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ABSTRACT Even with the advent of 5G wireless communications and the millimeter wave spectrum, there
will always be crowded frequency bands where multiple uncoordinated networks will have to contend (or
collaborate) to squeeze as much throughput as possible while avoiding interference. This work proposes a
branch and bound algorithm for maximizing the overall sum rate over multiple interfering networks with
a pre-fixed set of offered flows, as well as a heuristic algorithm that individual networks can follow to
collaboratively share the available bandwidth with that same objective. The latter algorithm finds a greedy
solution by independently optimizing the links and routes for each network, and then refines that solution by
discarding inefficient and potentially harmful links. It does not require any direct communication between the
networks, relying instead on location estimates which could be inferred from interference powers. Simulation
results show that, when the networks have different traffic loads, the proposed algorithm outperforms the
original greedy solution as well as those based on partitioning the resources among the networks for their
exclusive use.

INDEX TERMS Collaborative networks, branch and bound, resource allocation, power and rate control,
link scheduling, non-convex optimization, wireless networks.

I. INTRODUCTION
The number of wireless devices is increasing exponentially
and expected to continue doing so in the foreseeable future.
Furthermore, users and applications demand more data at
faster speeds, lower latencies, and higher reliability. Some
researchers and telecommunications providers have turned
towards the mmWave band (above 6 GHz) to find the nec-
essary bandwidth to accommodate such growing demand,
but the hardware and propagation limitations associated with
high frequencies make mmWave communications unsuit-
able for many applications. The congestion in the sub-6GHz
band is not expected to be alleviated anytime soon and it
is therefore imperative that we find ways for different net-
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works to coexist sharing the same spectrum. Prior research
has addressed this problem using either shared databases
(e.g., TV whitespace [1] and CBRS [2]) or sensing-based
techniques (e.g., DARPA XG [3] and 3GPP [4]), but these
approaches substantially underperform information theoretic
limits. Information theory tells us that nearly any perfor-
mance measure of multiple networks operating in a shared
environment is bounded by the fully centralized case, where
all nodes follow the orders of a shared controller. Centralized
performance is clearly unachievable in practice, but allowing
some level of collaboration or information sharing could help
us approach that bound.

The goal of this paper is to design an algorithm for
autonomous resource allocation across multiple uncoordi-
nated wireless networks operating in a shared interference-
limited environment. Each network will have complete
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knowledge of the channels between its own nodes and the
intended receiver for their transmissions, but it will not
know the impact that those transmissions might have on the
receivers of peer networks. It will also overhear the interfer-
ence caused by peer networks on its receivers. Treating that
interference as noise, each network could perform a marginal
optimization of the frequency band and power for its own
transmissions ignoring the effect on peer networks, but this
would be highly sub-optimal. In order to maximize the sum of
the rates over all the networks we will study the optimal (fully
centralized) solutions for different random configurations and
attempt to leverage their common traits in the design of a
heuristic distributed algorithm.

We will use the information-theoretical capacity as a per-
formance metric, ignoring latency, security, and other prac-
tical considerations. The concept of capacity in wireless net-
works was pioneered by Gupta and Kumar in [5]. Their paper
focused on asymptotic bounds for the number of successful
links that can be simultaneously scheduled under two inter-
ference models: the physical model, where transmissions are
successful when the SINR is above a pre-fixed threshold,
and the protocol model, where they are successful as long
as there are no other transmitters within a certain distance of
the receiver. Subsequent works adopted the same models and
extended the results to consider probabilistic success in the
transmissions [6] and heuristics with constant approximation
guarantees to the previous bounds [7], [8], [9]. However, they
still focused on cases with asymptotically large number of
nodes and offered loads. One of the main differences between
this paper and most of the existing literature is that it attempts
to solve the problem for a pre-fixed set of flows with specific
sources, sinks, and maximum data rates.

Furthermore, modern communication systems have a lot
of flexibility in terms of rate adaptation: when the chan-
nel is strong the transmitter can increase the throughput
by using higher order modulations and/or lower code rates,
and when when the channel has high attenuation it can do
the opposite. Therefore, we find that neither the physical
nor the protocol models are suitable for practical systems.
Instead, we model the data rate on a link to be dependent
on the SINR. Another significant difference between this
paper and most of the existing literature (e.g., [10], [11])
is that we will use the information-theoretical capacity as
a performance metric, instead of the number of successful
links.

