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ABSTRACT Multi-vehicle tracking is one of the most crucial components of an intelligent transportation
system (ITS). However, when it comes to busy traffic flow, tracking targets robustly becomes more
problematic due to occlusion, motion blur, high appearance similarity, etc. To achieve accurate and efficient
tracking performance, we present a novel multi-vehicle tracking method based on the enhanced detection
model and joint scoring strategy. Specifically, the former aims to (1) adopt lightweight yet efficient
YOLOv5s to improve detection accuracy and running speed, and (2) incorporate the CBAM and transformer
encoder modules into the detection model to generate the refined features for the target localization. The
Latter preferentially provides high-confidence detections and tracklets for subsequent data association,
significantly reducing the number of identity switches and redundant vehicle trajectories caused by mutual
occlusion, similar object interference, etc. We evaluated the proposed multivehicle tracking approach on
the UA-DETRAC vehicle tracking dataset and demonstrated its superior capabilities through intensive
comparison and analysis. Moreover, our proposed method runs at 24.4 FPS on a single GPU and meets
the real-time requirement.

INDEX TERMS Multi-vehicle tracking, YOLOv5s, transformer encoder, joint scoring strategy, high
confidence.

I. INTRODUCTION
Intelligent transportation system (ITS), which aims to
consistently and accurately track numerous moving vehicles
in realistic traffic scenes, has been one of the most important
research areas [1], [2]. A robust and reliable ITS plays a vital
role in numerous applications, such as visual surveillance,
autonomous driving, and traffic flow estimation [3], [4], [5].
Multi-object tracking (MOT) based on vision, which gen-
erally follows the tracking-by-detection paradigm, has been
a critical technique for ITS. Specifically, the detection
stage is performed to localize target locations frame-by-
frame. Then the tracking stage is carried out to associate
these detection results for generating target trajectories
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across video frames [6]. Thus far, designing a robust MOT
approach for ITS is still challenging. As illustrated in Fig. 1,
the tracker undergoes the following challenging factors:
occlusion, motion blur, viewpoint change, etc. This paper
aims to alleviate the tracking deviation caused by unknown
challenges in real-world traffic scenarios.

With the noticeable progress of deep learning, a huge
variety of deep neural network-based trackers have been
proposed for MOT tasks [7]. Among them, one-shot MOT
methods, which simultaneously accomplish target detection
and identity embedding re-identification [8], have begun to
gain significant attention. Considering that one-short MOT
approaches have the advantages of high reliability and low
computation cost, they are very suitable for multi-vehicle
tracking in practical traffic scenarios. As an outstanding
representative of one-short MOT, the joint detection and
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FIGURE 1. Examples of challenging factors in real-world multivehicle
tracking. (a) Occlusion. (b) Motion blur. (c) Similar object interference.
(d) Varying viewpoints.

FIGURE 2. The false and missed detection results of JDE.

embedding (JDE) [9] develop a shared model that explicitly
learns target detection and appearance embedding. Compared
to the recent progress on MOT, the computation overhead
of JDE is substantially decreased, which achieves real-time
multiple target tracking.

Although the performance of JDE is superior, three main
issues must be resolved. First, the JDE tracker may be
confused by high appearance similarity among vehicles and
can not easy to detect vehicles with small sizes, thereby
inevitably increasing the number of false detections and
missed detections over time, as illustrated in Fig. 2. Second,
some extracted appearance and motion features, which may
be redundant, cannot help to localize targets. Meanwhile, the
JDE is prone to drift when encountering similar distractors
(e.g., billboards, traffic lights). Third, frequent occlusion
and interaction among vehicles in crowded traffic scenes
may produce numerous identity switches, resulting in overall
performance deterioration.

To improve the tracking accuracy of the JDE while
maintaining an acceptable frame rate in real-world traffic
scenarios, we present a novel multi-vehicle tracking approach
and provide promising solutions, as shown in Fig. 3.

