
Received 12 February 2023, accepted 4 March 2023, date of publication 27 March 2023, date of current version 11 April 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3262410

Fault Analysis and Mitigation Techniques of
the I2C Bus for Nanosatellite Missions
AMINA ALBALOOSHI 1, ABDUL-HALIM M. JALLAD 2,3, (Member, IEEE),
AND PRASHANTH R. MARPU 4, (Senior Member, IEEE)
1National Space Science Agency, Manama 51115, Bahrain
2Department of Electrical Engineering, United Arab Emirates University, Al Ain, United Arab Emirates
3National Space Science and Technology Center, United Arab Emirates University, Al Ain, United Arab Emirates
4Group 42, Abu Dhabi, United Arab Emirates

Corresponding author: Abdul-Halim M. Jallad (a.jallad@uaeu.ac.ae)

This work was supported in part by the Startup Grant Funded from UAE University under Grant 12N096.

ABSTRACT Despite the reliability concerns that are associated with the I2C bus, it is still one of the
most popular on-board data busses to be used in nanosatellite missions. This paper provides a detailed fault
analysis for the I2C bus in the context of nanosatellite missions, and consequently investigates and proposes
potential mitigation techniques. The failure of the I2C bus is a risk that most CubeSat missions has to deal
with, as the related bus failures can cause some catastrophic failures. Therefore, this study analyzes the
I2C bus characteristics, the hardware and software requirements, and the key factors leading to I2C bus
failure. By conducting experimental testing using the appropriate hardware and software to construct a
comprehensive list of I2C bus requirements, characteristics, and failures. Based on the experimental testing
possible mitigation approaches are proposed and finally a qualitative risk analysis is delivered to measure
the impact of the methods on the overall mission success. The study shows high influence of the I2C bus
on the CubeSat health and mission success, thus emphasizing on the importance of design considerations to
reduce missions’ risk level, as well as counting for runtime failures that can occur during mission operation.

INDEX TERMS Nanosatellites, CubeSats, I2C bus, reliability, fault mitigation.

I. INTRODUCTION
In the late 1990s Polytechnic State University and Stanford
University introduced a new concept of satellites, that are
built according to the CubeSat Standard Specification. The
specifications included the definition of various mechanical
and electrical standards that have helped in the rapid spread
of CubeSats around the world. The concept of CubeSat is
to have a class-based design with standard unit, one unit is
referred to as 1U and has dimensions of 10 × 10× 10 cm
and not to weigh more than 1.33 kg. However, the design of
CubeSats is not constrained by one unit, as CubeSat designers
have the choice of building bigger CubeSats that consist of
multiple units 2U, 3U, 6U, etc. This concept made it easier
and less costly to build satellites, and hence enabled univer-
sities and educational institutions to join the field alongside

The associate editor coordinating the review of this manuscript and
approving it for publication was Claudio Zunino.

governments, military, space agencies and huge commercial
firms [1], [14].

Satellite reliability is an extremely critical aspect in the
overall design of any space mission; since it has direct
impact on the mission success, partial mission success or
even catastrophic failures that lead to CubeSat loss. Several
missions have been reported to have had such failures such as:
CP4, Delfi-c3, Delfi-n3xt. Thus, every aspect of the CubeSat
mission design must be carefully considered for reliability.
This paper deals with the on-board data busses commonly
deployed on modern CubeSat missions.

The I2C bus is one of the most commonly employed
data busses on-board CubeSat missions [2]. I2C Bus failures
are difficult to detect and resolve making it essential for
CubeSat developers to account for them during the design
phase. Several previous missions with catastrophic failures
hypothesized that the mission failure was due to the I2C
bus, MYSat-1 CubeSat launched by Khalifa University [20],
lost communication with the ground station for more than

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 34709

https://orcid.org/0009-0000-0440-4617
https://orcid.org/0000-0002-1874-7722
https://orcid.org/0000-0003-3335-1790

A. Albalooshi et al.: Fault Analysis and Mitigation Techniques of the I2C Bus for Nanosatellite Missions

a year, with a most likely cause of failure to be due to a
I2C bus-related failure. Another satellite,MeznSat, also faced
in-orbit issues that have been analyzed to be related to the
I2C bus [21].

Researchers proposed various approaches to increase
I2C bus reliability and robustness against different failures,
applying either hardware or software changes to the original
I2C bus design. Previous work on I2C reliability involving
hardware enhancements included the addition of hardware
to control devices’ availability on the bus [11], or to avoid
address conflicts [8]. Also, previous work has been reported
on adding a hardware circuit to isolate the I2C nodes from the
bus in the event of device failure [16], [22]. This approach
works on the prevention of having the faulty nodes holding
the bus lines permanently and hence causing the whole bus to
malfunction. On the other hand, software modifications were
implemented to avoid I2C bus lockups, and to alert I2C leader
of the occurred fault [12].