In environments where background noise is significantly
stronger than the potential interference between networks
(noise-limited), the capacity maximization problem becomes
trivial: every node should transmit with as much power as it
can using as much bandwidth as it can. However, when the
background noise is relatively small (interference-limited)
the problem of designing a strategy to maximize the sum rate
of a network is very hard, mostly because the optimal strategy
is different depending on the noise power and the positions of
the nodes (equivalently, the channel gains).

It is well known that the simultaneous power and band-
width allocation problem is NP-hard [12]. Over the last
decade there have been multiple attempts at finding efficient
methods to solve it, mostly through decomposition [13]. Palo-
mar et al. published a compilation of the first results in this
direction [14] and analyzed the advantages and disadvan-
tages for each of them. However, there has been significant
progress in this area since that compilation was published.
Iterative approaches such as [15], [16], and [17] have been
shown to provide better results than methods purely based
on decomposition. More recently, there have been multiple
methods proposed based on fractional programming tech-
niques [18], [19], [20], information-theoretical inequalities
for the optimality of treating interference as noise [21],
[22], or heuristic methods based on the distance between the
links [23]. As with many other problems, there has also been
a plethora of machine learning (ML) solutions proposed [11],
[24], [25], [26], [27], [28], [29], [30]. However, ML methods
often require computational- and energy-intensive training
and they are hard to interpret; we advocate for a simpler
and more transparent approach. In many applications, it is
common for resources to be sliced (in time, in frequency,
or both) and auctioned among multiple networks for their
exclusive use. Some researchers have studied this scenario
and attempted to optimize the bidding process [31]. Another
common approach in modern software defined radio (SDR)
-based networks is to map multiple virtual channels to a
few shared physical ones [32]. Yang et. al. proposed using
a dynamic program to optimize such mapping [33], allowing
reuse of the physical channels when the collision probability
is below a pre-fixed threshold.

However, all of these recent methods are aimed at solving
the sum-rate maximization problem (or some variation of it)
for a single network and frequency band. They seek the set of
links that should be scheduled simultaneously to maximize a
certain utility function, assuming that the nodes are somewhat
coordinated and it is possible to sacrifice all transmissions
from some nodes in favor of those from others. This paper,
on the other hand, attempts to solve the problem for multiple
uncoordinated networks and frequency bands. It will assume
that the networks operate independently without a standard-
ized physical layer to enable the decoding and relaying of
each other’s messages as proposed in [34] and [35]. It is
therefore unclear how any of them would know to stop its
transmissions for the benefit of others. We will propose a
scheme that enables collaboration using only the information
that the networks can infer from the power of overheard
transmissions.

Some studies have attempted to facilitate collaboration by
assuming that networks can share certain information, such as
the GPS locations of their nodes and their planned transmis-
sions, with their peers. One of these studies is the DARPA
Spectrum Collaboration Challenge (SC2), where ensembles
of intelligent SDR networks exhibited autonomous collab-
orative behaviors and outperformed traditional RF schemes
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with evenly divided or individually reserved spectrum bands.
The challenge was a big success, but its outstanding per-
formance relied heavily on collaboration messages between
the networks through a side channel [36]. This paper, on the
other hand, assumes that the networks lack a protocol for
exchanging collaboration messages, and proposes a collab-
oration algorithm which only uses inferred information from
other networks’ transmissions. Specifically, since every node
can overhear the transmissions of peer networks’ nodes as
interference, it will be assumed that nodes in the same net-
work can compare their interference patterns and estimate
the position and transmit power of peer nodes through tri-
angulation. Recent research has shown that there are many
scenarios where geographical location information is enough
to optimize link scheduling [30].

The rest of the paper is organized as follows. Section II
establishes the system model to be considered throughout
the rest of the paper. Sections III and IV present algo-
rithms for optimizing the transmissions in a single fre-
quency band. Section V proposes methods to extend the
previous algorithms to multiple frequency bands. Finally,
Section VI presents simulation results to illustrate the perfor-
mance of the different algorithms and Section VII concludes
the paper.
Notation: We use bold font to represent vectors (lower

case) and matrices (upper case). The bold numbers 0 and
1 represent the all zeros and the all ones vectors, respectively,
with dimensions that should be clear from the context.We use
parentheses to construct column vectors from comma sep-
arated lists, i.e., x = (x1, . . . , xn) = [ x1 · · · xn ]T. The
gradient of a scalar function respect to a vector is given by
∇xf =

(
∂f
∂x1

, . . . , ∂f
∂xn

)
. The comparison operators (≤, ≥,

min, max) on vectors or matrices are understood as element-
wise.

