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ABSTRACT The large-scale coverage of natural gas makes the composition structure and operation mode of
natural gas network more complex, higher requirements are put forward for the effectiveness and accuracy of
state estimation. The existing methods for state estimation of natural gas network with noise are all modeled
after processing the data with noise, leading to the real data being distorted to a certain extent. With that
in mind, a data-driven method is presented in this paper. While solving the problem of state estimation for
natural gas network with measurement noise in the input data, filtering and denoising are unnecessary during
state estimation, retaining the complete information of real data. It avoids destruction of real data induced
by separating noise from measured data owing to different methods and intensities of noise processing.
According to the gas flow characteristic equation of natural gas system, the original problem is converted into
a weighted low-rank approximation problem, the search space is shrunk to an orthogonal complement space.
The selection of initial values is not merely unrestricted but there will be no accumulation and transmission of
iteration error. The effectiveness of the proposed method is demonstrated through simulating 10-node natural
gas network. Compared with the Newton’s method, the data-driven method has superior performance, the
RMSE achieves 0.2268 and the MAPE achieves 1.63%.

INDEX TERMS Data-driven, natural gas network, measurement noise.

I. INTRODUCTION
Natural gas network state estimation is a integral part in nat-
ural gas system modeling. As a typical clean energy, natural
gas is popularized in various industrial fields over time, thus,
it is of great significance to maintain the stable operation
of natural gas system. With the continuous expansion of
the natural gas application scope, the network structure and
operation mode of natural gas system become diversified
and complex. Accordingly, accurate and effective natural gas
system modeling is quite indispensable. More precisely, the
state estimation of natural gas network model is the basis of
natural gas system modeling [1].

For the state estimation of natural gas network, the existing
research focuses on the state estimation in the light of the
physical model of natural gas network, and converts the state
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estimation problem into an optimization problem for solution.
Besides, some numerical methods are employed to linearize
the dynamic equations of gas flow, such as finite difference
method and finite element method. In [2], [3], and [4], the
Least Square (LS) method is utilized to tackle the state
estimation optimization problem. In [5], [6], and [7], state
estimation methods based on optimization for the pressure
and flow changes at the inlet and outlet of the pipeline caused
by the large consumption and increase of natural gas were
presented. Apart from the state estimation based on the opti-
mization, some research focus on the linearization of natural
gas flow equations using finite difference method and finite
element method [8], [9], [10]. Thereinto, a cascade control
algorithm monitoring the pressure of natural gas pipeline on
the basis of state space model was established in [8]. In [9],
a general modeling method of gas transmission pipeline net-
work based on transfer function was developed. All of above
state estimation methods concentrated on pipeline pressure
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and flow. Moreover, some studies took into account the
impacts of temperature change on natural gas flow in the
pipeline. In the process of natural gas transmission, the main
factors giving rise to temperature changes are the changes of
potential energy and kinetic energy, as well as the friction
between natural gas and internal pipe wall. In [11] and [12],
the natural gas temperature was taken as measurements to
estimate the influence of temperature change on the overall
flow of natural gas in the pipeline. Furthermore, a dissipative
finite volume discretization scheme was presented to cope
with the isothermal flow equation of natural gas [13]. All the
above methods mainly concerned the impact of temperature
on natural gas flow, whereas compared with pipeline pressure
and flow, the influence of temperature on natural gas network
is somewhat negligible.

All the methods mentioned above were based on the
transient natural gas flow equation for state estimation.
Nonetheless, as a consequence of the calculation complex-
ity for partial differential equations (PDEs), approximate
calculation is adopted normally, and the estimation result
is inaccurate to a certain extent. Accordingly, they are just
applicable to small-scale and simple natural gas systems,
and measurement errors are neglected. As large-scale and
complex natural gas networks emerge, a series of data-based
methods were gradually developed and exploited to address
the problems of natural gas system state estimation.

In comparison to the method based on natural gas phys-
ical model, the data-based method has wide applicability,
on account of its high computational efficiency and does not
entirely depend on the physical models, and does not even
need to strictly infer the model structure, and it is capable
of estimating natural gas system state accurately as well.
For example, deep learning was utilized to monitor dynamic
state of dynamic state of pipe network in [14]. In [15],
an operator splitting method for simulating isothermal com-
pressible natural gas flow on gas transmission pipeline was
proposed. Although [14] and [15] conquered the complex
modeling problem of physical model, they all ignored the
measurement errors, hence, accurate data was required to
construct effective models. In practice, in the process of
data acquisition, measurement errors result from technology,
equipment and other factors are inevitable. Unfortunately,
the data-based state estimation methods rely heavily on the
characteristics of the data itself, thereby, the accuracy of the
model is determined by both input and output measurements
concurrently. The above methods merely considered the out-
put errors in the modeling process, they may have impacts on
the whole model and affect the accuracy of the model even
further.