Specifically, we investigate that the main problem in
complicated scenes is the limited detection performance of
the underlying detector, producing a series of false and
missed detections. With this in mind, we adopt lightweight
yet efficient YOLOv5s instead of JDE’s detector to enhance
the target detection capability. Nonetheless, we find that the
detections yielded by directly utilizing the YOLOv5s are still
unsatisfactory. To further boost the accuracy, we seamlessly
integrate the CBAM and transformer encoder modules in our
detection framework, thus enhancing the informative features
and suppressing irrelevant yet confusing ones (e.g., the
complicated background). As a result, the enhanced detection
model regresses more precise target locations and is robust to
interference information. Furthermore, we design an effective
joint scoring strategy to evaluate the confidence of the detec-
tions and tracklets, preferentially pushing high-confidence
detections and tracklets to the later data association stage.
It is beneficial for decreasing the number of identity switches
and improving identity preservation in complex interactions
among vehicles.Meanwhile, the number of redundant vehicle
trajectories can be effectively reduced.

Benefit from the proposal refinement, our proposed
method achieves 22.7 PR-MOTA, 33.1 PR-MOTP, and
483.3 PR-IDs on the UA-DETRAC benchmark at 24.4 FPS,
which outperforms state-of-the-art MOT methods in terms
of both effectiveness and efficiency. In summary, the main
contributions of this paper are three-fold:

• We introduce a novel enhanced detection model
that integrates the plug-and-play CBAM, transformer
encoder, and YOLOv5s into a unified network structure,
significantly enhancing the network detection capability.

• We design a joint scoring strategy to preferentially
provide high-confidence detections and tracklets for
subsequent data association, effectively decreasing the
number of identity switches and redundant vehicle
trajectories.

• Our proposed method achieves superior tracking accu-
racy while maintaining high efficiency on a generic
vehicle tracking benchmark.

The remainder of this paper is organized as follows.
We first provide an overview of related work in Section II.
Section III presents the specific design of the proposed
approach in detail. The quantitative and qualitative exper-
iments are presented in Section IV. Finally, Section V
concludes this paper and future work.

II. RELATED WORKS
In this section, we briefly review the existing MOT methods,
which can be classified into three categories: classical MOT
approaches, one-shot MOT approaches, and two-stage MOT
approaches.

A. CLASSICAL MOT APPROACHES
Classical MOT approaches mainly utilize traditional feature
extractors to determine whether the tracked targets have
appeared. Shu et al. [10] proposed the support vector
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FIGURE 3. The flowchart of the proposed approach.

machine (SVM) classifier to handle occlusion between
targets dynamically. Rezatofighi et al. [11] utilized joint
probabilistic data association to tackle the uncertainty in
association conditions. References [12] and [13] dealt with
tracklet fragments based on the tracklet confidence and
tackled similar object inference by discriminative appearance
learning. Henschel et al. [14] tackled the graph labeling
problem in the MOT system by fusing the head and
full-body detectors. However, the appearance and motion
features extracted by these classical approaches are not
robust to occlusion and background clutter. Moreover, these
trackers may fall short of distinguishing targets with high
similarities.With the advent of deep learning, theMOT task is
immediately dominated by the convolutional neural networks
(CNNs)-based trackers, which can be classified into two-
stage MOT approaches and one-shot MOT approaches.

B. TWO-STAGE MOT APPROACHES
The two-stage MOT approaches primarily rely on two
steps: 1) adopting the CNN-based detector to localize the
objects of interest by a series of detect boxes, and then 2)
cropping the image patches and feeding them to the identity
embedding network for Re-ID feature extraction. For the
detection part, Zakria et al. [15] achieved excellent results in
processing remote sensing images through the introduction
of a modified version of the YOLOv4. Additionally, inspired
by Faster R-CNN [16], a novel evolving framework [17] was
proposed to generate refined object boxes. In terms of feature
extraction, a multi-level feature extraction approach [18] and
a dataset augmentation methodology [19] were proposed to
enhance the efficacy of the generated Re-ID. Simultaneously,
numerous multi-target tracking methodologies have been
proposed by integrating detection and feature extraction. The
simple online and real-time tracking (SORT) proposed by
Bewley et al. [20] performed favorably at a high frame rate.
Wojke et al. [24] extended the work of [20], which exploited