II. SYSTEM MODEL
The existing literature typically divides time into discrete
time slots, and then optimizes the transmission schedule of
the network within those slots. This is suitable for traditional
radios where the transmitter and receiver signal processing
chains are implemented in hardware, offering limited flexi-
bility. A controller may switch the transmitter on or off and
control the power in each time slot to achieve the desired
schedule. However, with the recent advancement in SDRs,
more dimensions can now be explored. An SDR transmitter
can easily switch its frequency on demand, and cater to
complicated signal processing requirements.We leverage this
flexibility of SDRs and divide the available bandwidth into
m identical bands or channels instead of dividing time. The-
oretically, these are equivalent approaches, but dividing fre-
quency instead of time offers some practical advantages. For
instance, the nodes do not need to synchronize the time slots
and multi-hop packets can be delivered to their destinations
with less latency because the connecting hops can happen
concurrently on different frequency channels, whereas in the

time-division approach one hop may need to wait until the
next cycle after the previous hop.

We consider N wireless networks deployed over a rectan-
gular 2-dimensional region, with the i-th network consisting
of ni nodes distributed uniformly at random over the whole
region. Each node is equipped with a single-antenna full-
duplex transceiver, i.e., a node can be transmitting on one fre-
quency band while it is receiving on another. Although some
modern radios are capable of transmitting and receiving on
the same frequency, this paper does not address that scenario.
For simplicity, we will assume that nodes that transmit do so
continuously in time, on whatever band they are assigned.

With n =
∑N

i=1 ni nodes and m frequency bands, there will
be L = nm potentially active links. These links are mod-
eled as symmetric AWGN channels with path loss exponent
α = 3. Fast fading will be ignored, since our objective is
maximizing the overall throughput over long periods. The
signal received by node i at time t and channel f, assuming
it is not transmitting on that channel, is given by

yfi(t) =
n∑

j=1

√
gjix

f
j(t)+ zfi(t), (1)

where xfj(t) is the signal transmitted by node j on channel
f at time t (if any), gji the (power) path loss from node j
to node i, and zfi(t) the additive Gaussian noise at receiver
i. For simplicity, we assume that the noise is white with
the same variance σ 2 for all receiver nodes, that the path
loss is identical for all the frequencies under consideration,
and we neglect propagation delays. These assumptions could
be easily removed, but it would complicate the equations
unnecessarily.

The capacity of the ℓ-th (ℓ = 1, . . . ,L) link is given by

cℓ = log(1+ γℓ), (2)

where the unit of data rate is normalized by the bandwidth of
each frequency channel and γℓ denotes the SINR (signal-to-
interference-and-noise ratio) of the link. Specifically, if the
ℓ-th link goes from node ℓo to node ℓd,

γℓ =
gℓoℓd

pℓ∑
ν∈Tℓ\{ℓ}

gνoℓd
pν + σ 2 , (3)

where Tℓ denotes the set of all links on the same frequency
band as link ℓ, νo denotes the transmitter node for link ν, pν

its transmit power, and σ 2 the noise level at ℓd. Without loss
of generality, we assume unit maximum power, so 0 ≤ pℓ ≤

1 for all ℓ.
Each network is being asked to deliver a certain number

of flows with randomly chosen sources, sinks, and offered
data rates. We use F to denote the total number of flows
offered across all networks and r := (r1, . . . , rF) to denote
the corresponding vector of offered data rate for each flow.
The data rate on each link is limited by its capacity in (2).
We will only consider single-hop transmissions; flows cannot
use relays to get from their transmitter to the receiver. This
was done because introducing routing causes the problem to
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become exponentially more complex [13]. Each network can
be centrally optimized with perfect knowledge of the path
loss between its nodes as well as the source and destination
for each flow, but no information can be exchanged between
different networks.

However, we assume that each network can infer certain
information about the others from their transmissions, namely
the node locations and transmit powers. Since concurrent
transmissions are generally scattered into different regions
to avoid excessive interference, each network can estimate
these through triangulation [37], [38]. Even if some nodes are
mobile, we assume that the relative motion is slow and, with
periodic re-estimations, the location and power estimates can
be reasonably accurate for the period under consideration.
We note that in some practical applications there could be
pre-established collaboration protocols allowing networks to
share the GPS locations and transmit powers of their nodes
over a side channel, e.g., DARPA’s Spectrum Collaboration
Challenge [36]. This would render unnecessary the aforemen-
tioned information inference through triangulation.

