ behaviors are identi-
cal to the original malware’s. We use the Cuckoo sand-
box to examine malware samples’ functional behaviors. The
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Cuckoo sandbox produces an analysis report including vari-
ants’ behavior information, such as API calls and network
activities (Section II-B). Among them, the signatures fields
can be used to validate malware variants’ behaviors.

One of the main problems when using the Cuckoo sandbox
report is that the report outputs are inconsistent even for the
same program file executed due to its dynamic properties.
Consequently, the Cuckoo sandbox reports would contain
different signatures whenever a program file is executed.
To overcome this issue, we propose a method to obtain
a superset of signatures through t multiple independent
runs of a malware sample in the Cuckoo sandbox. That is,
we repeatedly run the Cuckoo sandbox t times with the same
malware sample and aggregate the report outputs until no
new signature is produced from the Cuckoo sandbox report.
Of course, some signatures may only appear under certain
settings/environments. However, we empirically found that
five reports (i.e., t = 5) are sufficient for most malware
samples to reach an experimental saturation for signatures
on the Cuckoo sandbox reports. In other words, the supersets
created using t = 5 and t = 5 + α for any positive integer
α resulted in over 99% of malware samples having the same
superset.

Algorithm 2Malware Signature Generation
1: M : Input malware
2: R: Cuckoo sandbox report
3: t: the number of iterations to generate a superset
4: S ← []: signatures
5: function Generate_Signatures(M )
6: for i← 1 to t do
7: R← Cuckoo(M )
8: CS ← Cuckoo_signatures(R)
9: S ← S ∪ CS
10: end for
11: return S
12: end function

Algorithm 2 shows how to obtain aggregated signatures
for a given target malware. We first initialize S, which is
the superset of signatures, and analyze a malware sample,
using the Cuckoo sandbox, to extract the signatures for each
iteration. Next, we determined the validity of a malware vari-
ant if the aggregated signatures from five Cuckoo sandbox
reports were identical to the generated malware signature.
We empirically found that five cuckoo sandbox reports suffi-
ciently cover most malware variants’ signatures.

E. SCORER - MEASURING MALWARE VARIANTS
The scorer measures the evasiveness of malware variants gen-
erated. We can use VirusTotal https://www.virustotal.com/),
which contains 71 anti-malware solutions. The output from
VirusTotal is then used as the evasiveness score (i.e., the num-
ber of anti-malware solutions bypassed). In addition, we use
the code similarity score between the original malware sam-
ple and the generated variant (computed using ssdeep [22])

TABLE 2. Notations used in equations.

as part of the score. In practice, code similarity is often used
(e.g., for signature-based solutions) to detect malware sam-
ples [23], so it is useful to measure the similarities between
the original and the variant malware samples as well. Finally,
the fitness value is the sum of the evasiveness score from
VirusTotal and the similarity score from ssdeep, as shown in
Equation (1).

Fitness(varorig,i) = w× VT (varorig,i)+ (1− w)

× ssdeep(orig, varorig,i) (1)

Table 2 provides the definitions of the notations used for
Equation (1), as well as for notations used in other equa-
tions. VirusTotal detection rate (VT (x)) represents the number
of malware detection products that detected the generated
malware variant divided by the total number of malware
detection products in VirusTotal. Finally, the similarity score
is calculated using ssdeep (ssdeep(x, y)) using the byte code
of a generated variant and its original samples because it has
been popularly used for malware detection [24].

IV. PERTURBATIONS
FUMVar-Ex uses 14 perturbations that can be categorized
into two types to generate malware variants: (i) behavioral
changes (BC) and (ii) non-behavioral changes (NBC). The
BC-type perturbations can insert/modify/remove some parts
that can affect the program’s functionalities. Inserting some
random byte code into a section containing program oper-
ation code directly related to the program’s behavior is an
example of BC-type perturbation. On the other hand, NBC-
type perturbations do not change the existing functionalities
because those perturbations modify parts that are not related
to the program’s behaviors (i.e., logic is maintained). Most
NBC-type perturbations change values in header fields unre-
lated to the program’s behavior. Changing stub value in DOS
stub and timestamp field in COFF header are examples of
NBC-type perturbations, shown in Fig. 3. Table 3 shows the
list of all perturbations used in FUMVar-Ex, and the detailed
information for each type of perturbations will be explained
in Section IV-A and IV-B.