the Faster R-CNN to produce proposal detections and then
associated them through amatch strategy. Building on similar
concepts, Tran et al. [21] improved the precision of target
recognition and tracking by combining DeepSORT [22] and
Yolov7 [23]. Meanwhile, a deep affinity network (DAN) [25]
was employed to track the vehicles based on the generated
object boxes. Following these works, Zhou et al. [26]
proposed a novel dual-direction unit tensor power iteration to
address the matching model issue. In the RAR16wVGG [27],
the recurrent autoregressive network (RAN) coupled an
external memory responsible for storing previous vehicle
trajectories in the time window and an internal memory
responsible for associating detections. Mahmoudi et al. [28]
applied robust CNN-based features and a groups-based
affinity measure to improve overall performance. However,
However, due to the high computing cost, achieving real-time
tracking with two-stage MOT approaches can be challenging
in practical applications.

C. ONE-SHOT MOT APPROACHES
With the flourishing development of multi-task learning, the
recent research trend is heading towards applying one-short
MOT approaches, which jointly treat detection and feature
extraction to improve overall efficiency. This is achieved
by extracting target features to depict the appearance and
motion information in the current frame, thus inherently using
it for tracking. JDE [9] was the first to integrate object
detection and appearance embedding in a unified network,
which obtained promising tracking accuracy and a high
frame rate. Following [9], Voigtlaender et al. [29] proposed
the Track-RCNN to jointly tackle the multi-object tracking
and segmentation (MOTS) task with a single network,
effectively incorporating temporal information and linking
target identities as time passes on. Later, the research work
in [30] designed a point-based model, namely CenterTrack,
to calculate the offsets of detections and tracks according
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to the heatmap from the target center. Chained-Tracker [31]
focused on the chained structure and attentive regression
to output a pair of detection boxes in the adjacent frames.
Lu et al. [32] presented a simple yet effective joint model
referred to as RetinaTrack, which defined both detection
and tracking as critical tasks. Additionally, the instance-level
features were extracted to track the targets by modifying
the one-shot RetinaNet. By integrating object detection and
feature extraction in a unified framework, one-shot MOT
approaches achieve competitive tracking results while being
faster and involving less computation overhead. In this paper,
we develop a novel one-shot MOT approach based on a more
efficient architecture, achieving better tracking accuracy and
higher efficiency than the one-shot approaches.

III. THE PROPOSED METHOD
This section describes a detailed explanation of the proposed
MOT method, which comprises two branches: enhanced
detection model and joint scoring strategy.

A. ENHANCED DETECTION MODEL
1) YOLOv5s
Since the reliability of the tracking-by-detection paradigm
heavily depends on the performance of a detector, we employ
the YOLOv5s to distinguish multiple target vehicles in heavy
traffic situations. The reasons why we choose the YOLOv5s
are as follows. First, the YOLOv5s, which serves as a
generic detector, can precisely localize moving vehicles in
busy traffic flow. Second, because of the high efficiency
of the YOLOv5s, our model can locate and track vehicles
almost in real-time. Third, the lightweight YOLOv5s has vital
portability, which can be deployed on unmanned air vehicle
(UAV), vehicle-mounted cameras, home surveillance, etc.