In order to tackle the problem of measurement errors, there
exist some methods based on Kalman filter were employed in
state estimation. Their main content was that finite element
numerical approximation method was utilized to deal with
PDEs, meanwhile, measurement errors were concerned in
modeling, including the heuristic distributed filtering method
for high pressure and long distance natural gas network [16],

Low-Rank Kalman filter method based on projection reduc-
tion [17], robust Kalman filter [18], discrete Kalman fil-
ter [19], etc. These Kalman filter based methods separate the
noise from the measurement data via the measurement noise
filtering. Despite the random error partly reduced, as a result
of the different modes and intensity of noise processing, the
real data gained after noise processing may have information
loss or redundancy, which may give rise to the real data
characteristics changes, therefore, it is vulnerable to bad data,
and may be robust to bad data as usual, these will lead to error
superposition and propagation. So far as natural gas networks
state estimation is concerned, in addition to Kalman filter,
there are few other methods concentrating on measurement
errors.

Aiming for effective estimation of natural gas networks
with measurement errors in both input and output, a data-
driven framework combining maximum likelihood estima-
tion with measurement noise in input and weighted low-
rank approximation is proposed to estimate the state of
pressure at node and pipeline flow in natural gas networks.
The gas flow characteristic equation of natural gas system
is transformed into the form of transfer matrix with input
and output ports, and the original problem is constructed
as a weighted low-rank approximation problem, and Naive
Riemannian Stochastic Descent [20] is employed to solve
this optimization problem. In order to investigate the validity
and feasibility of the proposed model, experiment is tested
on 10-node natural gas network. To observe the estimation
results under different noise levels, the noise with different
levels is added to measurement values, and the convergence
under different iteration times is verified at each noise level.
Comparing the estimation results corresponding to different
initial values, it confirms that the presented method is not
affected by the iterative initial values. Then, compared with
the Newton’s method [21], it is validated under different
training samples numbers to illustrate the performance of this
method from different aspects. In difference to the existing
data-based methods, the method in this paper has the follow-
ing contributions:

• A method combined maximum likelihood estimation
and weighted low-rank approximation is presented to
estimate state of natural gas network with measurement
error in both input and output measurements. There are
no needs for filtering and denoising, as well as other
noise processing, these preserve the complete informa-
tion of real data, which is different than other noise
processing methods.

• The original state estimation problem is transformed into
the optimization problem for searching along the tan-
gent direction map in the orthogonal complement space,
which not only shrinks the search space, but determines
the search direction different than the random descent
direction, so that the initial value have little influence
on the result during iteration, one can gain estimated
parameters without complex calculation.
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FIGURE 1. Schematic diagram of natural gas pipeline network.

• The state estimation parameters are capable of updating
in time according to the changes of network structure.

The remainder of the paper is organized as follows: Section II
provides the problem statement for a natural gas network.
Section III presents the state estimation model of natural
gas network with measurement errors and the related opti-
mization problem solution algorithm. Section IV validates
the effectiveness and accuracy of the proposed method via
different experiments. Section V concludes the paper.

II. PROBLEM STATEMENTS
The natural gas network is mainly composed of pipelines,
nodes and compressors. Typically, compressors merely reside
in typical large-scale natural gas networks, while compres-
sors are commonly not taken into account in conventional nat-
ural gas networks with relatively stable pressure and gas mass
flow. A schematic diagram of natural gas pipeline network is
shown in Figure 1. Thereinto, nodes are connected with the
demand side and the supply side respectively. Besides, nodes
are connected through natural gas pipelines, and the natural
gas flow in the pipeline is supplied to the demand side through
nodes.

Normally, it is assumed that the temperature of natural
gas flow in the pipeline is equal to the ambient temperature.
In practice, as a result of the natural gas load and supply
are in constant change, stable operation is hard to maintain,
consequently, the simplified mass conservation and momen-
tum conservation equations are employed to depict dynamic
characteristics of natural gas systems [22], [23]. These equa-
tions express the transient behaviors of natural gas flow in the
pipeline, and the dynamic natural gas system can be described
as:

∂ (π)

∂t
+
ZRT
S

·
∂
(
Ġ
)

∂L
= 0 (1a)

∂ (π)

∂L
+
f · ZRT · Ġ

∣∣Ġ∣∣
2dS2π

= 0 (1b)

where π is the pressure, t is the time and t = 1, . . . ,N ,Z
is the gas compressibility factor, R denotes the ideal gas
constant, T refers to the average temperature of natural gas in
pipeline, f is the friction coefficient, L is the pipeline length,
S represents the cross section area of pipelines, d is the pipe

inner diameter, Ġ is the natural gas mass flow, ∂ (π)
/
∂L and

∂
(
Ġ
)/

∂L are the friction losses term and gas inertia term,
respectively.

Since the above physical model is nonlinear, it is elaborate
to directly calculate the PDEs. Thereby, discretizing the PDEs
is imperative, here, the finite difference method is utilized
to convert the PDEs into ordinary differential equations.
We suppose that the mass flow direction does not change in
the natural gas pipeline, and the time step is 1t = Tn

/
N , the

natural gas pipeline is divided into M sections, namely, the
spatial step is 1L = L

/
M , then (1) could be converted into:

1π t
i+1 − 1π t−1

i+1

1t
+
ZRT
S

·
1Ġti+1 − 1Ġti

1L
= 0 (2a)