A. NBC-TYPE PERTURBATIONS
The NBC-type perturbations are specified as follows:

1) OVERLAY APPEND (OA)
This perturbation appends a random length of zeros to the
end of the PE file, which does not break the PE file format
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TABLE 3. List of perturbations used in FUMVar-Ex.

FIGURE 3. Examples of perturbations.

because the program pointer never points after the end of the
file.

2) DOS HEADER (DH)
This perturbation changes field values in the DOS header. For
example, it changes a field named initial IP to random bytes
within its length, as shown in Fig. 3.

3) DOS STUB (DS)
This perturbation selects a random byte sequence within the
DOS stub and replaces it with a randomly generated byte
sequence, as illustrated in Fig. 3. This process does not violate
the PE file format, as the DOS stub is solely used to display an
error message indicating that the executable is incompatible
with DOS. Furthermore, it is important to note that this
message can also be modified.

4) COFF HEADER (CH)
This perturbation changes field values in the COFF header,
such as timestamp field shown Fig. 3.

5) OPTIONAL HEADER (OH)
This perturbation changes field values in the Optional header,
which does not affect the PE file format, including the
fields named checksum, linker version, and operating system
version.

6) DATA DIRECTORY (DD)
This perturbation randomly chooses a data in the data direc-
tory list and changes the values in the data, such as relative
virtual address (rva) and size.

7) RICH HEADER (RH)
This perturbation inserts new content information to the Rich
header. The content information includes id, build id, and
count.

B. BC-TYPE PERTURBATIONS
The BC-type perturbations are specified as follows:

1) SECTION RENAME (SRN)
This perturbation changes the name of a randomly selected
section in PE sections to a random string. For example,
it changes the section named .data to random.

2) SECTION ADD (SAD)
This is one of our new perturbation techniques to extract
some sections from benign programs, which are then added
to a malware variant sample in order to camouflage a tar-
get malware sample’s (statistical) characteristics with added
binary code (i.e., making it indistinguishable from benign
programs). To add sections from benign programs, we col-
lected 45,328 sections from 8,851 benign samples in the
Windows System32 folder.

3) SECTION APPEND (SAP)
This perturbation appends some random byte sequence to the
end of a section for the case the length of the content is smaller
than the allocated size. The BC-type perturbation in Fig. 3
shows an example of appending a random byte sequence to
the section.

4) CODE CAVE INJECT (CI)
This perturbation injects some random byte sequence into
the code cave, which is unused byte sequences in a PE file.
It usually exists between each section and header.

5) PACK (PA)
This perturbation packs the PE file with the UPX tool.
We randomly selected the options for executing the UPX tool,
such as compression level.

6) UNPACK (UP)
This perturbation unpacks the PE file with the UPX tool.

7) XOR OBFUSCATION (XO)
This perturbation is a popular technique for generating real-
world malware samples. It simply encrypts some binary
code using XOR operation with random key bytes, and
the encrypted file then decrypts itself and executes dur-
ing the runtime. The XOR obfuscation technique is simple
yet effective in thwarting the analysis process. Algorithm 3
shows the process of XOR obfuscation. First, we encrypt
malware bytes with a randomly generated key k and then
decrypt the encrypted bytes using the same key. Next,
we write the decrypted malware bytes to file f and execute
the file.
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Algorithm 3 XOR Obfuscation
1: b: Input malware bytes
2: f : Name of file written
3: XORenc: Encrypt bytes with a key
4: XORdec: Decrypt bytes with a key
5: function XOR_Obfuscation(b)
6: k ← RandomKey() ▷ 0 < k < 256
7: benc← XORenc(b,k)
8: bdec← XORdec(benc,k)
9: WriteFile(f , bdec)

10: Execute(f )
11: end function

V. EXPERIMENTS
The aim of our experiments is to evaluate the effectiveness of
FUMVar-Ex. In total, we used 112 representative malware
samples from various malware repositories [25] that broadly
cover various malware types, such as malware families, size,
and API calls.