In this paper, we present an analysis of the suspected faults
and failures of the I2C data bus in CubeSat projects. In the
analysis, we list the expected I2C data bus threats over Cube-
Sats’ mission success, where each of the threats is further
analyzed by experimental testing to detect the root cause of
fault or failure. The goal of this study is then to propose
mitigation methods to terminate those threats or reduce their
impact on the missions’ success.

The literature lacks a comprehensive review and practical
analysis of the failure risks associated with the I2C bus, par-
ticularly in relation to its use in nanosatellite space missions.
This has been noticed by researchers as reported in some
recent publications [22]. The contribution of this paper is
that it precisely presents and analyzes possible failure risks
of the I2C bus and mitigation methods of these failures.
We emulate in the lab the identified risks and their conse-
quences on the bus and hence on the mission. We identify
the level of each of the identified risks and propose and
evaluate the mitigation techniques for each of these risks.
This will enable researchers and designers of nanosatellite
missions to improve the reliability of their missions, given
that the I2C bus reliability is central to the success of some
of those missions. To the best of our knowledge, such a
practical risk analysis study has not been reported previously
in the literature. Thus, this paper provides a guide to CubeSat
developers, on how to increase their CubeSats reliability
and robustness against failures, when utilizing the I2C bus.
By following the guideline provided and considering the risk
analysis conducted; the I2C bus failures impact are either
reduced or eliminated.

The remainder of this paper is organized as follows:
Section II provides a brief explanation about the I2C bus,
Section III provides the related work conducted by previous
researchers, Section IV presents the methodology used to
conduct this study, Section V discusses the results attained
from this research, Section VI presents the practical implica-
tion for implementing the I2C bus in CubeSats, and the final
section provides the conclusions.

II. THE INTER-INTEGRATED CIRCUIT (I2C) BUS
A. OVERVIEW OF THE BUS
Inter-Integrated Circuit (I2C) is a data bus used to handle
data transmissions between peripherals, originally designed
for short distance communications within a single device. The
I2C bus has gained its popularity due to its simplicity and
low cost [3]. The I2C bus allows communication between
low-speed peripheral ICs to processors and microcontrollers
in short distances [2], enabling a variety of different topolo-
gies such as single leader to single/multi followers or multi
leaders to multi followers. Manufacturers prefer I2C over
other data buses for its low manufacturing cost, prioritizing
the cost of the data bus over the speed [4].

The I2C protocol adopts a simple bidirectional commu-
nication concept as shown in Figure 1, in which only two
wires are required for connecting all devices on the bus [5].
The two wires are Serial Data Line (SDA) and Serial Clock
Line (SCL), each carrying different type of data; the SDA
line is a bidirectional line which carries the data between the
primary and secondary, SCL line is a one directional line
which carries the clock signal from the primary device [5].
The two wires are connected to a high voltage through pullup
resistors, which determine the bus speed, and the typical I2C
bus pullup resistor values are 2 k � for the fast mode with
speed of 400 kbps and 10 k � normal mode with speed of
100 kbps speeds, respectively [6]. The data transmission on
the I2C bus is controlled by start and stop conditions sent by
the master, both start and stop signals can be identified by the
change of the SDA line while the SCL line is held high, start
condition is a falling edge of a pulse on the SDA line and stop
condition is the rising edge of a pulse on the SDA line.

FIGURE 1. The Top-level architecture of the I2C Bus.

The I2C protocol defines a unique address for each slave
with a size of 7-bits. The primary device is the only peripheral
that does not require an address for it being the only initiator
of all transactions. The protocol divides the data transmitted
on the SDA line to bytes; the first is reserved for the slave
address, second for the register address and the last of the
data. All transactions on the bus start with a start signal and
for each of the sent bytes the master awaits an acknowl-
edgement from the slave it is communicating with. After
successful establishment of communication, the primary or
secondary starts sending the data bytes. Finally, the master
sends a stop condition to terminate the session.

34710 VOLUME 11, 2023

A. Albalooshi et al.: Fault Analysis and Mitigation Techniques of the I2C Bus for Nanosatellite Missions

The simplicity of the I2C bus makes it susceptible to faults
and failures especially when implemented without shielding
in the harsh space environment as it is vulnerable to failures
due to exposure to radiation. Radiation plays a role is causing
bit-flips on the I2C bus and I2C devices, which can lead to
corruption in the operating system, program, or microcon-
troller pointer, eventually leading to bus lockups [3], [7].
Bus lockup is the state where the I2C master loses its con-
nectivity with all slaves and the data transmission on the
bus is blocked. Bus lockups are very common I2C failure
and occur mainly due to the simplicity of the bus design
especially for not implementing any data integrity check nor
failure recovery [3], making it a single point of failure to
CubeSat missions [7]. Additionally, transient faults that occur
in the I2C cores such as a bitflip in registers, and missing
acknowledgements can lead to bus lockups as well. Missing
acknowledgements on the I2C bus occur for various reasons,
those include timing delay between SCL and SDA lines,
missing or unexpected SCL pulse, incomplete 8-bit block,
or missing bytes [8].