The goal of this paper is to maximize the sum of the rates
that can be delivered by all N networks. Unlike many prior
works (e.g., [27], [39]), we do not include any fairness criteria
in our objective function. Some networks or flows will be
encouraged to deliver significantly more data than others if
it increases the overall data rate. The data rate of a flow
cannot be higher than its offered rate, but it can be lower, i.e.,
we allow partial delivery of the flows.

III. CENTRALIZED ALGORITHM
This section describes an efficient branch and bound method
to find the optimal power allocation tomaximize the total data
rate in a single frequency band, subject to limits on the offered
data rates for each flow. Many other papers have proposed
branch and bound methods for the weighted sum-rate maxi-
mization problem [40], [41], but we did not find any which
were suitable for limited offered rates.

The problem to be solved is

maximize
L∑

ℓ=1

min(rℓ, log (1+ γℓ))

subject to γℓ =
gℓoℓd

pℓ∑
ν∈Tℓ\{ℓ}

gνoℓd
pν + σ 2

0 ≤ p ≤ 1. (4)

All branch and bound methods follow the same structure,
summarized in Algorithm 1. They start from a feasible region
guaranteed to include the desired solution, for example the
vector of powers pwith all components between 0 and 1. This
region is then divided into two or more disjoint subregions,
finding an upper and a lower bound for the objective value
within each subregion. In a maximization problem such as
the one we are dealing with, the lower bound can be the
objective value of any feasible point within the subregion.
The upper bound is slightly more complex and is normally
obtained by solving a relaxed version of the original problem.

Algorithm 1 Branch and bound
Goal: Maximize obj(p) With p ∈ R0, With Toler-
ance ϵ

α := −∞;
list := {(R0,∞)};
while list ̸= ∅ do

Pop (R,U) with largest UR from list;
if U ≥ α + ϵ then

Split R into R(1) and R(2);
for i ∈ {1, 2} do

U(i)
:= upper bound for obj(p), ∀p ∈ R(i);

L(i)
:= any obj(p) with p ∈ R(i);

α := max(α,L(i));
if U(i)

≥ α + ϵ then
Push (R(i),U(i)) into list;

return α

If the upper bound of a subregion is smaller than the best
(largest) of the lower bounds found so far, that subregion is
discarded. Otherwise, it is stored in a list of candidate regions
to be searched. The regions in the list are then processed in
the same way as the initial one: subdivide, bound, and discard
subregions if possible. As the subregions become smaller, the
gap between the upper and lower bounds narrows, and more
regions get discarded. Eventually, the remaining area to be
searched (regions in the list) is small enough for us to claim
that we have found the optimum within a certain tolerance.

In order to make the algorithm more efficient, we took
advantage of a few special features of our problem:

1) Initialization: There exists an optimal solution where
at least one node is transmitting at maximum power.
This is due to the fact that the objective value in prob-
lem (4) does not decrease if all the powers are scaled by
the same constant. Hence, our initial list of candidate
regions is

list = {(R1,∞), . . . , (RL,∞)}, (5)

with Ri = {0 ≤ p ≤ 1|pi = 1} and trivial infinite
upper bounds.

2) Splitting:After a few iterations, each element (R,U) in
the list consists of a power interval for each transmitter
R = {l ≤ p ≤ u} and an upper bound U for the
objective value obj(p) when p ∈ R. The splitting is
done by dividing the interval for one transmitter into
two halves. The choice of transmitter can mean the dif-
ference between discarding both subregions or adding
them to the list, so we tried all L possible splittings and
picked the one yielding the lowest upper bounds U(i).

3) Bounding: The function

C(x, y, z) = log
(
1+

x
aTy+ bz+ c

)
(6)

34688 VOLUME 11, 2023



D. Garrido et al.: Resource Allocation Algorithm for Collaborative Networks Using Inferred Information

is monotonically increasing in x and convex monoton-
ically decreasing in y and z, as long as all coefficients
and variables are positive. Hence, when (x, y, z) are
lower and upper bounded by (lx, ly, lz) and (ux,uy, uz),
respectively, the following linear bound holds:

C(x, y, z) ≤ C(ux, ly, z) (7)

≤ ρ(lz)+ (z− lz)
ρ(uz)− ρ(lz)

uz − lz
, (8)

where ρ(·) = C(ux, ly, ·) and (8) follows from Jensen’s
inequality.