Using these samples, we first evaluate the performance
of FUMVar-Ex against the state-of-the-art malware vari-
ant generators: FUMVar [11], AIMED [8], RL [6], and
MAB-MALWARE [13] (see Section V-A). Next, we exam-
ine the detection performance of commercial anti-malware
solutions, in particular: Avast, AVG, BitDefender, Kaspersky,
Malwarebytes, McAfee, and TrendMicro (see Section V-B).
We then look at perturbations listed in Section IV and evaluate
their effectiveness in order to identify malware variants’ eva-
siveness. Finally, we look at how different malware categories
could affect generating malware variants (see Section V-D).

To evaluate, two metrics are used: (1) valid variant gener-
ation success rate (SR) and (2) evasiveness. SR represents
the number of functionally correct malware variants (i.e.,
ones that were successful in checks from the Verifier and
Validator modules) in proportion to the total number of mal-
ware variants, as shown in Equation (2). The evasiveness is
defined as the proportion of anti-malware solutions bypassed
by the generated variants to the original malware samples.
The average of chosen anti-malware solutions is calculated in
the case of multiple anti-malware solutions being used. The
resulting equation is shown in Equation (3). The notations
used in the equations are described in Table 2.

SR =
∑

i∈|VARorig|

VAL(varorig,i)
|VARorig|

∀orig ∈ ORIG (2)

Evasiveness

=

∑
orig∈ORIGmaxi∈|VARorig| VT (orig)− VT (varorig,i)

|ORIG|
(3)

A. BASELINE COMPARISON
We used 112 malware samples with gmax = 100 (i.e., max
100 generations) for generating malware variants against the
baseline of FUMVar and AIMED, which is based on GA.

FIGURE 4. SR and evasiveness results.

We applied one perturbation technique for each generation
on FUMVar-Ex– different probability values are assigned
to each perturbation based on the results obtained as shown
in Section V-C. This is done by using the weight values
of each perturbation and then by multiplying their associ-
ated SR and evasiveness values as shown in Equation (4),
where wpti is the weight assigned to pti (i.e., the ith per-
turbation), and SR(pti) and Evasiveness(pti) are the SR and
evasiveness values for pti, respectively). We also compared
the performance against RL and MAB-MALWARE, which
generate malware variants based on reinforcement learning
using the malware samples. We used default settings (e.g.,
maximum iteration, reward, etc.) defined in their GitHub
repositories for each framework. Since both frameworks
are designed to evade machine learning detection models
(Ember [26] and Malconv [27]), we tested them against each
model (i.e., RL-ember, RL-malconv, MAB-ember, and
MAB-malconv).

wpti =
SR(pti)× Evasiveness(pti)
|perturbation_list|

(4)

Fig. 4a shows that FUMVar-Ex achieved the best SR
result, and both FUMVar and FUMVar-Ex generated mal-
ware variants with nearly 90% SR, whereas AIMED, RL-
ember, and RL-malconv only achieved 20% or less SR.
That is, AIMED, RL-ember, and RL-malconv produced
incorrectly working malware variants eight times higher than
FUMVar and FUMVar-Ex. In addition, MAB-ember and
MAB-malconv achieved around 70% SR, which means they
produced incorrectly working malware variants three times
higher than FUMVar and FUMVar-Ex. These SR results
demonstrate that it is integral for malware generation frame-
works to check the validity of malware variants generated.

In addition, Fig. 4b shows that FUMVar-Ex achieved a
better evasiveness rate of 32% compared with other solutions,
demonstrating the superiority of FUMVar-Ex, which adopts
the results of malware solutions in their fitness function
and using more effective perturbation methods. RL-ember
also achieved 30% evasiveness. However, the SR result is
significantly lower than FUMVar-Ex. On the other hand,
AIMED produced the worst results (i.e., easier to be detected),
implying that using only the similarity scores to generate
evasive malware variants would significantly be less evasive
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FIGURE 5. Bypassing anti-malware solutions using each framework.

than using anti-malware solutions in the fitness function. The
performance gap will become larger also, as the similarity
scores are static (i.e., these scores are not affected by the
actual malware detection rates), whereas the anti-malware
solutions are dynamic and tend to get better (i.e., the detection
rate improves, also affecting the fitness function).