The key differences that make the I2C bus more prone
to failure in comparison to the other deployed data buses
in CubeSat missions, namely SPI and RS-232. Firstly, all
communication between peripherals occurs on the SDA line
not allowing protocol handshaking on a dedicated line. Sec-
ondly, Connecting high number of nodes on the same data bus
unlike other protocols. The prior two characteristics increase
the probability of having errors that can lead to faults or
failures such as errors resulting from microcontroller state-
machine which are then passed to the bus [2]. Also, the lack
of component isolation on the I2C bus which allows faulty
devices to fail the whole bus [9].

B. I2C BUS ON CubeSats FROM A RELIABILITY
PERSPECTIVE
The most employed data bus in CubeSats is I2C bus, the
percentage of CubeSats that employ I2C bus are 71% and
81% for launched and to be launch CubeSats accordingly.
The second most employed data bus in CubeSats is RS-232
with 53% for deployed CubeSats and 45% for to be deployed
CubeSats. Followed by SPI with 50% of deployed CubeSats.
Other least employed data buses are namely: CAN, USB, and
UART. In addition, someCubeSats use wireless data channels
for intra data exchange between on-board peripherals, such as
Wi-Fi and Bluetooth [2].

Besides bus popularity, bus reliability is an impor-
tant aspect to investigate. The research published by
Bouwmeester et al. [2] focused on I2C, SPI, and RS-232, and
the number of CubeSats that employed each data bus were
37, 23, and 24 respectively. The failure tolerance techniques
investigated were error signaling line, bus lockup protection,
supplementary watchdog circuitry, etc. Among all missions,
42% of mission used RS-232 bus with no fault tolerance,
35% of missions using SPI, and 16% of missions using I2C;
thus, it was clear that I2C bus was the highest to have failure

tolerance techniques. Furthermore, the most common fail-
ure tolerance techniques implemented amongst the surveyed
missions were having supplementary watchdog timer 54% of
mission, implementing bus lockup protection 49% of mis-
sions, and deploying separate buses connection to different
subsystems 30%.

The overall mission data bus success reported 95% of
missions using RS-232 did not report any issue with the bus,
followed by SPI with 94%, and finally 40% for missions
using I2C. It was clear from the survey that CubeSat devel-
opers and operators had reported many issues with the I2C
bus, the most reported failure was bus lockups with 43% of
cases that lasted for more than 1 minute and 21% for less
than one minute. Other issues with I2C bus were loss of
packet transmission 21%, catastrophic hypothesis 7%, 3% for
proven catastrophic failure, 3% high bit error rate and 3% per-
formance degradation. Example of CubeSats with such I2C
failures are: CP4 launched by California Polytechnic State
University CubeSat that failed due to the I2C bus failure [18],
Delfi-c3 of TU Delft experienced high error-rates and bus
lockups, and Delfi-n2Xt failure is related to the experimental
transponder activation and assumed to be the malfunctioning
of the I2C buffer [19]. Several other CubeSats have also
been reported the I2C bus to be the known source of mission
failures [15], [16], [17].

III. RELATED WORK
The I2C bus failure detection and mitigation have attracted
many researchers to investigate the topic due to its popularity
and high vulnerability to failures. Researchers considered
different approaches to perform integration test to test Cube-
Sats immunity to failure by developing fault injection tool,
the main interest was to insert faults in the communication
channel between the CubeSat subsystems. The faults injected
were presented as false values and change of electrical sig-
nals using two types on fault injection: Driver Fault and
Interceptor Fault, the former simulate errors by injecting
faults on the communication channel and the letter emulate
a faulty communication channel by injecting faults. Authors
emphasized on the importance of utilizing Failure Emula-
tor Mechanism (FEM) to increase the CubeSats’ robust-
ness; by allowing enhancements during the development
phase [10].

Other researchers investigated the vulnerabilities of I2C
bus failure, and its resulting errors being generated by con-
tinuously monitoring the I2C bus using external device that
sits invisible. The monitor is designed to analyze the data
being transmitted over the I2C bus, understanding the packet
structure and communication messages. Then it generates
signals which summarizes the failures occurred on the bus
and recovery actions. The monitor’s implementation allows
checking the success of the data transactions by calculating
the checksum of the data transmitted or detecting NACK
signal on the bus. Additionally, allowing fault recovery by
forcing the I2C master to reset [3].