Finally, we are ready to explain the most complicated step
in our branch and bound algorithm: the computation of the
upper bounds U for the subregions. The goal is to find an
upper bound for the achievable data rate

obj(p) =
L∑

ℓ=1

min

(
rℓ, log

(
1+

gℓoℓd
pℓ∑

ν ̸=ℓ gνoℓd
pν + σ 2

))
(9)

in a subregion l ≤ p ≤ u. We will compute one bound Uk
based on each link power pk, k = 1, . . . ,L and then keep
the tightest (lowest) one. The key idea is to assume minimum
interference on link k and upper bound the data rate on the
other links with either a linear function of pk or with their
offered rates ri. The latter subset of links, which use ri as a
bound, is denoted by V. Algorithm 2 summarizes the main
steps in the computation of the bound; the rest of this section
provides a more elaborate description.

For each component k = 1, . . . ,L, first observe that for
any subset of links V ∈ {1, . . . ,L} that does not include k

obj(p) ≤
∑
ℓ∈V

rℓ +
∑

ℓ/∈{V,k}

min
(
rℓ,Cℓ(pℓ,p\{ℓ,k}, pk)

)
+ min

(
rk, log

(
1+ λkpk

))
(10)

with

λk =
gkokd∑

ν ̸=k gνoℓd
lν + σ 2 (11)

and

Cℓ(pℓ,p\{ℓ,k}, pk)

= log

(
1+

gℓoℓd
pℓ∑

ν /∈{ℓ,k} gνoℓd
pν + gkoℓdpk + σ 2

)
, (12)

where p\{ℓ,k} denotes the vector of powers without compo-
nents pℓ and pk. Then we consider two cases, comparing the
offered rate rk with the link capacity log(1+ λklk).
If rk ≤ log(1+ λklk), the last term in (10) can be replaced

with rk. We then choose V = ∅, pℓ = uℓ, and p\{ℓ} = l\{ℓ}
(maximum signal power andminimum interference) to obtain
the bound

Uk := rk +
∑
ℓ̸=k

min
(
rℓ,Cℓ(uℓ, l\{ℓ,k}, lk)

)
. (13)

If rk ≥ log(1+ λklk), let V = {ℓ|rℓ ≤ C(uℓ, l\{ℓ,k}, uk)} be
the set of indices for which we adopt the offered rate ri as the
upper bound and observe that (12) has the same form as (6).
Hence, we can use the linear bound in (8) to rewrite (10) in
the form

obj(p) ≤ akpk + bk + log(1+ λkpk), (14)

where

ak =
∑

ℓ/∈{V,k}

ρℓ,k(uk)− ρℓ,k(lk)
uk − lk

(15)

bk =
∑
ℓ∈V

rℓ − aklk +
∑

ℓ/∈{V,k}

ρℓ,k(lk) (16)

ρℓ,k(pk) = Cℓ(uℓ, l\{ℓ,k}, pk). (17)

In order to find a global bound to obj(p) that holds for all
l ≤ p ≤ u, we need to find the pk which maximizes (14). Let

δ(pk) = ak +
λk

1+ λkpk
(18)

be the derivative of the right hand side of (14) with respect
to pk. Since λk is always positive, δ(pk) is monotonically
decreasing. We derive a different bound depending on which
of the following cases happens:
• When δ(uk) ≥ 0, the right hand side of (14) is
non-decreasing for lk ≤ pk ≤ uk. We plug pk = uk
into (14) to obtain the bound

Uk :=
∑
ℓ∈V

rℓ +
∑

ℓ/∈{V,k}

ρℓ,k(uk)+ log (1+ λkuk) .

(19)

• When δ(lk) ≤ 0, the right hand side of (14) is
non-increasing for lk ≤ pk ≤ uk. If ri ≤ ρi,k(lk) for
any i /∈ V, we add i to V, recompute (14) and (18), and
reconsider these three cases. Otherwise, we plug pk = lk
into (14) to obtain the bound

Uk :=
∑
ℓ∈V

rℓ +
∑

ℓ/∈{V,k}

ρℓ,k(lk)+ log (1+ λklk) . (20)

• When δ(uk) ≤ 0 ≤ δ(lk), themaximum is attained inside
the interval pk ∈ (lk, uk). We solve for δ(pk) = 0 and
obtain p⋆

k = −
λk+ak
λkak

. If ri ≤ ρi,k(p⋆
k) for any i /∈ V,

we add i to V, recompute (14) and (18), and reconsider
these three cases. Otherwise, we plug p⋆

k into (14) to
obtain the bound

Uk := bk −
ak + λk

λk
+ log

(
−

λk

ak

)
. (21)

In summary, the upper bound for the achievable data rate
in a subregion l ≤ p ≤ u is found as U = min1≤k≤LUk and
the upper bound Uk associated with the k-th link is given by
one of (13), (19), (20) or (21).