B. EVADING ANTI-MALWARE SOLUTIONS
To evaluate the evasiveness of generated malware variants,
we choose seven commercial anti-malware solutions: Avast,
AVG, BitDefender, Kaspersky, Malwarebytes, McAfee, and
TrendMicro. We compare the evasiveness of FUMVar-Ex
against FUMVar and AIMED.
The two main observations made from Fig. 5 are: (Obs. 1)

regardless of the detection rate, all solutions can be bypassed
usingFUMVar-Ex, and (Obs. 2)FUMVar-Ex outperformed
AIMED, MAB-ember, and MAB-malconv for all solutions
tested and performed better than FUMVar for the five solu-
tions (TrendMicro, BitDefender, AVG, Malwarebytes, and
McAfee).

From (Obs. 1), both FUMVar and FUMVar-Ex were able
to bypass the malware detection of all anti-malware prod-
ucts. If it was not for Kaspersky, the evasiveness achieved
would be over 20% against all solutions using FUMVar-Ex
(i.e., FUMVar-Ex can generate malware variants at a rate
that 1 in 5 would bypass the detection solutions), and over
10% against for all anti-malware solutions tested. In contrast,
almost all evasiveness results of AIMED, MAB-ember, and
MAB-malconv were less than 15%. Unlike FUMVar, the
best performing solution in detecting malware variants gen-
erated by FUMVar-Exwas Kaspersky in our evaluation with
less than 20% evasiveness. However, the worst-performing
solution against FUMVar-Ex was also TrendMicro, where
we observed up to 86% evasiveness (i.e., almost 9 in 10 gen-
erated malware variants were able to bypass the detection
by TrendMicro), followed by McAfee with 58% evasiveness.
This also means that we can use FUMVar-Ex to carefully
craft malware variants against targeted anti-malware solu-
tion(s).

From (Obs. 2), some new effective perturbations, such as
XOR obfuscation, would be helpful to improve the overall

evasiveness. In general,FUMVar-Ex outperformedFUMVar
by up to 20% for McAfee, with an average of 4% improved
evasiveness against all commercial anti-malware solutions.

There were cases that FUMVar-Ex performed worse,
such as RL-malconv performing better than FUMVar-Ex
against the four solutions (i.e., Kaspersky, BitDefender, AVG,
and Avast). However, all solutions had significantly worse SR
(i.e., the SR value of RL-malconvwas only 19% compared
to FUMVar-Ex with 90%), hindering their practicality over
FUMVar-Ex.

C. PERTURBATIONS AND THEIR EFFECTIVENESS
Section V-B showed our proposed framework FUMVar-Ex
was effective against commercial anti-malware solutions.
In order to develop more robust anti-malware solutions
to combat such malware variant generation frameworks,
we need to better understand what makes our variants more
evasive. To examine this, we individually tested our used
perturbations on all of our malware samples and calculated
the variations in SR and evasiveness. The results are shown in
Fig. 7, where the average rates across all malware samples are
displayed. Please note that in this experiment, we discarded
all non-functional malware variants and variants without the
same behavior as the original malware sample, as those can-
not be used in practice.

Fig. 7 shows the effectiveness of individual perturbations
in SR and evasiveness metrics. Fig. 7 shows that most pertur-
bation techniques would be effective in SR; SRs are over 75%
except SAD, DD, and XO. In contrast, Fig. 7a shows that XO
is the most effective perturbation technique in evasiveness;
evasiveness is about 40% with just one perturbation. The
second effective perturbation is SAD; evasiveness is about
25% with just one perturbation. Based on these findings, XO
would be a better perturbation technique than SAD.
We measure an individual solution’s evasiveness in Virus-

Total for each perturbation. The results of the 6 most popular
anti-malware solutions used (see Section V-B) is shown in
Fig. 6. The result shows that the sensitivity of detection varies
on the anti-malware solutions depending on the perturbations
used (i.e., some perturbations are better detected than others).
For example, Avast is easier to bypass by SAP; AVG is easier
to bypass by packing a sample with XO, and Malwarebytes
is easier to bypass by packing a sample with a UPX packer.
Interestingly, the XO reduced the detection rate the most;
however, it was not themost effective perturbation for bypass-
ing the top 6 methods. Hence, the effective perturbations can
be identified from our results when used against different
anti-malware solutions we evaluated, as well as the ability to
check with more perturbations and anti-malware solutions.
A better understanding of the effectiveness of perturbations
to create evasive malware variants can be used to enhance the
detection rate of anti-malware solutions.