VOLUME 11, 2023 34711

A. Albalooshi et al.: Fault Analysis and Mitigation Techniques of the I2C Bus for Nanosatellite Missions

Several approaches have been applied to increase the
I2C bus reliability and robustness, with the price of addi-
tional cost, rules, hardware, and processing. Ryan et al. [11]
presented a designed developed by California Institute of
Technology, the design has two I2C cores that regularly send
messages to slaves to check if they are alive. Patrick et al. [12]
proposed an approach to monitor the I2C bus for lockups
and alert the master in case a lockup was detected. The
work presented by [13] Intel Corporation proposed SMBus
which is a protocol that runs on the I2C bus, the SMBus uses
additional set of rules to control the data transmission over
the I2C bus targeting various categories such: electricals, tim-
ing, protocols, and operating modes. The SMBus sets many
rules that the I2C bus does not support such as minimum
clock frequency, cumulative clock low extend time for slave,
clock low time-out, etc. Such features give SMBus more
reliability over the I2C bus but lowers the compatibility with
I2C devices. Ferrando [8] presented twomethods tomitigated
conflicted addresses on the I2C bus, both methods require
hardware to be connected in addition to the conventional the
I2C bus setup. The firstmethod utilizes additionalmultiplexer
between the I2C bus and followers with conflicted address,
the master device then enables the required slave electrically
bus connecting it to the bus or isolating it. This method
does not require additional pins or control logic for I2C
programmable devices. The second method is adding I2C
buffer this method demands additional lines and control logic
depending on the devices used.

IV. METHODOLOGY
The methodology used for this study included five stages as
highlighted in Figure 2.

FIGURE 2. Methodology used for the Study.

A. DATA COLLECTION
The data collection in this study was mainly based on liter-
ature review and collecting observation from experimental
testing. The data collection to construct the initial list of
hypothesized failure modes was constructed by investigating
previous CubeSat missions’ failure analysis reports and pub-
lished surveys. On the other hand, the data collected from the
experimental testing were based on collecting observations
from setups simulating the hypothesized failure modes.

B. EXPERIMENTAL SETUP
The experimental setup was constructed using selected hard-
ware, software, and monitoring tools to conduct the testing
scenarios. For each of the hypothesized failure mode different
hardware and software components were utilized. The hard-
ware boards used were Arduino Uno, Arduino Mega, and TI
Tiva C Launch pad, in order to provide a variety of I2C bus
implementations. For monitoring the hardware and software
components of each of the failure modes deferent tools were
utilized such as:

• Serial output monitor, to capture the data transmission
on both primary and secondary sides.

• I2C packet sniffer, which was implemented using
Arduino MEGA board, to capture I2C packets being
transmitted between leader and followers and to monitor
the data transmitted on the bus. Figure 3 shows the
output of the packet sniffer, showing the device address,
read/ write operation and finally the stream of bytes
exchanged.

FIGURE 3. Example of I2C packet sniffer output.

C. TESTING PROCEDURE
The testing procedure in this study followed three main steps,
firstly by selecting the topology setup of the I2C bus by
determining the number of slaves and the population of the
devices on the I2C bus. The experimental setup is used to run
a set of pre-identified tests to stress the I2C bus using different
Commercial-Off-The-Shelf (COTS) development hardware.
The different hardware and software selection were based on
the need to fulfil the aim of each test scenario to generate a
failure mode and to detect the cause of that failure mode.

D. PROPOSE MITIGATION TECHNIQUES
Based on the observations made during the experimental
testing, different approaches were proposed to overcome the
failure modes. Each failure mode was examined individu-
ally to propose methods utilizing hardware and/or software
components to mitigate the root cause leading to that fail-
ure by either eliminating it or reducing its likelihood and
consequence.

34712 VOLUME 11, 2023

A. Albalooshi et al.: Fault Analysis and Mitigation Techniques of the I2C Bus for Nanosatellite Missions

E. RISK ANALYSIS
The best way to analyze and evaluate the data collected
is by conducting a qualitative risk analysis, since the data
obtained from testing were mainly based on observation and
no quantitative output were recorded.

Qualitative risk analysis is a helpful tool tomeasure the risk
associated to the I2C bus failure and to help minimize the risk
of failure thus increasing the I2C bus reliability.

The qualitative risk analysis conducted in this study is
based on six main steps:
1. Determination of risk phase, whether it is an implementa-

tion risk that occurs in the development phase or a mission
risk that occurs during operation phase.

2. Definition of risk parameter, each risk is mapped to a
probability and consequence level of seriousness as shown
in Table 1 and Table 2.

TABLE 1. Risk consequence.

TABLE 2. Risk likelihood.

3. Map the risk to the risk-matrix as shown in Figure 4
a. [L] Green corresponds to low impact
b. [M] Yellow corresponds to medium impact
c. [H] Red corresponds to high impact

FIGURE 4. Risk priority matrix.

4. Propose mitigation techniques, that can help in solving
or reducing the risk. Four approaches are possible:

• Treat: by having an action plan to take if the risk
occurs which results in reducing either the likeli-
hood, consequence, or both.

• Terminate: by applying enough margins, perform
tests and simulations to eliminate the risk.

• Transfer: by having insurance or a third party to
handle the risk.

• Tolerate: is when no action can be taken, and the risk
must be accepted.