As shown in Fig. 4, the network structure of the YOLOv5s
is composed of input, backbone, neck, and prediction. During
the input phase, the YOLOv5s employs k-means clustering to
adaptively calculate the optimal anchor according to different
classes of targets, making the network easier to choose
better priors. The focus layer, which is embedded with the
backbone network of the YOLOv5s, aims to reserve more
complete downsampling target features by slice operation
compared to the conventional convolution operation. Two
cross-stage partial connections (CSP) structures are applied
to the backbone and neck, which contribute to fusing the
feature layers of different stages and then realizing the multi-
scale feature maps. Based on the fact that the intersection
over union (IoU) metric is incapable of dealing with non-
overlapping bounding boxes, a novel generalized IoU (GIoU)
metric [33] is employed to calculate the distance of two
arbitrary convex shape boxes. Besides, the YOLOv5s utilizes
the GIoU as bounding box regression loss, significantly
improving the localization precision. The GIoU loss is
defined as follows:

LGIOU = 1 − (

∣∣Rp ∩ Rg
∣∣∣∣Rp ∪ Rg
∣∣ −

∣∣Rm/(Rp ∪ Rg)
∣∣

|Rm|
) (1)

where Rp and Rg are the predicted bounding box and ground
truth box, respectively, and Rm is the minimum enclosing
rectangle surrounding Rp and Rg. In addition, we adopt the
SEBottleneck [34] to optimize the structure of CSP further.
As shown in Fig. 5, this module enables the network to
distinguish feature information more effectively by learning
the weight coefficients of each channel.

2) CBAM
As shown in Fig. 6, we seamlessly integrate the CBAM [35]
into the network structure of the detector to highlight the
informative features and suppress the redundant ones, thus
generating refined features for localizing the target location.

Precisely, we separately execute average-pooling andmax-
pooling on the global features U ∈ RH×W×C , and then
concatenate them in the channel dimension. After that,
we execute dimensionality reduction through the first fully
connected layer (Fc1) and activate it using the ReLU function.
The second FC layer (Fc2) encodes the features to decrease
the computational burden by compressing theC channels into
the C/r channels, where r is the reduction ratio. Thereafter,
the third FC layer (Fc3) restores the channel number of the
features to C channels, and utilize the sigmoid activation to
obtain the required channel weight MC that represents the
importance of different channels:

MC = σ (g(z,W )) = σ (W3δ(W2δ(W1z))) (2)

where δ and σ refer to the ReLU and sigmoid functions
respectively, and W1, W2, and W3 represent the parameters
of three FC layers respectively. Thereby, we can yield the
recalibrated features Ũ ∈ RH×W×C as follows:

Ũ = (1 +MC )U (3)

where Ũ =
[
ũ1, ũ2, · · · , ũC

]
and MC = [ε1, ε2, · · · , εC ]

refer to the channel-wise weight. Thus, we exploit the
channel attention mechanism to increase the discriminability
of features across different channels significantly.

After taking the features Ũ from the channel attention
module, two pooled features are concatenated and then
convolved by a general convolution operation to generate the
spatial-wise weight MS . Finally, the refined features can be
formulated as follows:

Û = (1 +MS )Ũ (4)

By accessing the spatial attention module, the features are
further recalibrated in the spatial dimension, selectively
highlighting the features of effective regions and suppressing
the features of interference regions.

Therefore, we can effectively learn which feature infor-
mation to highlight or suppress by using the complementary
CBAM and transformer encoder modules. On the other hand,
we achieve the detection accuracy boost via seamlessly inte-
grating simple yet effective attention modules and YOLOv5s
into a unified framework.
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FIGURE 4. The network structure of enhanced detection model.

FIGURE 5. The structure of the SEBottleneck.

FIGURE 6. The introduced CBAM module makes the network focus on
informative features.

3) TRANSFORMER ENCODER
We design a transformer encoder module and add it to
the final layer of the Backbone, as shown in Fig. 7 The
transformer encoder is mainly composed of multi-head atten-
tion and multi-layer perceptron (MLP). The multi-headed

FIGURE 7. The structure of the transformer encoder.

attention essentially executes multiple attention layers in
parallel and then concatenates their outputs together. The
MLP maps the features from a low-dimensional space to
a high-dimensional space, and then compresses the sparse
features to make them more stable. The transformer encoder
plays an active role in detecting targets in dense scenes and
reduces the expensive computation and memory costs.