1π t
i+1 − 1π t

i

1L
+
f · ZRT · Ġst
2dS2πst

·
1Ġti+1 + 1Ġti

2
= 0 (2b)

t = 1, . . . ,N , i = 1, . . . ,M − 1 where 1π t
i+1 and 1Ġti+1

refer to the pressure and mass flow in the pipeline in length
of i + 1 at time t , respectively. Similarly, 1π t

i and 1Ġti are
denote the pressure and gasmass flow in the pipeline in length
of i at time t, πst and Ġst are pressure and mass flow during
steady state operation. To develop the relationship between
pressure and gas flow at the pipeline inlet and pipeline outlet,
(2) is transformed into the form of transfer matrix including
input and output variables. Thereinto, input variables consist
of pressure 1π t−1

i+1 in the pipeline in length of i + 1 at time
t − 1, pressure 1π t

i in the pipeline in length of i at time t ,
mass flow1Ġti in the pipe in length of i at time t , pressure πst
and mass flow Ġst during steady state operation. The output
variables comprise of pressure and mass flow at the pipe in
length of i+ 1 at time t , i.e., 1π t

i+1 and 1Ġti+1. A is the state
matrix parameter. Thus, equation (2) is reformed as:[

1π t
i+1

1Ġti+1

]
= A

 1π t−1
i+1

1t +
ZRT ·1Ġti
S·1L

1π t
i

1L −
f ·ZRT ·Ġst ·1Ġti

4dS2πst

 (3)

It is note worthy that in the flow of natural gas, we assume that
the gas density is constant, in addition to the transfer matrix
conditions, natural gas mass flow at the node should satisfy
the following mass conservation constraint:∑

i→

Ġi,j −
∑
→i

Ġk,i + Ġloadi − Ġinjecti = 0 (4)

where
∑
i→
Ġi,j represents the sum of natural gas flows from

node i, Ġloadi is the natural gas load at node i, Ġinjecti is the
natural gas injection at node i.

∑
→i
Ġk,i means that the natural

gas flows into node i from other nodes,
For a natural gas network with Nn nodes, the transmission

of natural gas in the pipeline is a relatively stable and slow
dynamic process, and the natural gas flow characteristics of
each section in a pipeline are similar. Therefore, the length of
the pipeline itself can be approximately regarded as the spatial
division step, which is convenient for the study of the whole
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gas network, and the transfer matrix in (3) is formulated as:[
1π t

j,L
1Ġtj,L

]
= A

 1π t−1
j,L

1t +
ZRT ·1Ġti,0
S·Li,j

1π t
i,0

Li,j
−

f ·ZRT ·Ġst ·1Ġti,0
4dS2πst

 ,

i, j ∈ {1, . . . ,Nn} (5)

where Li,j is the pipeline length between node i and node j,
1π t

j,L and 1Ġtj,L are pipeline outlet pressure and outlet gas
flow at node j at time t , respectively. 1π t−1

j,L is the pipeline
outlet pressure at node j at time t − 1. 1π t

i,0 and 1Ġti,0
are pipeline inlet pressure and inlet flow at node i at time
t , respectively. The state matrix parameter is represented as
(6). The transfer matrix develops the relationship between
the input state variables and the output state variables, and
clarifies the relationship among the pressure at node and gas
mass flow at the inlet and outlet of the pipeline even further.
The elements A0, and A11,A12, A21,A22 in A are stated as:

A =

[
A11 A12
A21 A22

]
(6a)

A11 = f · Ġst · 1t · L2i,j
/
A0

A12 = −4d · S · πst · 1t · Li,j
/
A0

A21 = −4d · S2 · πst · 1t · Li,j
/

(ZRT · A0)

A22 = 4d · S2 · πst · L2i,j
/

(ZRT · A0)

(6b)

A0 = f · ĠstL2i,j − 4d · S · πst · 1t (6c)

Subsequently, we replace (5) with (7), (8), (9), and (10) equiv-
alently, namely, the pressure 1π t

j,L and mass flow 1Ġtj,L at
the outlet of the pipeline are represented by the output vector
Y . Akin to Y , the input vector X consists of the pressure and
gas flow at pipeline inlet, pipeline outlet pressure 1π t−1

j,L at
the previous time, physical quantities related to natural gas
transmission in the pipeline, pressure and mass flow in steady
state operation, i.e., πst and Ġst . These variables are repre-
sented via bi,j and ci,j as below, and all physical quantities
with respect to the dynamic characteristics of natural gas are
retained:

Y = AX (7)

Y =

[
1π t

j,L , 1Ġ
t
j,L

]T
(8)

X =
[
bi,j, ci,j

]T (9a)

bi,j =
1π t−1

j,L

1t
+
ZRT · 1Ġti,0
S · Li,j

(9b)

ci,j =
1π t

i,0

Li,j
−
f · ZRT · Ġst · 1Ġti,0

4d · S2 · πst
(9c)

X =[
1π t−1

j,L

1t
+
ZRT · 1Ġti,0
S · Li,j

,
1π t

i,0

Li,j
−
f · ZRT · Ġst · 1Ġti,0

4dS2πst

]T
(10)

The discretization of the PDEs and their transformation
into the form of transfer matrix clarify the parameters and
physical quantities that need to be estimated in natural gas
networks, and the data-driven state estimation problem is
summarized as:

1) Input: variable sets
{
X t
}
and

{
Y t
}
constructed from

historical measurement data.
2) Gain: the accurate parameters of the state matrix param-

eter Â and the real values covered by the measurement errors
in the measurement data.