5. Re-evaluate the risk after mitigation technique imple-
mentation, based on likelihood and consequence.

6. Defining the net risk, which is the risk remaining after
the mitigation techniques is applied.

V. RESULTS
In this section, the results of the experimental testing for each
of the hypothesized failures is presented, the I2C bus failures
were observed either as bus lockups where the data trans-
mission on the bus was lost, or as corrupted data where the
data received by the peripheral’s did not match the message
sent. The most common I2C failure was bus lockups, based
on the different hypnotized scenarios bus lockups occurred
either due to hardware or software issue; therefore, hardware
components and software tools were utilized to emulate the
failure scenarios and detect the causes leading to it. The study
detected four causes that lead to bus lockups: the value of
the pullup resistor, infinite loops, device state, and missing
acknowledgements. In addition, data corruption occurred due
to conflicted addresses or loss of synchronization between
devices.

The rest of the section will discuss each failure cause and
explain the test conducted to detect it.

A. PULLUP RESISTOR VALUE
In this test, the pullup resistor value effect on the I2C bus
behavior was tested by connecting a single master device
to two slaves. The theoretical value of the pullup resistor
for the experimental setup was calculated and found to fall
between minimum 1.5k� and maximum 2.95k�. In this
experiment the pullup resistor values were varied, and the
I2C bus behavior was observed. The value that caused a bus
lockupwas resistor value of 100� and below; the value of the
resistor is subjected to the node population on the bus; thus,
it differs based on the mission design. One factor to notice is
that with several COTS nodes (subsystems and components)
added to the spacecraft I2C bus, the value of the pull-up
resistors build-up, which will impact the quality of the SCL
signal as observed in the waveforms in figure 5. This leads to
the malfunctioning of the bus operations.

B. INFINITE LOOPS
The I2C bus protocol software design is based on interrupts
and register states, meaning that all data transmissions and

VOLUME 11, 2023 34713

A. Albalooshi et al.: Fault Analysis and Mitigation Techniques of the I2C Bus for Nanosatellite Missions

FIGURE 5. SDA (yellow) and SCL (Blue) waveforms with pullup resistor
value of 100 KOhm.

control signals are being handled by the Two Wire Interface
(TWI) registers. The simple design of the protocol lacks
failure and error handling and sets numerous infinite loops
to wait for register states to change, such as: wait for start
condition as shown in eq. 1, if the device was unable to set
the TWCR register then the I2C bus would lock up.

TWCR = (1 ≪ TWINT) |(1 ≪ TWEN)|(0 ≪ TWSTO));

//StartCondition

While (! (TWCR& (1 ≪ TWINT))) ;

//checkforstartcondition (1)

Infinite loops are also implemented with acknowledge-
ments and stop conditions, which can be extremely critical in
terms of software reliability. For simple I2C implementation
and utilizing non programable devices, failing to execute a
start, stop, or acknowledgement statement was found to lead
to bus lockups.

C. DEVICE STATE
The device state being ON or OFF while connected to the I2C
bus was tested, by examining the voltage on the bus using two
different I2C slaves (AVR processor on theArduinoUNO and
the TM4C123 processor on the TIVA C board).

In normal cases I2C slaves can only pull the bus low to
enable the bidirectional communication when transmitting
data to the master. In this experiment the normal bus voltage
was held high at +5V, and then disconnecting the power of
the Arduino slave (OFF) while it is connected to the I2C
bus, hence leading to voltage drop to less than 1V on both
SDA and SCL lines as shown in Table 3. This sequence was
found to cause a bus lockup. On the other hand, the same
test was repeated using a TIVA C slave, the voltage on both
lines remained at almost 5V after disconnection. Different
hardware act differently on the I2C bus, in this case turning
the Arduino board OFF while connected to the I2C bus acted
as circuit ground and dropped the voltage on the bus which
leaded to bus lockup. One the other hand, TIVA C is design

to isolate the I2C bus from ground when it is switched OFF.
Thus, slave devices should not have the ability to pull the bus
low unless transmitting data over the SDA line.

D. MISSING ACKNOWLEDGMENT
Acknowledgements are an important part of the I2C protocol
definition. For this test, the effect of a missing acknowl-
edgement was investigated by disabling one acknowledge-
ment statement from the slave controlling the bit assignments
TWINT, TWEA, TWEN, and TWIE of the TwoWire Control
Register (TWCR) register as shown in eq. 2.

TWCR = (1 ≪ TWINT) |1 ≪ TWEA| (1

≪ TWEN)|(1 ≪ TWIE) (2)

The failure of the slave to set the TWCR register or the
loss of the acknowledgement on the SDA line led to I2C
bus lockup, where the master did not have the ability to
communicate with any of the other slaves on the bus.