B. JOINT SCORING STRATEGY
In busy traffic scenarios, it is difficult to maintain a
consistent identity due to numerous interactions among
vehicles. Meanwhile, various scenes where other things
(e.g., billboards, traffic lights) occlude the tracked vehicles
often occur, which will produce many undesired identity
switches. Additionally, plenty of redundant trajectories will
be generated when the tracked vehicles leave or enter the
view. To redress the above oversight, we propose a novel
joint scoring strategy to filter out unreliable detections and
tracklets and preferentially push high-confidence detections
and tracklets to the later data association stage, which assists
in maintaining target identities during the tracking duration.
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FIGURE 8. The tracklet confidence under the different sizes of Ltrk .

1) DETECTION SCORING
The detection confidence cdet that evaluates the detections is
defined as follows:

cdet = Pr(object) × IoU (pred, gt) (5)

where Pr(object) represents the probability of whether the
detection box contains the target. And IoU (pred, gt) is the
intersection-over-union between the region of predicted box
Rpred and the region of the ground-truth box Rgt , which can
be computed as follows:

IoU (pred, gt) =

∣∣Rpred ∩ Rgt
∣∣∣∣Rpred ∪ Rgt
∣∣ (6)

The detection whose cdet is less than the preset threshold δdet
is unsuitable for participating in follow-up data association
and should be removed.

2) TRACKLET SCORING
Here, we define Ltrk as the number of consecutively lost
frames for a target.We define the temporal information-based
tracklet confidence ctrk as follows:

ctrk =
4
π
arctan

(
e−αL2trk

)
(7)

where α is a hyperparameter of the proposed tracklet scoring.
An example of the tracklet confidence under different Ltrk
is illustrated in Fig. 8. As we can see from Fig. 8, the
smaller Ltrk indicates that the tracker has a higher probability
of relocating the re-appear target after it suffers cover by
the other distractors. In this case, we set such a tracklet
to high confidence. When the Ltrk gradually increases,
the probability of tracklet recovery in subsequent frames
gradually decreases. Particularly, if the calculated confidence
score ctrk is less than the preset threshold δtrk , the active
tracklet has been lost for a long time. We thus prevent the
unreliable tracklet from participating in the subsequent data
association.

For the remaining detections and tracklets, we will
preferentially match the high-confidence detections and
tracklets for optimizing the data association process.

C. DATA ASSOCIATION
For the i-th detection and the j-th tracklet, the appearance
features are extracted and denoted as ri and vj. In addition
to the visual features, we also consider the motion features
by calculating the i-th detection box location di and the
j-th tracklet distribution (yj, Sj). Subsequently, we compute
the assignment cost between the pair of i-th detection and j-
th tracklet as follows:

si,j = 1 − rTi vj + λ
(
(di − yi)T S

−1
j (di − yj)

)
(8)

where λ is a combination factor, and T represents a transpose
operation. According to the calculated assignment cost,
we utilize the Hungarian algorithm [36] to associate detec-
tions to tracklets for generating reliable target trajectories.
Then we assign a numerical ID to each specific target in the
given video frame. For the matched tracklet, we update its
motion state using the Kalman filter [37], and the appearance
state in frame t is updated as follows:

f t = (1 − cdet )f t−1
+ cdetr t (9)

where cdet and rt represent the detection confidence and
the appearance features of the current matched detection,
respectively. For the remaining detections that are not
associated with any tracklet, we initialize new tracklets based
on the location of detections. To sum up, we present the
specific steps of the proposed MOT algorithm, as shown in
Algorithm 1.

IV. EXPERIMENTAL RESULTS AND ANALYSES
In this section, we first present the dataset, evaluationmetrics,
and implementation details in section IV-A. Thenwe compare
our tracking method with several state-of-the-art methods in
section IV-B. In section IV-C, we execute detailed ablation
studies that emphasize the novelty of this work. In section
IV-D, the discussion about our experiment is presented.