D. ANALYSIS BASED ON MALWARE CATEGORIES
We analyze from the perspectives of malware family and
category to see how well FUMVar-Ex generates malware
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FIGURE 6. Effectiveness of individual perturbations on evasiveness from the top 6 VirusTotal solutions.

FIGURE 7. Effectiveness of individual perturbations.

variants.We categorized the collectedmalware samples using
the malware family information provided by the malware
sharing site [25]. Four malware families are used to clas-
sify the collected malware samples: (M1) AgentTesla, (M2)
GULoader, (M3) Loki, and (M4) njRAT. Fig. 8 shows the eva-
siveness of different malware families using FUMVar-Ex.
The result shows that FUMVar-Ex outperformed AIMED
and FUMVar for almost all malware families in evasive-
ness. In particular, FUMVar-Ex achieved better performance
than FUMVar with significant gaps for Loki and njRAT,
11% and 15%, respectively, which means FUMVar-Ex
bypassed over seven more solutions. However, RL-ember
was more effective than FUMVar-Ex for the GULoader
family, and RL-malconv and FUMVar for the AgentTesla
family. This indicates that the global optimization per-
formed for FUMVar-Ex is less effective on GULoader and
AgentTesla malware families, and it can further be improved
(e.g., optimized for specific malware families for enhanced
evasiveness). From this result, we can still conclude that

the newly defined perturbations (i.e., XO and SAD) may be
adequate to generate evasive malware variants for all those
malware families.

We also used the similarity of the API call sequences
to categorize malware samples. First, we used the Cuckoo
sandbox report and extracted each malware sample’s API
call sequence. The similarities between the samples’ API call
sequences are then measured. Lastly, we used a hierarchical
clustering algorithm single linkage algorithm [28] to cluster
malware samples into categories until four2 groups are left.
These malware clusters have the following characteristics:
(C1) Cluster 1’s API calls were related to processes, threads,
and injections; (C2) Cluster 2’s API calls were related to
a registry key; (C3) Cluster 3’s API calls were related to
network operations; and finally (C4) Cluster 4’s API calls
were related to searches and monitors.

Fig. 8b shows that FUMVar-Ex outperformed AIMED,
MAB-ember, and MAB-malconv in all clusters. For Clus-
ter 3 and 4, FUMVar-Ex produced the best results, while
RL-malconv and RL-ember produced the best results
for Cluster 1 and 2, respectively. In addition, FUMVar-Ex
performed better compared to FUMVar; the performance gap
with FUMVar was 7% on average and at most 17%. There-
fore, our recommendation would be to use FUMVar-Ex.
Another critical observation is that FUMVar-Exwas more

effective on malware in Cluster 3 and 4 with a consid-
erable gap compared with other frameworks. This result
shows that FUMVar-Ex (and other similar perturbation tech-
niques) could generate (undetectable) malware variants more
effectively with network operations and API calls related to
searches and monitors.

E. GENERATION EFFICIENCY
We compared the efficiency of malware variant generation
using various state-of-the-art malware variant generators,

2For simplicity, we used the same number of clusters as the number of
malware families used, but other cluster sizes can be used.
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FIGURE 8. Comparing the evasiveness w.r.t. malware categories.

as shown in Fig. 4. To measure efficiency, we evaluated
the evasion time, CPU usage, and memory usage for each
generator. To compare them fairly, we used the same param-
eters and environment setups for GA-based malware variant
generators, such as the number of perturbations and pertur-
bation probabilities, and the default parameters, such as the
reward and maximum iteration, defined in the open-source
code for RL-based models. We used a machine with Ubuntu
18.04 × 64, four cores, and 16GB RAM to run the malware
generators.

We first measured evasion time, representing the average
time required to evade a target anti-malware solution. Since
several malware variant generators, such as FUMVar and
FUMVar-Ex, are intended to evade multiple anti-malware
solutions, we measured the average time taken to evade
a randomly selected anti-malware solution for them. The
results of the evasion time measurements are presented
in Table 4. The table shows that FUMVar-Ex achieved
the best performance (1358.13 seconds) compared to the
GA-based generators (i.e., AIMED and FUMVar). However,
FUMVar-Ex required a longer time to evade anti-malware
solutions compared to RL-based generators (i.e., RL and
MAB-MALWARE). We found that the main reason for this
difference was the behavior validation using the Cuckoo
sandbox, which FUMVar-Ex implemented, but RL-based
generators did not. Therefore, FUMVar-Ex could achieve
better or similar performance if RL-based generators imple-
ment behavior validation.