E. CONFLICT ADDRESS
The I2C bus can be implemented by either allocating
7-bits or 10-bits for the address which allows having 128 or
1024 addresses. The limited range increases the probability
of having two slaves with the same address on the bus,
which leads to corrupted data transmission on the I2C bus
as both slaves reply at the same time. Moreover, slaves
with hardcoded addresses suffer this problem unlike I2C
slaves which allow the modification of their address either
by programming or having configuration pins to flip a bit
or two. Conflicting addresses was found to lead to cor-
rupted data, i.e., the data received did not match the data
sent.

F. DEVICE SYNCHRONIZATION
The I2C protocol depends on clock signals from the master
device to control all transactions, and synchronization faults
between I2C devices happen when the master encounters a
sudden restart while communicating with I2C slaves. The I2C
protocol does not define device state messages, thus, the slave
devices do not get updated by the sudden restart. The observa-
tion made by this experiment is that slaves continue sending
the data from last stopped byte, which results in having data at
the master end that does not match the originally sent, hence
leading to data corruption.

TABLE 3. SDA and SCL lines voltage.

34714 VOLUME 11, 2023

A. Albalooshi et al.: Fault Analysis and Mitigation Techniques of the I2C Bus for Nanosatellite Missions

TABLE 4. I2C qualitative risk analysis.

VI. DISCUSSION AND PRACTICAL IMPLICATION
The usage of the I2C bus on-board CubeSats can lead to
catastrophic failures for missions, due to the I2C bus related
risks and the unpredictability of their occurrence. There-
fore, constructing a robust risk mitigation plan for CubeSat
missions is essential, considering the different development
phases of the project and the various aspects that must be
counted for. Thus, significantly reducing the impact of the
risks or the frequency of occurrence. A summary of the risks
associated with the I2C bus and their respective mitigation
techniques is presented in Table 4.

During the design phases, CubeSat developers should
examine both: the individual I2C slave device/nodes and the
design of the I2C bus.

Firstly, the I2C slave addresses must be ensured to be
unique; in case of encountering conflicted address, develop-
ers are expected to resolve the issue by either implement-
ing hardware or software solution. The simplest approach
with programmable devices is to reprogram the address,
but in many cases this solution is not feasible for I2C
slaves as the simplicity of their design does not support
programmability. Thus, the issue of having slaves with
conflicted address can be solved using hardware solutions
such as: exchanged the conflicted slave with other slaves,
connect slaves with conflicted addresses to different

I2C busses, connect conflicting slaves via multiplexers [8],
or connect conflicted slaves through I2C buffers [8]. Hard-
ware solutions demand additional hardware in addition to
softwaremodification, which adds complexity to the solution.

Second aspect to be investigated during the design phase
is the device electronic design characteristics, mainly the
effect of the slave on the I2C bus in case of having faulty
power supply to that slave. Some slaves pull the bus low in
case of losing the power supply, this failure can be avoided
by isolating the slave from the I2C bus by utilizing addi-
tional hardware, such as connecting the slave device an
I2C buffer.

Thirdly, CubeSat developers should always ensure appro-
priate voltage levels on SDA and SCL lines. The SDA and
SCL lines should be held high voltage when idle, and this
is achieved by integrating pullup resistors. Some I2C slaves
come with integrated internal pullup resistors but connecting
an external pullup resistor ensures a more robust design.

Also, considering the I2C slave capabilities is critical
for CubeSat software design, because the consequence of
exceeding the slaves’ capabilities would lead to getting unex-
pected errors. For example, the data buffer size, the master
device should not transfer data at a rate that would overload
the slave buffer size. Thus, the software design should adhere
to the slaves’ specifications.

VOLUME 11, 2023 34715

A. Albalooshi et al.: Fault Analysis and Mitigation Techniques of the I2C Bus for Nanosatellite Missions

Additionally, the I2Cbus protocol suffers several software
vulnerabilities which should be considered during the design
phase. The I2C protocol design assigns several infinite loops,
the control signals on the bus depend on register assignments
and the devices wait indefinitely for the register assignments
to succeed, and the failure of assigning the register leads to
bus lockup. Thus, developers should implement timers to exit
loops and enforce the slave devices to release the bus.

Also, the I2C protocol defines waiting time for acknowl-
edgement on both master and slave sides, if the acknowledg-
ment is lost or corrupted during the transmission then the
I2C bus gets locked because the receiver device will keep on
waiting for the lost acknowledgement. Thus, software devel-
opment shall consider releasing the bus after a predefined
wait-time.

Furthermore, some I2C slaves suffer from synchronization
with the master device, this happens after an unscheduled
master restart. The unsynchronized slave devices then trans-
mit faulty values, in which it can be overcome by having a
scheduled reset to the slave devices after the master’s reset.

In addition, CubeSat developersmust ensure havingwatch-
dog timer on-board, in which it can reset the devices in case
of exceeding an idle time of no communication happening in
the I2C bus. And it is important to note the assigned wait time
of the devices should not exceed the idle time of the watchdog
timer.

Besides the key factors that ensure the reliability of the
I2C design it is important to be consider future run-time risks
which should be addressed at the implementation phase.