A. EXPERIMENTAL SETUP
1) BENCHMARK DATASET
We implement a detailed comparison experiment on a large-
scale dedicated benchmark called UA-DETRAC [38], which
is widely utilized to evaluate the tracking performance of
MOT methods in traffic scenes. This dataset is composed
of 100 video sequences with over 140K frames in total.
Additionally, it contains 8,520 vehicles and 1.21 million
densely labeled bounding boxes. Each video sequence
comprises diverse challenges deriving from realistic traffic
situations, such as occlusion, background clutter, viewpoint
change, etc. In particular, several vehicles in various traffic
scenarios (e.g., traffic junctions, urban highways) perhaps
enter or leave the view at any time, hence increasing the
difficulty of vehicle detection and tracking.
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Algorithm 1 The Proposed MOT Algorithm
1: for frame = 1, · · · , t do
2: For k-th target of the input image It , estimate the target

location x tk and extract appearance features r tk ;
3: Calculate the detection confidence ctdet of each target

(Eq. 5);
4: if ctdet < 0.3 then
5: Remove this detection;
6: end if
7: for each tracklet do
8: Calculate the tracklet confidence cttrk (Eq. 7);
9: if cttrk < 0.1 then

10: Remove this tracklet;
11: end if
12: Predict new location x̂ tk of tracklet using Kalman

filter;
13: end for
14: Calculate the assignment cost si,j between the i-th

detection and the j-th tracklet;
15: Associate each detection and tracklet using Hungarian

algorithm and assign a numerical ID to each specific
object;

16: for the tracklets associated with detections do
17: Update the estimated location using Kalman filter;
18: Update the appearance state of tracklets;
19: end for
20: for the remaining detections that are not associated

with any tracklet do
21: Initialize new tracklets based on the location of

detections;
22: end for
23: end for

2) EVALUATION METRICS
Considering the effect of detection performance on the
MOT system, we use the UA-DETRAC protocol for the
overall performance evaluation, which is slightly different
from the commonly used classification of events, activities
and relationships (CLEAR) MOT metrics [39]. The UA-
DETRAC metrics, which reflect the overall performance of
trackers in the vehicle tracking task, are defined as follows:

• PR-MOTA: The PR-MOTA curve first characterizes
the relationship between target detection performance
and tracking performance. The PR-MOTA can be
obtained by calculating the average MOTA score over
the precision vs. recall (PR) curve. The PR-MOTA is
generally selected as the primary evaluation metric.

• PR-MOTP: The misalignment between the predicted
box and the ground-truth box over PR curve.

• PR-MT: The percentage of ground-truth trajectories
that are correctly tracked in at least 80% of their life
cycle over PR curve.

• PR-ML: The percentage of ground-truth trajectories
that are correctly tracked in at most 20% of their life
cycle over PR curve.

• PR-IDs: The number of the associated ID for the target
is mistakenly changed over PR curve.

• PR-FP: The number of false positives over PR curve.
• PR-FN: The number of false negatives over PR curve.
• FPS: The overall tracking speed in the vehicle tracking
scenes.

3) IMPLEMENTATION DETAILS
We train our model in an end-to-end manner within the
smooth-L1 and cross-entropy loss. The CSPDarkNet-53
network is utilized as the backbone. Meanwhile, we train
our model with standard stochastic gradient descent (SGD)
for 50 epochs, and the batch size is set to 4. The learning
rate is initialized as 10−3 and is reduced by a factor of
0.1 every 50,000 iterations. The training usually converses
after 26 epochs. Additionally, we execute several data aug-
mentation strategies (e.g., random rotating, random scaling,
photometric distortion) to reduce overfitting. Additionally,
1) In section III-B, we set the hyperparameter α to 0.05. The
thresholds δdet and δtrkare set to 0.3 and 0.1, respectively.
2) In section III-C, the combination factor λ in Eq. (8) is
set to 0.1. All experiments are implemented with PyCharm
2020.2 on a PC with i5-10600KF CPU and NVIDIA Geforce
RTX 3070 GPU. The programming language is Python 3.10.
The tracking speed of our method on the UA-DETRAC test
sequence is 24.4 FPS on a single GPU.