Next, we analyzed CPU usage and memory usage, which
denote the percentage of CPU usage and the amount of mem-
ory allocation, respectively. To compute CPU and memory

TABLE 4. Generation efficiency results.

usage, we measured the CPU utilization rate and memory
usage per second using psutil [29] while generating mal-
ware variants. The CPU and memory usage measurement
results are also presented in Table 4. The table shows that
FUMVar-Ex exhibited acceptable performance in terms of
both CPU and memory usage.

VI. DISCUSSION
A. BYPASSING COMMERCIAL ANTI-MALWARE
SOLUTIONS
Our experimental results (as shown in Fig. 5) demonstrate
the effectiveness of FUMVar-Ex against commercial anti-
malware solutions. In practice, most users use a single anti-
malware product, and a few users have more than one. In such
a scenario, if a target user is found, it would be significantly
easier to bypass the target anti-malware product. As we
have already included many of the popular solutions in our
experiments, our coverage seems reasonable to show the
practical impact of the effectiveness of FUMVar-Ex against
commercial anti-malware solutions and the urgent need to
improve our anti-malware solutions by better understanding
how evasive malware variants can be generated.

B. VALIDATING MALWARE VARIANTS’ BEHAVIORS
As presented in Section III-D, we used signature fields to
validate the behavior of malware variants generated. We gen-
erated a superset of signature fields using multiple Cuckoo
sandbox analysis reports for each malware sample. Our
empirical analysis suggests that five independent reports
would sufficiently build a reasonable set of signature fields
to capture malware samples’ behaviors. However, real-world
malware variants may have dynamically changing behaviors
when some specific conditions are met, which may not be
captured in how we identify their behaviors. For example,
somemay not show all their malicious behaviors by detecting
their executing platform being a virtual machine [30]. There-
fore, in such cases, our current FUMVar-Ex implementation
using the Cuckoo sandbox would fail to obtain malware
samples’ signature fields successfully. To address this issue,
we should consider in-depth program behavior analyses to
capture malware samples’ behaviors comprehensively.

C. DEVELOPING EVASIVE MALWARE VARIANTS
As shown in Fig. 7, there is a trade-off between SR and
evasiveness. For example, XO and SAD would be effective in
evasiveness while having lower SRs than other techniques,

VOLUME 11, 2023 31071



B. Jin et al.: On the Effectiveness of Perturbations in Generating Evasive Malware Variants

TABLE 5. Comparisons between FUMVar-Ex and other state-of-the-art solutions.

indicating that a direct modification of PE sections would
increase the likelihood of evading detection, but it is hard
to keep the PE file format compatible. Our findings suggest
that no perturbation technique is useful in both SR and eva-
siveness. Therefore, it seems better to apply a combination
of multiple perturbation techniques and perform a sufficient
number of perturbations to generate fully-working malware
variants to bypass detectors with high evasiveness.

VII. RELATED WORK
A. MALWARE DETECTION
There are two representative approaches for detecting mal-
ware: static and dynamic analysis approaches. The static
analysis is to identify some specific code patterns and the
hash value of files collected from known malware samples.
Static analysis is widely used to determine whether a given
file is malicious or not because it is simple and can easily
be deployed with signatures or predefined rules. However,
various techniques (e.g., code obfuscation, dynamic code
loading, encryption, and packing) can be used by malware
writers to evade static analysis [31]. Dynamic analysis would
be more robust to such techniques because dynamic analysis
tools have mainly been designed to capture malware sam-
ples’ malicious behaviors. Recently, Machine learning (ML)
techniques have become an integral part of malware detectors
to improve their detection accuracy. Ye et al. [32] presented
a malware detection system using ML with the features of
Windows API call behaviors. Xu et al. [33] proposed a mal-
ware detection method using ML with the features of virtual
memory usage. Ahmed et al. [34] suggested using an NLP-
based deep learning model to identify malware’s behaviors
by leveraging Bidirectional Encoder Representations from
Transformers (BERT) pre-trained model. However, malware
writers are still trying to develop more evasive malware vari-
ants by manipulating the features used for ML models.