VII. CONCLUSION
Although the I2C bus is commonly used on-board CubeSat
missions, and is deemed responsible for several mission fail-
ures, there is a lack of a comprehensive study on the possible
causes of I2C related failure, and their possible mitigation
techniques. Previous research lacked the investigation of the
root causes of I2C failure, where only few failure triggers
were identified. In this paper, we investigated some of the
suspected I2C failures that were encountered by past CubeSat
missions, and hence to confirm the occurrence of the hypoth-
esized failures by conducting experimental testing. The paper
shows that the I2C bus design suffers hardware and software
issues when implemented in CubeSats, due to various reasons
including, bus simplicity (and hence lack of fault detection
mechanism), the harsh space environment, and the lack of
shielding. Previous research identified catastrophic failures
of CubeSat missions with the hypothesis that the failure
occurred due to I2C bus failure, yet no further risk analysis
was conducted to measure the impact of I2C bus failure on
the overall CubeSat mission success. In this paper, out of ten
identified risks related to the I2C bus, three of them were
identified as high-risk vulnerabilities, six as medium-risk and
one as low-risk. Faulty on-board devices are of particular
concern, as they are highly likely and can lead to serious
consequences on the mission. The paper proposes different
mitigation methods, some that consent with other research

proposals, and other new proposed approaches, which Cube-
Sat mission developers should consider when developing
CubeSat; to eliminate failures and/or reduce their impact on
CubeSat missions. Additionally, the paper also presents a
risk mitigation procedure for CubeSat developers to consider
when utilizing I2C bus in their missions.

REFERENCES
[1] M. Swartwout, ‘‘The first one hundred CubeSats: A statistical look,’’

J. Small Satell., vol. 2, no. 2, pp. 213–233, 2013.
[2] J. Bouwmeester, M. Langer, and E. Gill, ‘‘Survey on the implementation

and reliability of CubeSat electrical bus interfaces,’’ CEAS Space J., vol. 9,
no. 2, pp. 163–173, Jun. 2017.

[3] V. Carvalho and F. L. Kastensmidt, ‘‘Enhancing I2C robustness to soft
errors,’’ in Proc. IEEE 8th Latin Amer. Symp. Circuits Syst. (LASCAS),
Feb. 2017, pp. 1–4.

[4] S. Van Der Linden, J. Bouwmeester, and A. Povolac, ‘‘Design and val-
idation of an innovative data bus architecture for CubeSats,’’ in Proc.
Reinventing Space Conf., 2016, pp. 1–13.

[5] J. Valdez and J. Becker, ‘‘Understanding the I2C bus,’’ Texas Instru-
ments, Dallas, TX, USA, Tech. Rep. SLVA704, 2015. [Online]. Available:
https://www.ti.com/lit/an/slva704/slva704.pdf

[6] R. Arora, ‘‘I2C bus pullup resistor calculation,’’ Texas Instruments, Dallas,
TX, USA, Tech. Rep. SLVA689, 2015.

[7] H. Askari, E. W. H. Eugene, A. N. Nikicio, G. C. Hiang, L. Sha,
and L. H. Choo, ‘‘Software development for Galassia CubeSat—Design,
implementation and in-orbit validation,’’ in Proc. Joint Conf. 31st Int.
Symp. Space Technol. Sci. (ISTS), 2017, pp. 1–8.

[8] M. Ferrando, ‘‘Troubleshooting I2C bus protocol,’’ Texas Instruments,
Dallas, TX, USA, Tech. Rep. SCAA106, 2009.

[9] L. Kepko, L. S. Soto, C. Clagett, B. Azimi, D. Chai, A. Cudmore,
J. Marshall, and J. Lucas, ‘‘Dellingr: Reliability lessons learned from on-
orbit,’’ in Proc. Conf. Small Satell., 2018, pp. 1–14.

[10] C. L. G. Batista, E. Martins, and M. D. F. Mattiello-Francisco, ‘‘On the use
of a failure emulator mechanism at nanosatellite subsystems integration
tests,’’ in Proc. IEEE 19th Latin-Amer. Test Symp. (LATS), Mar. 2018,
pp. 1–6.

[11] F. Ryan, D. Leonard, H. R. L. Robert, and C. Savio, ‘‘I2C bus protocol
controller with fault tolerance,’’ U.S. Patent 6 728 908, Apr. 27, 2004.

[12] B. Patrick, H. Daniel, L. Vinh, W. Kirby, and W. Lee, ‘‘Sys-
tems and methods for correcting errors in I2C bus communications,’’
U.S. Patent 02 400 19A1, Oct. 11, 2007.

[13] System Management Bus (SMBus) Specification Version 2.0, SBS Imple-
menters Forum, Aug. 2000.

[14] J. Bouwmeester and J. Guo, ‘‘Survey of worldwide pico- and nanosatellite
missions, distributions and subsystem technology,’’ Acta Astron., vol. 67,
nos. 7–8, pp. 854–862, 2010.