III. METHODOLOGY
In the natural gas network, the historical data such as pres-
sure at node and gas mass flow are obtained through direct
measurement. Nevertheless, in the practical context, certain
measurement errors will inevitably occur during the mea-
surement process, and the measured values containing errors
will cover the characteristics of the real data. To reduce the
impacts of measurement errors on state estimation, a data-
driven model considering measurement errors is needed to
accurately estimate and detect the natural gas systems.

A. MODEL WITH MEASUREMENT NOISE
In the state estimation, the pressure at node and gas mass flow
are taken as direct measurements, involving the real values
and measurement errors. We assume that the measurement
errors are independent and Gaussian distributed, they can be
defined as:

1π t
j.L = 1π̃ t

j,L + ε1π t
j,L

(11a)

1Ġtj,L = 1 ˜̇Gtj,L + ε1Ġtj,L
(11b)

1π t
i,0 = 1π̃ t

i,0 + ε1π t
i,0

(11c)

1Ġti,0 = 1 ˜̇Gti,0 + ε1Ġti,0
(11d)

where1π̃ t
j,L , 1

˜̇Gtj,L , 1π̃ t
i,0, and1 ˜̇Gti,0 are real values, ε1π t

j,L
,

ε1Ġtj,L
, ε1π t

i,0
, ε1Ġti,0

are the measurement errors correspond-
ing to the real values. Since the direct measurements contain
measurement errors, the input state variables and output state
variables constructed from the above direct measurements
still contain measurement errors. Furthermore, the covariance
matrix of their corresponding indirect measurement errors are
gained from the covariance matrix of direct measurements.
Hence, the indirect measurement errors are Gaussian dis-
tributed with zero mean, which are stated as:

Y = Ỹ + εY (12a)

εY ∼ N (0, 6Y ) (12b)

X = X̃ + εX (13a)

εX ∼ N (0, 6X ) (13b)

where Ỹ and X̃ are real values, εY and εX are indirect mea-
surement errors.
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B. MAXIMUM LIKELIHOOD ESTIMATION
To seek the optimum model parameters, the estimation prob-
lem with input and output noise is formulated as a maximum
likelihood estimation problem, and the relationship among
the indirect measurements

{
X t
}
,
{
Y t
}
, and the state matrix

parameter A is established through the probability density
function as follow:

Â = argmax
A

N∑
t=1

logP
(
X t ,Y t |A

)
(14)

Nevertheless, according to subsection III-A that the indirect
measurement data sets contain noise and can not represent the
characteristics of real values. Therefore, it is hard to acquire
real and effective results via application of them for direct
estimation. To combat the problem, the real values estimation
is required first. We suppose the input and output errors are
independent, and the maximum likelihood estimation prob-
lem corresponding to the real values X̃ and Ỹ is stated as:

L = logP
({
X t
}
,
{
Y t
} ∣∣∣{X̃ t} ,

{
Ỹ t
})

=

N∑
t=1

logP
(
X t ,Y t

∣∣∣X̃ t , Ỹ t ) (15a)

subject to :

logP
(
X t ,Y t

∣∣∣X̃ t , Ỹ t )
= logP

(
X t
∣∣∣X̃ t )+ logP

(
Y t
∣∣∣Ỹ t )

= −
1
2

(
X t − X̃ t

)T
6−1
X

(
X t − X̃ t

)
−

1
2

(
Y t − Ỹ t

)T
6−1
Y

(
Y t − Ỹ t

)
+ log det (2π · 6X )−

1
2 + log det (2π · 6Y )−

1
2 (15b)

X t = X̃ t + εX t (15c)

Y t = Ỹ t + εY t (15d)

Ỹ t = A · X̃ t (15e)

where (15b) is the log probability density after expansion of
(15a), while real values X̃ and Ỹ re not available. As a con-
sequence, (15) can not be calculated directly, in the interests
of approximation of real values, the following calculation is
required:(

X̃ t , Ỹ t
)

= argmax
X̂ ,Ŷ

logP
(
X t ,Y t

∣∣∣X̂ t , Ŷ t ) (16a)

subject to: Ŷ t = A · X̂ t (16b)

where X̂ t and Ŷ t are estimated values close to the real val-
ues. After obtaining the estimated values of the real values,
we transform the original problem into:

P
(
X t ,Y t |A

)
= P

(
X t ,Y t

∣∣∣X̃ t , Ỹ t ) (17)

According to (16) and (17), we rewrite the original state esti-
mation problem in (14) as the following problem for solving

the optimal estimation values of the real values:

max
X̂ t ,Ŷ t ,A

N∑
t=1

logP
(
X t ,Y t

∣∣∣X̂ t , Ŷ t ) (18)

In the presence of noise, if the estimated values of the cal-
culated real values are optimum, it manifests that the cor-
responding estimation parameters are also the best. By this
means, seeking for the optimal estimation values of the real
values can indirectly infer the corresponding optimal estima-
tion parameters.