Fig. 2 shows an example of the optimal transmissions
found for an ensemble of 4 networks with 8 nodes each and
α = 3 attenuation exponent. Observing many such examples
showed that the transmissions tend to be rather sparse, with
most of the nodes not transmitting at all. Furthermore, the
nodes that do transmit often do so with maximum power.
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Algorithm 2 Upper Bound for Region R
Goal: Find U ≥ obj(p) for l ≤ p ≤ u

Function Main:
for k = 1, 2, . . . ,L do

if rk ≤ log(1+ λklk) then
Uk := (13);

else
V := {i|ri ≤ ρℓ,k(uk)};
Uk := find_bound(V, k);

return U := min(Uk);

Function find_bound (V, k):
δ(p) defined as in (18);
if δ(uk) ≥ 0 then

return Uk from (19);
else if δ(lk) ≤ 0 then

W := {i /∈ V|ri ≤ ρi,k(lk)};
ifW = ∅ then

return Uk from (20);

else
W := {i /∈ V|ri ≤ ρi,k(p⋆

k)};
ifW = ∅ then

return Uk from (21);

return Uk :=find_bound (V ∪W, k);

IV. DISTRIBUTED ALGORITHMS
With multiple networks sharing the same time-frequency
resources, we consider two algorithms that the networks may
use: greedy and collaborative. In the first algorithm, every
network behaves greedily trying tomaximize its own data rate
irrespective of the interference it causes onto other networks.
In the second algorithm, the networks attempt to achieve a
better data rate as a whole than the purely greedy approach.

Note that if the networks were able to share perfect infor-
mation (sources and sinks, offered flow rates, etc.) with
each other, then they would be able to find the optimal
(centralized) strategy using the centralized algorithm in Sec-
tion III. However, such computation can be costly because
of the super-exponential growth in search space when the
centralized controller needs to consider all networks’ nodes.
Additionally, practical scenarios generally do not allow the
different networks to share every piece of information due
to limited inter-network communications capability, privacy
concerns, etc.

Still, it is generally possible for every network to keep track
of the expected amount of noise plus interference from other
networks’ transmissions at each of its own nodes. Our goal
is to find a collaborative algorithm that takes advantage of
the limited information that each network can infer about
its peers and steers the networks to a transmission configu-
ration that resembles what would be found by a centralized
controller.

Algorithm 3 Greedy Algorithm (gradient ascent)

p := 0.5;
µ := 0.01;
I := received signal+interference powers;
∇p(1Tθ⋆) := (25);
while ∇p(1Tθ⋆) ≥ ϵ do

p :=
(
min

(
1,p(i) + µ∇p(1Tθ⋆)

))
+
;

I := update signal+interference powers;
∇p(1Tθ⋆) := (25);

A. GREEDY ALGORITHM
In the greedy algorithm, a network does not care about the
performance of its peers; it optimizes its transmission powers
treating the interference as white noise [22]. The σ 2 term in
(3) is therefore replaced with the corresponding noise plus
interference estimates.

Let θ = (θ1, . . . , θni ) denote the data rates on the ni links in
network i. Then naturally our objective is to maximize their
sum 1Tθ with 0 ≤ θℓ ≤ min(rℓ, cℓ) and cℓ given by (2). Given
a vector p of transmit powers for each link, the optimization
problem can be formulated as

maximize 1Tθ

subject to θ ≤ c(p)

θ ≤ r

0 ≤ p ≤ 1, (22)

with optimal solution θ⋆
= max(r, c(p)). Unfortunately, the

link capacities c(p) are not a concave function of the transmit
powers, so optimizing p is not a convex problem.
It is possible use the centralized algorithm from Sec-

tion III to solve this problem, but numerical simulations have
shown that when multiple networks successively perform
such sudden updates to their transmit powers, the ensemble
often converges to bad solutions or fails to converge alto-
gether. Instead, we use gradient ascent to perform somewhat
smoother updates: initialize p(0) with a feasible set of values
(e.g., 1/2 on all links) and then iteratively update pwith a step
size ofµ along the gradient of the objective. In order to ensure
that the updated p is feasible, its components are cropped to
be between 0 and 1, i.e.,

p(i+1) =
(
min

(
1,p(i) + µ∇p(1Tθ⋆)