[15] M. Noca, F. Jordan, N. Steiner, T. Choueiri, F. George, G. Roethlisberger,
N. Scheidegger, H. Peter-Contesse, M. Borgeaud, R. Krpoun, and H. Shea,
‘‘Lessons learned from the first Swiss pico-satellite: SwissCube,’’ in Proc.
23rd Annu. AIAA/USU Conf. Small Satell., 2009, pp. 1–20.

[16] N. Cornejo, J. Bouwmeester, and G. Gaydadjiev, ‘‘Implementation of a
reliable date bus for the Delfi programme,’’ in Proc. 7th Int. Symp. Int.
Acad. Astronaut. (IAA), Berlin, Germany, May 2009, pp. 4–8.

[17] E. Oland, ‘‘The HiNCube student satellite—Lessons learned,’’ in Proc. 7th
Int. Conf. Recent Adv. Space Technol. (RAST), Jun. 2015, pp. 429–432.

[18] G. Manyak and J. M. Bellardo, ‘‘PolySat’s next generation avionics
design,’’ in Proc. IEEE 4th Int. Conf. Space Mission Challenges Inf.
Technol., Aug. 2011, pp. 69–76.

[19] J. Bouwmeester, L. Rotthier, C. Schuurbiers,W.Wieling, G. VanDer Horn,
F. Stelwagen, E. Timmer, andM. Tijssen, ‘‘Preliminary results of the Delfi-
n3Xt mission,’’ in Proc. 4S Symp., Porto Portugal, 2014, pp. 1–15.

[20] B. O. Alnaqbi, ‘‘The first UAEmulti-disciplinary space program,’’ in Proc.
23rd IAA Symp. Small Satell. Missions, 2016, pp. 1–7.

[21] A.-H. Jallad, P. Marpu, Z. A. Aziz, A. Al Marar, and M. Awad,
‘‘MeznSat—A 3U CubeSat for monitoring greenhouse gases using short
wave infra-red spectrometry: Mission concept and analysis,’’ Aerospace,
vol. 6, no. 11, p. 118, Oct. 2019, doi: 10.3390/aerospace6110118.

[22] M. Holliday, Z. Manchester, and D. G. Senesky, ‘‘On-orbit implementa-
tion of discrete isolation schemes for improved reliability of serial com-
munication buses,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 58, no. 4,
pp. 2973–2982, Aug. 2022, doi: 10.1109/TAES.2022.3142713.

34716 VOLUME 11, 2023

http://dx.doi.org/10.3390/aerospace6110118
http://dx.doi.org/10.1109/TAES.2022.3142713

A. Albalooshi et al.: Fault Analysis and Mitigation Techniques of the I2C Bus for Nanosatellite Missions

AMINA ALBALOOSHI was born in Bahrain.
She received the B.Sc. degree in computer engi-
neering from the University of Bahrain, in 2016,
and the M.Sc. degree in engineering systems
and management with the Space Systems and
Technology Center, Khalifa University, in 2021.
From 2018 to 2019, she was a Network Engineer
with Batelco. Since 2019, she has been a Senior
Space Engineer with the National Space Science
Agency, Bahrain. Her research interests include

CubeSat development, CubeSat risk management, and failure detection iso-
lation and recovery.

ABDUL-HALIM M. JALLAD (Member, IEEE)
received the B.Eng. degree from the University of
Kent, U.K., in 2003, and the Ph.D. degree from the
University of Surrey, U.K., in 2009. At the Uni-
versity of Surrey, he was a member of the Surrey
Space Centre, where he was involved in several
research and development projects in collaboration
with Surrey Satellite Technology Ltd., (SSTL),
a World Leader in the development of small satel-
lites. Currently, he is with the Department of Elec-

trical Engineering and the National Space Science and Technology Centre,
United Arab Emirates University. Prior to that, he was the Director of the
Center of Information, Communication andNetworking Education and Inno-
vation (ICONET), American University of Ras Al Khaimah (AURAK). His
research interests include embedded systems, the Internet of Things, system-
on-chip designs, spacecraft on-board data handling, middleware designs,
VLSI designs, and reconfigurable architectures. He received several aca-
demic achievement prizes.

PRASHANTH R. MARPU (Senior Member,
IEEE) received the M.Sc. degree in wireless engi-
neering from the Technical University of Den-
mark, in 2006, and the Ph.D. degree from TU
Freiberg, Germany, in 2009. He was an Asso-
ciate Professor with the Department of Electrical
Engineering and Computer Science, Khalifa Uni-
versity of Science and Technology (KUST), Abu
Dhabi, United Arab Emirates. He was involved in
designing and building small satellites as a project

manager of four satellite projects. He is currently the Technical Lead of Space
Program with Group 42, Abu Dhabi. His research interests include space
systems, remote sensing, and machine learning.

VOLUME 11, 2023 34717