C. CONVERTION OF MAXIMUM LIKELIHOOD ESTIMATION
INTO WEIGHTED LOW-RANK APPROXIMATION
From subsection III-B, it can be deduced that the optimal
estimation parameters can be further obtained via the search
of the best estimation values of the real values. Nevertheless,
according to the existing information, the log probability
density in (16) is hardly to calculate directly. Consequently,
it is necessary to transform the estimation problem into a
solvable weighted low-rank approximation problem. Such
problem transformation and reasoning compensate for the
deficiency that the estimation results can not be calculated
directly in practice. After the input state variables are explic-
itly defined in subsection III-B, the measurement errors of the
corresponding input state variables are stated as:

εbi,j = bi,j − b̃i,j

=
1π t−1

j,L

1t
+
ZRT · 1Ġti,0
S · Li,j

−

1π̃ t−1
j,L

1t
+
ZRT · 1 ˜̇Gti,0
S · Li,j


= f1

(
ε
1π t−1

j,L
, ε1Ġti,0

; 1π t−1
j,L , 1Ġti,0

)
(19)

εci,j = ci,j − c̃i,j

=
1π t

i,0

Li,j
−
f · ZRT · Ġst · 1Ġti,0

4d · S2 · πst

−

(
1π t

i,0

Li,j
−
f · ZRT · Ġst · 1Ġti,0

4d · S2 · πst

)
= f2

(
ε1π t

i,0
, ε1Ġti,0

; 1π t
i,0, 1Ġ

t
i,0

)
(20)

where measurement errors εbi,j , εci,j between direct mea-
surements bi,j, ci,j, and their real values b̃i,j, c̃i,j are lin-
ear. The f1 (·) , f2 (·) are linear combinations with regard to[
1π t−1

j,L , 1Gti,0
]
and

[
1π t

i,0, 1G
t
i,0

]
, respectively. Thus, one

can transform (18) into a weighted low-rank approximation
problem [24]:

min
X̂ t ,Ŷ t ,A

N∑
t=1

∥∥∥[X t ,Y t]−

[
X̂ t , Ŷ t

]∥∥∥2
6−1

(21a)

subject to: Ŷ t = A · X̂ t , (21b)∥∥∥[X t ,Y t]−

[
X̂ t , Ŷ t

]∥∥∥2
6−1

=

(
X t − X̂ t

)T
6−1
X

(
X t − X̂ t

)
+

(
Y t − Ŷ t

)T
6−1
Y

(
Y t − Ŷ t

)
(21c)
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6 =



σ 2
εX1

σ 2
εY1

. . .

σ 2
εXN

σ 2
εYN

 (21d)

where
[
X t ,Y t

]
is an extended matrix involving X t and Y t ,[

X̂ t , Ŷ t
]
is the matrix of estimated values corresponding

to
[
X t ,Y t

]
. 6 is the covariance matrix composed of 6X and

6Y , including the measurement error variances σ 2
εX1

and σ 2
εY1

of X and Y , ∥·∥2
6−1 is the weighted matrix norm.

D. SOLUTION OF THE WEIGHTED LOW-RANK
APPROXIMATION PROBLEM
Aiming for the weighted low-rank approximation problem,
most of the existing methods are based on eigenvalues
extraction and alternating projection. These methods have
high computational complexity and will be apt to fall into
local optimization. Hence, the Naive Riemannian Stochastic
Descent method [20] is exploited to approximate the low-
rank matrix with noise in this paper. It is a gradual opti-
mization method based on the retraction for the low-rank
matrix manifold, which is in a position to map from the vector
space to the manifold. And the computational complexity is
not merely reduced but the search space is greatly shrunk in
the mapping process. Finally, the global optimal solution is
a submanifold of the Riemannian manifold. In the iteration
process, determining the gradient of an objective function on
the manifold is required. Thereafter, the search is carried out
by constantly updating the gradient step size and projecting
the gradient back to the manifold of the low-rank matrix,
and the retracted gradient flow operator is employed to seek
the optimum solution. The process of seeking the optimum
solution is to take the search direction as the tangent vector
of the manifold and implement the next iteration according to
the tangent mapping.

Substituting the extended matrix composed of X t and Y t in
subsection III-C for Z t , and the optimization problem in (21)
is reformed as (23), the weighted low-rank approximation
term is represented as V (Z ), Z denotes the data set

{
Z t
}

composed of
{
X t
}
and

{
Y t
}
, the definitions are as follows:[

X t ,Y t
]

= Z t (22)

min
rank(Z )=r

V (Z ) (23a)

V (Z ) =

∥∥∥Ẑ − Z
∥∥∥2

6−1
(23b)

where Ẑ refers to the estimated value data set of the extended
matrix

{[
X̂ t , Ŷ t

]}
, ∥·∥2

6−1 is the weighted matrix norm, 6

is composed of measurement error variances σ 2
εX1

and σ 2
εY1

corresponding to X and Y in (21d), Z satisfies the rank
constraint rank (Z ) = r .