))
+

, (23)

where (·)+ is a function that replaces all negative elements
with zeros. After each update, the interference from peer
networks is re-assessed to incorporate its changes in the
computation of subsequent gradient directions. Numerical
simulations have shown that when all the networks follow
this procedure, their transmit powers usually converge to a
locally optimal solution for the ensemble problem.
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The gradient in (23) can be found using the chain rule as
follows

∂(1Tθ⋆)
∂pℓ

= λT
·
∂c(p)
∂pℓ

, (24)

where λ := ∇c(1Tθ⋆) = (λ1, . . . , λni ) is the gradient of the
optimal objective value with respect to the channel capacity
vector c and can be obtained as the dual variables correspond-
ing to the first constraint in problem (22), i.e. , λℓ = 1 when
cℓ ≥ rℓ and λℓ = 0 otherwise [42]. Applying (2) and (3), (24)
can be expressed as

∂(1Tθ⋆)
∂pℓ

=
λℓgℓoℓd

I(ℓd)

−

∑
ν∈Tℓ\{ℓ}

(
λνgℓoνd

gνoνd
pν

I(νd)[I(νd)− gνoνd
pν]

)
, (25)

where I(ℓd) :=
∑

ν∈Tℓ
gνoℓd

pν+σ 2 represents the total power
(signal, interference, and noise) being received by node ℓd.
The other variables are defined in the same way as in (3).

The greedy algorithm is able to provide a feasible vector of
transmit powers, but they are clearly sub-optimal. An optimal
configuration should only allow a link to transmit when it
yields a throughput greater than the total decrease in through-
put that its interference is causing on other networks. The
greedy algorithm neglects this consideration and results in
a transmission plan that is often too crowded. Every net-
work tries to ‘‘shout’’ as loudly as possible to get their data
through, causing severe interference to its peers and having
a counterproductive effect. Although it may locally appear
that increasing the power of a link is beneficial to the overall
capacity, turning it off completely can offer a larger gain
in peer networks’ capacity that offsets the loss. Fig. 2 in
Section VI shows a typical sample of the transmission links
found by the different algorithms. This and other empirical
evidence suggest that dropping links according to the rate-to-
power ratio typically performs better than gradient ascent.

B. COLLABORATIVE ALGORITHM

Algorithm 4 Collaborative Algorithm

p← Greedily optimize link powers within network;
links← active links sorted by rate-to-power ratio;
for ℓ ∈ links do

gain := 1CS + λ1E[CP ] by (28) and (29);
if gain > 0 then

pℓ := 0;
Îi(j) := interference estimates by (27);
p := reoptimize remaining active link powers;

else
return p;

In light of the above considerations, we wish to design a
distributed protocol that the networks can follow to decide

whether a link should be dropped and how much power to
allocate otherwise, with the goal of maximizing the sum rate
across the whole ensemble. There will be no direct communi-
cation between different networks, but it is assumed that all of
them can estimate the position of peer nodes and their trans-
mit powers based on the received interference. Our algorithm
starts from the greedy solution described in subsection IV-A
and then refines it by discarding links carrying low data rates
but whose interference could be having a significant impact
on peer networks.

Let S be the set of nodes in a network and P those in
all peer networks. The greedy algorithm in subsection IV-
A uses (24) and (25) to find the gradient of the network
capacity CS = 1Tθ with respect to the transmit powers. One
natural extension to this scheme is to include the expected
capacity of peer networks E[CP ] into the objective function
of problem (22). Since a network can estimate the locations
and transmit powers of peer nodes through triangulation,
it can also estimate their total received radio power. For a node
i, denote its estimated location and transmit power as x̂i and
p̂i, respectively, and let ĝij := ∥x̂i − x̂j∥−α be the estimated
channel gain between nodes i and j. Although every network
is aware of its peers’ transmissions, it does not know their
intended receivers, nor which nodes belong towhich network.
Thus the algorithm assumes that every peer node is equally
likely to be the receiver of any peers’ transmission. This way,
it can express the total expected capacity of peer networks as
follows:

E[CP ] =
1

|P| − 1

∑
i∈P

∑
j∈P\{i}

log

(
1+

ĝijp̂i

Îi(j)

)
, (26)

where Îi(j) is the estimated noise-plus-interference at node j
when receiving the signal from node i. It can be computed as

Îi(j) = σ 2
+

∑
k∈S∪P

ĝkjp̂k − ĝijp̂i. (27)

Adding this to the objective function in problem (22) results
in 1Tθ + λE[CP ], where λ is a parameter that determines
how ‘‘considerate’’ each network is in weighing its own data
rate with respect to that of peer networks. Unfortunately, this
function is not concave and gradient ascent is not guaranteed
to converge to a global maximum. Instead, we study the effect
of dropping each active link by making its transmit power
equal to 0.