B. COMPARISON WITH THE STATE-OF-THE-ART METHODS
On the UA-DETRAC dataset, we compare the proposed
method against the state-of-the-art MOT methods, includ-
ing JDE [9], Chained-Tracker [31], EB [17]+DAN [25],
EB [17]+SiamIOU [40], EB [17]+IOUT [41], R-CNN
[42]+IOUT [41], Faster R-CNN [16]+DeepSORT [24],
CompACT [43] +FAMNet [44], CompACT [43]+GOG [45],
CompACT [43]+CMOT [12], CompACT [43]+H2T [46],
R-CNN [42]+DCT [47], CompACT [43]+ IHTLS [48] and
CompACT [43]+CEM [49]. All the compared methods are
trained on the UA-DETRAC-train set and evaluated on
the UA-DETRAC-test set. The comprehensive quantitative
results of the compared approaches are summarized in
Table 1. The best and second-best results are in bold and
underlined, respectively.

As we can see from Table 1, the proposed method
achieves 22.7 PR-MOTA, significantly outperforming exist-
ing methods. For instance, the proposed method obtains
up to 5.6% relative improvements in PR-MOTA over
the suboptimal approach. Moreover, the proposed method
performs favorably over the state-of-the-art in terms of
PR-MT, PR-ML, PR-FP, and PR-FN on the UA-DETRAC
dataset. Additionally, we compare the computation cost of
our proposed method with other methods, as shown in the
FPS column of Table 1. Our tracker runs at 24.4 FPS,
which is faster than most compared methods. In short,
our proposed method has advantages over the compared
methods in multiple performance indicators and is amenable
to ITS demanding real-time tracking. Additionally, Fig. 9
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TABLE 1. Quantitative results by our method and state-of-the-art methods on the UA-DETRAC dataset. ↑ Denotes that higher is better and ↓ represents
the opposite. The best and second best results are in bold and underline, respectively.

FIGURE 9. Qualitative results of our tracker on UA-DETRAC test dataset. (a) MVI 39031. (b) MVI 39371. (c) MVI 40701. (d) MVI 40714. (e) MVI 40742.
(f) MVI 40771.

provides the exemplary output of the proposed approach
on six challenging sequences, including MVI 39031, MVI
39371, MVI 40701, MVI 40714, MVI 40742, and MVI
40771. As we can see from Fig. 9, our proposed method
achieves high tracking accuracy and augment the robustness
of the tracker, making our system applicable to busy traffic
scenarios.

C. ABLATION STUDIES
To validate the effectiveness of each component in our
model, we perform extensive ablation studies, as shown in
Table 2. 1) Baseline+enhanced detection model performs
better than baseline, which proves the effectiveness of
the proposed detection model. There is an improvement
in PR-MOTA, which increases from 18.9 to 21.4. Since
the attention modules are integrated within YOLOv5s to
enhance detection capacity, we can regress target locations
more accurately compared to JDE. 2) Baseline+enhanced

detection model+joint scoring strategy further outperforms
baseline+enhanced detection model. Using the joint scoring
strategy, we can ensure that the high-confidence detections
and tracklets preferentially participate in the later data
association, reducing the number of identity switches and
redundant vehicle trajectories. Compared to the ablation
study (case 1), we obtained the PR-MOTA improvement by
about 6.1%. Particularly, the significant decline in PR-IDs
demonstrates that our joint scoring strategy is beneficial for
maintaining target identities. Therefore, the comparison with
the basic JDE shows the utility of our enhanced detection
model and joint scoring strategy to localize targets and
improve identity preservation in complex traffic scenes.