After the weighted low-rank approximation term V (Z )
related to X t and Y t is obtained, the gradient ∇ of V (Z ) can
be calculated as:

∇ =
∂V (Z )

∂Z
=

∂tr
[(
Ẑ − Z

)T
6−1

(
Ẑ − Z

)]
∂Z

= −26−1
(
Ẑ − Z

)
(24)

Then, the gradient matrix G is drawn from iteration step size:

G = −α · ∇, α > 0 (25)

where iteration step size α is a positive constant.
Afterward, we take the product of two non-unique full rank

matrices Z1 and Z2 as the initial matrix Ẑ [0]:

Ẑ [0]
= Z1ZT

2 ,Z1 ∈ Rm×r ,Z2 ∈ Rn×r (26)

Despite the selection of initial matrix is not unique, as the
retracting gradient flow operator searches for optimization,
whenever the selected matrix meets the rank constraint, it is
capable of approaching the target value along the exact direc-
tion under the guidance of the iteration rules such as the
orthogonal complement space of the matrix and the mapping
of the matrix along the tangent direction. Hence, there is no
specific requirement for the choice of initial values. Then,
the pseudo-inverse matrices Z+

1 and Z+

2 of Z1 and Z2 are
calculated as:

Z+

1 =

(
ZT
1 Z1

)−1
ZT
1 ,Z+

1 ∈ = Rr×m (27)

Z+

2 =

(
ZT
2 Z2

)−1
ZT
2 ,Z+

2 ∈ = Rr×n (28)

The orthogonal complements of Z1 and Z2 are denoted
as Z1,⊥ and Z2,⊥, respectively. The definition of orthogonal
complement Z1,⊥ is that there exists a matrix Z1,⊥ such
that ZT

1,⊥Z1 = 0, and Z2,⊥ is similar in attribute to Z1,⊥.
The pseudo-inverse matrix and orthogonal complements are
applied to map the matrix to a orthogonal space, and the
orthogonal space matrices are calculated:

B = Z+

1 GZ
+T
2 ,B ∈ Rr×r (29)

B1 = ZT
2,⊥G

TZ+T
1 ,B1 ∈ R(n−r)×r (30)

B2 = ZT
1,⊥GZ

+T
2 ,B2 ∈ R(m−r)×r (31)

According to the orthogonal space matrix, the mappings
C1 and C2 along the tangent direction are formulated:

C1 = Z1

(
Ir +

1
2
B−

1
8
B2
)

+ Z1,⊥B2

(
Ir −

1
2
B
)

,

C1 ∈ Rm×r (32)

C2 = Z2

(
Ir +

1
2
BT −

1
8

(
BT
)2)

+ Z2,⊥B1

(
Ir −

1
2
BT
)

,

C2 ∈ Rn×r (33)

Updating Ẑ by double mapping C1 and C2 along the tangent
direction:

Ẑ [k]
= C1CT

2 (34)
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TABLE 1. Natural gas operating parameters.

TABLE 2. Node parameters.

The constraint rules such as orthogonal complement space
and along tangent direction ensure a stable iteration search
method, while the general iteration descent method has only
sole iteration constraint containing step size and direction.
The termination condition of iteration is set as the relative
errors of the matrix is less than the termination thresholdε:∥∥∥Ẑ [k+1] − Ẑ [k]

∥∥∥
F∥∥∥Ẑ [k]

∥∥∥
F

< ε, ε > 0 (35)

By means of iteration calculation, the optimum estimation
of the real value Z is gained, and the Total Least Square (TLS)
method is employed in the calculation of closed solution to
the estimation matrix.

IV. EXPERIMENTAL RESULTS
In this section, the 10-node natural gas network is selected
to verify the validity and feasibility of our method. The
estimation results under different noise levels are observed
by adding the Gaussian noise with different levels to the
measurements. Moreover, the convergence process under dif-
ferent iteration times is provided. Thereafter, comparing the
data-drivenmethodwith the Newton’smethod and simulation
results from PDEs.

The structure of 10-node natural gas network is shown in
Figure 2. Two nodes in the natural gas network are connected
with the power system, in which node 1 is the source node, the
natural gas injection of this node is constant and the pressure
at node 1 is constant as well. Nodes 5, 6, 9, and 10 are
sink nodes, where nodes 5 and 10 are connected to the fixed
natural gas loads, and nodes 6 and 9 are connected to Gas-
fired Generator 2 and Gas-fired Generator 1, respectively.
The electric energy generated by the gas-fired generators is
input into the power system on the right.

The parameters of pipeline, nodes and the natural gas
network and are shown in Tables 1, 2, and 3, respectively.
Thereinto, Table 1 provides the values of standard operating
parameters Z ,R,T of natural gas. Table 2 shows the natural
gas injection volume Ġst and pressureπst at some nodes of the

system in steady state. Table 3 gives the natural gas network
parameters, including different pipeline physical parameters
and gas mass flow values in each pipeline.

A. PARAMETER ESTIMATION WITH DIFFERENT NOISE
LEVELS
For the sake of verification of effectiveness for the newmodel
under different noise levels, the measurement noise is gener-
ated by signal to noise ratio (SNR), and the measurement val-
ues containing noise are utilized for experiments. We assume
that the measurement noise is Gaussian distributed with zero
mean, i.e., εX ∼ N (0, 6X ), εY ∼ N (0, 6Y ). 6X , 6Y
are the variance matrices of measurement errorsεX and εY ,
respectively. The measurement noise levels are set as 50 dB,
45 dB, and 40 dB respectively, and the termination threshold
is set as ε = 0.001. These three different levels of noise are
added to the measurement data respectively. The mean square
error (MSE) is used to quantify the errors of the estimated
parameters, it can be formulated as:

MSE =
1
mn

∥∥∥A− Â
∥∥∥2
F

(36)

wherem and n are the dimensions of matrix. For themeasured
data sets X and Y under different noise levels, 1000 training
samples are taken for experiments, then the closed solution of
the state matrix Â is drawn from the total least square method,
and the results of experiment are given in Figure 3.