B. ML FOR MALWARE VARIANT GENERATION
ML techniques are popularly used to automate and speed up
malware generation. For example, Anderson et al. [6] pro-
posed a framework based on reinforcement learning (RL) to
evade the detection of static malware classifiers. Zhong et al.
[14] proposed a framework named MalInfo to evade an ML
malware classifier based on RL with several new obfus-
cation techniques. Song et al. [13] proposed an efficient
RL-based malware variant generator, MAB-MALWARE,

applying the multi-armed bandit (MAB) problem to the
model. However, these RL-based frameworks do not consider
the generated malware variants’ behaviors. Castro et al. [9]
suggested the framework dubbed ARMED to generate mal-
ware variants with randomly selected perturbations. At first
glance, this approach seems similar to FUMVar-Ex. Unlike
FUMVar-Ex, however, ARMED cannot ensure that gener-
ated malware variants are correctly working. Hu and Tan [5]
suggested using adversarial ML for generating evasive mal-
ware variants against a specific target malware classifier.
Similarly, Qiao et al. [12] proposed a malware genera-
tion framework using adversarial examples. Their proposed
method extracts some bytes of a representative benign sam-
ple and adds them into a malware sample to fool a deep
learning-based detection model. However, even though gen-
erated malware samples can evade a targeted deep learning-
based detection model, they achieved a lower evasiveness
rate (7.1%) against VirusTotal engines than our proposed
framework, FUMVar-Ex.

C. GA FOR MALWARE VARIANT GENERATION
GA is a computational model widely studied to generate
malware samples. For example, Choi et al. [7] proposed the
framework dubbedAVMG,which can generate malware vari-
ants at the source code level. Cani et al. [35] suggested a set of
instructions to modify malware samples using GA while pre-
serving their original behaviors. Expanding on the same con-
cept, AIMED framework was proposed by Castro et al. [8],
which achieved up to 50% faster speed using several pertur-
bations defined in [6]. Jin et al. [11] also proposed a frame-
work called FUMVar using GA to generate malware variants.
In this paper, we extend FUMVar into a more effective and
generalized one by introducing new perturbation techniques
such as XO and SAD that can directly modify PE sections and
a more robust method to validate malware samples’ behav-
iors. This paper extends FUMVar into a more effective and
practical framework dubbed FUMVar-Ex with 14 perturba-
tions and a newmalware functionality validationmethod. The
experimental results show that FUMVar-Ex is superior to
FUMVar in the evasiveness against commercial anti-malware
products. Table 5 presents a comprehensive overview of the
comparison results between FUMVar-Ex and other state-
of-the-art methods, including FUMVar. The table covers
several details, including the base technique employed, the
target of the method, the types and number of supported
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perturbations, the number of approaches analyzed for base-
line comparison, and the functionalities provided by each
method.

VIII. CONCLUSION
We must understand how evasive malware variants could
be generated to enhance anti-malware solutions. This paper
proposes a GA-based malware variant generation framework
dubbed FUMVar-Ex to automatically generate malware
variants to evade the detection of anti-malware solutions. The
evaluation results demonstrated that FUMVar-Ex achieved
28% and 78% better evasiveness than FUMVar and AIMED,
the state-of-the-art malware variant generators using GA,
respectively. We also showed that FUMVar-Ex outper-
formed the state-of-the-art malware variant generators using
RL, namely RL and MAB-MALWARE with 70% and 25%
better SR with notably improved evasiveness, respectively.
Further, we showed that FUMVar-Ex can be used to gen-
erate malware variants that bypassed up to 86% on selected
commercial anti-malware products. To evaluate the effec-
tiveness of FUMVar-Ex in more details, we analyzed the
effectiveness with respect to different malware families
and categories, where we experimented using individual
perturbations and observed varying SR and evasiveness.
We found that the XOR obfuscation and adding benign
section techniques, the two new perturbation techniques
introduced in this paper, are specifically useful for gener-
ating evasive malware variants from antivirus engines from
VirusTotal. Furthermore, the results showed that individual
perturbations’ effectiveness is greatly varied under differ-
ent malware families and categories. This finding implies
that the evasiveness techniques could be selected carefully
and customized against targeted malware detectors, which
can be used to improve our anti-malware solutions based
on our findings. Therefore, we believe that FUMVar-Ex
would be a useful tool to enhance the effectiveness of
anti-malware solutions against new and unforeseen malware
variants.
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