Furthermore, to confirm the impact of the CBAM and
transformer encoder modules in the enhanced detection
model, we also perform an ablation experiment on the
detection component, as presented in Table 3. 1) YOLOv5s +
CBAM outperforms YOLOv5s in terms of accuracy and
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TABLE 2. Ablation Studies on the UA-DETRAC Dataset. ↑ Denotes that higher is better and ↓ represents the opposite. The best result is in bold.

FIGURE 10. The detection results on MVI 20034 challenging sequence at frame 156. (a) JDE. (b) Ours. Our proposed method can react to some far-away
vehicles and rectify the false detection.

TABLE 3. Ablation Studies on the detection components using UA-DETRAC Dataset. ↑ Denotes that higher is better and ↓ represents the opposite. The
best result is in bold.

effectiveness. 2) YOLOv5s + CBAM + transformer encoder
boosts the detection effect even more. The test results show
that the detection performance of the model is improved by
integrating YOLOv5s, CBAM and the transformer encoder
into a unified network.

In addition to the above, we evaluate significant detection
performance in busy traffic flow. The detection results of the
proposed method and JDE on the MVI 20034 challenging
sequence are shown in Fig. 10. Aswe can see from Fig. 10 (a),
the false and missed detections occur due to the occlusions
and similar object interference in dense clutter. As shown
in Fig. 10 (b), by integrating the YOLOv5s and attention
modules into a unified framework, we enhance the capability
of detecting vehicles with small sizes and rectifying false
detection, which is essential for ITS. Moreover, our model
has less computing cost and is hence fast as compared to
JDE. Additionally, to further verify the effectiveness of the
CBAM and transformer encoder modules, we compare the
heatmaps of our detection model and YOLOv5s, as shown in
Fig. 11. By introducing the simple attention modules, we can
enhance the informative features and suppress the irrelevant
ones, effectively improving the discriminative capability of
our method. To sum up, the ablation studies based on the
UA-DETRAC benchmark indicate that our proposed method

TABLE 4. The number of model parameters comparison.

achieves a higher tracking accuracy while maintaining a
higher speed than baseline JDE.

D. DISCUSSION
Lastly, according to the above quantitative and qualitative
evaluations of vehicle tracking performance on the UA-
DETRAC benchmark, we can conclude that: 1) As a pipeline
depending on a lightweight yet efficient detection network,
our method not only reduces false detections but also
improves the detection ability of small targets; 2) The number
of model parameters of our method and JDE is shown in
Table 4. As we can see from Table 4, our method’s model
parameters are significantly reduced compared with JDE.
This is because the model parameters of the lightweight
YOLOv5s are much less than those of the JDE’s detector.
In addition, the number of model parameters brought by
the attention modules is also tiny; 3) Considering the real-
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FIGURE 11. The heatmap comparison of our method and JDE.

time implementation requirement of the intelligent traffic
system, the proposed method achieves the tracking with a
high frame rate owing to the low computing overhead of our
model.

V. CONCLUSION
Multi-vehicle tracking has been widely utilized in many
fields. Nevertheless, when it comes to busy traffic flow,
the performance of the basic JDE tracker remains needs to
be improved. This paper proposes the enhanced detection
model and joint scoring strategy. First, by integrating the
lightweight YOLOv5s and attention modules, the enhanced
detection model can effectively enhance the target local-
ization capability and improve detection speed. Meanwhile,
the false and missed detections caused by complicated
challenges are decreased. Second, according to confidence
scores of detection and tracking results, we preferentially
push high-confidence detections and tracklets to the later data
association stage, reducing the number of identity switches
and redundant vehicle trajectories. The overall performance
of our proposed method performs favorably against state-
of-the-art on the UA-DETRAC benchmark, which helps
advance the development of autonomous driving, traffic state
estimation, collision avoidance, etc. In the future, we will try

to design an end-to-end network to match the detections and
tracklets.
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