As seen in Figure 3, we explicitly observe that the errors
of the estimation parameters matrix gradually decrease with
the increase of the iterations number.

After about 30 iterations, the estimation errors approach
asymptotic values, and the accuracy decreases as the increase
of the noise level. When the noise level is 50 dB, the estima-
tion errors become the smallest and the convergence speed
is the fastest. The estimation errors in the 40 dB noise level
are the largest compared to that in noise levels of 45 dB and
50 dB, but the convergence is relatively stable for various
noise levels. Besides, it doesn’t take too many iterations to
keep errors at a low level.

B. CONVERGENCE OF DIFFERENT NUMBERS OF
ITERATION
In addition to the estimation errors, the convergence of iter-
ations is discussed as well. The convergence of the proposed
method is evaluated via the calculation of relative errors
for the new matrix after each iteration under different noise
levels. More specifically, during the calculation, the relative
error

∥∥∥Ẑ [k+1] − Ẑ [k]
∥∥∥
F

/∥∥∥Ẑ [k]
∥∥∥
F
is taken as a measurement

standard of the errors in the iteration process, and the termi-
nation threshold is set as ε = 0.001, this is the termination
condition of the iteration.

In Figure 4, we can intuitively see that during the process
of continuous iteration, the relative errors of Ẑ incrementally
decrease, exhibiting an alternative changes trend. As the num-
ber of iterations increases, the relative errors vary between
fast and slow, and tend to be stable and reach the asymptotic

30894 VOLUME 11, 2023



Y. Huang et al.: Data-Driven State Estimation Framework for Natural Gas Networks With Measurement Noise

FIGURE 2. A 10-node natural gas network.

FIGURE 3. Performance for different numbers of iterations with different
noise levels.

FIGURE 4. Iterations versus relative error.

values eventually. When the noise level is 50 dB, the con-
vergence speed is significantly faster than that at 45 dB and
40 dB. Nonetheless, even though the noise level is high, the
number of iterations required to achieve convergence is fewer,
and it can still converge rapidly, yet the convergence speed
of noise level at 45 dB and that of noise level at 40 dB do
not change visibly in the process of later iterations, thus the
convergence speed does not always increase as the noise level
decreases.

C. TRUE VALUES ESTIMATION WITH MEASUREMENT
NOISE
In the interests of further validation for effectiveness of the
proposed method, the data-driven method is compared with
the Newton’s method, and tested in the 10-node natural gas
network in Figure 1 to observe the response change of pres-
sure at nodes under 50 dB noise level. In this paper,MATLAB
is used to simulate the dynamic process of pressure in the 10-
node natural gas network, and the performance of the pro-
posed state estimation method is illustrated based on the sim-
ulation results. MATLAB/Simulink can effectively simulate
and analyze the operation of the systems. In [25], MATLAB
was used to simulate the hybrid electricity-gas systems to ana-
lyze the role of micro-turbines in the electricity-gas systems.
In [26], the dynamic behavior of gas pipe network was sim-
ulated via MATLAB/Simulink, and compared the simulation
results with the original model, proving that the MATLAB
tool is reliable. In the 10-node natural gas network, when
the natural gas mass flow demand of the gas-fired generators
changes, the pressure at node 6 and node 9 connected to
the gas-fired generators will change with the fluctuation of
natural gas mass flow. Figure 5 gives the estimated results
of two nodes with respect to the pressure change, thereinto,
when the gas demand of Gas-fired Generator 2 increases by
30%, the pressure at node 6 drops by 15.4 kPa. At first, the
pressure drops dramatically, and then incrementally tends to
be stable, reaches the steady state in the last, as shown in
Figure 5 (a). We can visibly see that the data-driven method
gives an estimation result closer to the result from simulation
than the Newton’s method.

Additionally, even if the pressure change is continuous,
the data-driven method is able to provide accurate estimation
results. As seen in Figure 2, when the natural gas demand
of Gas-fired Generator 1 exhibits a continuous change, the
pressure at node 9 changes accordingly with the fluctuation of
natural gas, therefore the pressure change is also continuous.
On the other hand, the pressure at node 9 is estimated, and
the relevant results are given in Figure 5 (b). Apparently,
there is an obvious deviation between the Newton’s method
and the simulation result from PDEs. The data-driven method

VOLUME 11, 2023 30895



Y. Huang et al.: Data-Driven State Estimation Framework for Natural Gas Networks With Measurement Noise

FIGURE 5. Comparison of estimated and simulated results, (a) Pressure at node 6, (b) Pressure at node 9.

TABLE 3. 10-node natural gas network parameters.

conquers deficiency of large deviation and can accurately
track the pressure change trend at node, this is in stark contrast
to the Newton’s method. Table 4 provides the RMSE and
MAPE of the data-driven method and Newton’s method.
It can be seen that the RMSE and MAPE of the data-driven
method are less than those of the Newton’s method. The
RMSE of data-driven method achieves 0.2268 and theMAPE
reaches 1.63%.

It turns out that the data-driven method can accurately cap-
ture the characteristics of data change whether the pressure at
node changes in a single step or continuously, since in the
data-driven approach, the orthogonal complement space of
the matrix and the mapping of the matrix along the tangent
direction together constitute the iteration descent condition,
which restricts the iteration process in a variety of aspects to
ensure the stability and accuracy in the descent process. It is
worth noting that the noise comes from themeasurement error
in the actual environment and is not induced by the change of
the internal operation mode of the system.

In Figure 6, the relationship between the initial errors
before iteration and the final errors after iteration is given,

FIGURE 6. The relationship between the errors before iteration and the
errors after iteration.

it is obvious that in spite of different choices of initial values
result in different initial errors, the final errors after iterations
are almost the same as that in the same noise level. Thus,
it sufficiently indicates that the initial error has little influence
on the final error result, and the final error is mainly affected
by the noise level. This is mainly due to the relatively stable
iterative process of the Naive Riemannian Stochastic Descent
method, which searches by constantly updating the gradient
step size and projecting the gradient back to the manifold
of the low rank matrix, and uses the retracted gradient flow
operator to find the best. In difference to the model in this
paper, the Newton’s method is sensitive to the selection of
initial values. If the selection of initial values is unreason-
able, it is apt to fall into local optimum. Furthermore, the
Newton’s method calculates in sole space, only depends on
the descent direction to find the optimum, and lacks more
auxiliary conditions to plan and guide the optimal descent
path, consequently, the errors generated after each iteration is
larger than that of the data-driven method. Meanwhile, in the
iteration process, as the increase of the number of iterations,
the errors may inevitably accumulate and transmit, thereby
the errors of estimation results for Newton’s method are
somewhat large. In Table 5, the execution time, advantages,
and disadvantages of the data-driven method and Newton’s
method are compared. The execute time of the two methods
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TABLE 4. Results comparison of the data-driven method and the newton’s method.

TABLE 5. Performance comparison of the data-driven method and the newton’s method.

FIGURE 7. Performance under different numbers of training samples.

is basically the same. The data based method does not require
filtering and denoising, and retains the information of the
real data. The selection of the initial value has a relatively
small impact on the results. The Newton’s method needs to
preprocess the data to reduce noise, and the selection of initial
value will affect the results after iterations.

D. PARAMETER ESTIMATION WITH DIFFERENT NUMBERS
OF TRAINING SAMPLES
Although the noise level could directly affect the accuracy
of the estimation results, the number of training samples
will affect the results to a certain extent. In order to observe
the relationship between the number of training samples and
the estimation results, the noise level at 50 dB is chosen
to conduct experiments under different numbers of training
samples, and then the statistical results of 50 independent
repeated experiments are given, the detailed results are shown
in Figure 7.

We can intuitively and explicitly observe that the dif-
ference between the upper and lower limits of the errors

of the data-driven method in this paper is small, and the
errors incrementally decrease as the increase of the number
of training samples. During this period, despite there exist
fluctuates owing to the noise randomness, the overall errors
level exhibits a downward trend, and the quartile is constantly
close to the median, thus the errors range maintains a ongoing
and stable narrowing trend.

In comparison to the proposed model, the errors range of
Newton’smethod are somewhat larger, there aremore outliers
and the performance is unstable. The overall errors decrease
as the increase of the number of samples, whereas no matter
whether the number of training samples is large or small, the
errors of Newton’s method are still larger than that of data-
driven method. Meanwhile, the deviation between the upper
and lower limits caused by Newton’s method is too large to
provide reliable performance, therefore, the proposed model
outperforms Newton’s method and has more superiority.

V. CONCLUSION
As the application scope of natural gas extends constantly,
effectively and accurately mastering the operation state of
natural gas system is a crucial content of natural gas system
operation planning. Taking the gas mass flow characteristics
of natural gas system into account, a data-driven method is
developed to address the problem of state estimation for natu-
ral gas network with measurement noise. By the combination
of maximum likelihood estimation and weighted low-rank
approximation, the state estimation problem is convert into
a weighted low-rank approximation optimization problem.
In the whole state estimation process, there are no needs
for filtering, denoising, and special processing of noise, this
retains the complete information of real data. The Naive Rie-
mannian Stochastic Descent method is employed to handle
the problem. The search space is shrunk to an orthogonal
complement space, and the search direction is determined as
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a mapping along the tangent direction, not only the search
range is reduced, but also the selection of initial value has
little influence on the iteration results. The parameters of state
estimation is capable of updating in time according to the
changes of network structure. The performance is verified in
a 10-node natural gas network, the experiment results imply
that the data-driven model is capable of providing accurate
and reliable state estimation results under different noise
levels, the abilities of the proposedmodel to effectively depict
the system state and to be less affected by the measurement
errors are validated. The data-driven method is superior to the
Newton’s method, with RMSE achieving 0.2268 and MAPE
achieving 1.63%.

In the future work, the distributed computing method for
large-scale natural gas networks will be explored in detail.
Moreover, the impacts of uncertain data (i.e., interval data,
incomplete data, and so forth.) on state estimation are worthy
of further research.
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