Consider an active link ℓ ∈ S with power pℓ. If it is turned
off, we lose the data rate currently carried by that link θℓ, but
the expected capacity for the remaining links will increase
due to the reduced interference. The gain in the link’s own
network can be expressed as

1CS =
∑

ν∈S\{ℓ}
log

(
1+

ĝνoνd
pν

Îνo (νd)− ĝℓoνd
z

)∣∣∣∣∣
z=pℓ

z=0

. (28)

For peer networks, since the network does not know the
routing information, it assumes that every peer node is equally

VOLUME 11, 2023 34691



D. Garrido et al.: Resource Allocation Algorithm for Collaborative Networks Using Inferred Information

likely to be the receiver of every transmission. Then, it can
find the total expected gain in peer networks as follows:

1E[CP ]

=
1

|P| − 1

∑
i∈P

∑
j∈P\{i}

log

(
1+

ĝijp̂i

Îi(j)− ĝℓojz

)∣∣∣∣∣
z=pℓ

z=0

. (29)

If the network finds that the data rate on link ℓ is suffi-
ciently smaller than the overall expected gain in capacity,
it should drop the link, and vice versa. In other words, the
condition that link ℓ should be dropped is

θℓ < 1CS + λ1E[CP ]. (30)

The mean value theorem states that f(a) − f(0) = a · f′(ξ )
for some 0 < ξ < a, as long as f(x) is a continuous
and differentiable real function. Applying this theorem to
(28) and (29), we find that the condition in (30) is equivalent
to

θℓ

pℓ

<
∑

ν∈Tℓ\{ℓ}

ĝℓoνd
ĝνoνd

pν

Kνoνd (Kνoνd + ĝνoνd
pν)

+
1

|P| − 1

∑
i∈P

∑
j∈P\{i}

ĝℓojĝijp̂i
Kij(Kij + ĝijp̂i)

, (31)

for some 0 < ξ < pℓ, where Kij := Îi(j)− ĝℓojξ .
This suggests that the dropped links should be those with

low rate-to-power ratio (often referred to as energy effi-
ciency [43], [44]). This makes intuitive sense: if a node
transmits with high power, thereby causing strong interfer-
ence, but only provides a small throughput, it should stop
transmitting. The exact rate-to-power threshold below which
the links should be dropped is unknown, since the mean
value theorem guarantees the existence of ξ but does not
specify how it can be found. The rate-to-power threshold
that determines whether a link is dropped cannot be a fixed
constant. Networks with different parameters have different
optimal thresholds. For instance, if the network is densely
packed with nodes competing to transmit, it is desirable to
limit the number of simultaneous transmissions to reduce
interference, so more links should be dropped; however, if the
nodes are scattered across a very large region, the background
noise dominates the interference and it is better to allowmore
concurrent transmissions, and thus a lower threshold should
be used.

We propose that each network sorts its links in increasing
order of rate-to-power ratios and drops them in that order as
long as doing so increases the expected ensemble capacity
according to (30). It is important to note that the estimated
interference Îi(j) for each pair of nodes (i, j) should be updated
every time a link is dropped, accounting for any links that
peer networks might have dropped. After dropping a link,
each network should re-optimize the transmit power of its
remaining active links, using either the greedy or the cen-
tralized (branch and bound) algorithms. Since dropped links
are never reactivated, the algorithm is guaranteed to converge.
This procedure is summarized in Algorithm 4.

Real wireless scenarios are generally dynamic, with mov-
ing nodes, load variations, and changing channel conditions.
Therefore, the resource allocation configuration should be
reassessed periodically, or whenever a network detects sig-
nificant changes in the environment.

V. EXTENSION TO MULTIPLE BANDS
A very simple method for minimizing inter-network interfer-
ence and contention is to split the time and/or bandwidth into
multiple resource blocks and assign each of them to one of the
networks for its exclusive use. This is very easy to implement
and hence has become the basis for many standards, but such
partition of resources is suboptimal because it precludes par-
allel transmissions reusing the same time and frequency. So,
the question naturally arises of whether the reduced interfer-
ence makes up for the lack of parallel transmissions by differ-
ent networks. Furthermore, onemaywonderwhether splitting
the resources into multiple blocks might be beneficial even
without exclusive assignments, i.e. having all networks share
multiple smaller resource blocks instead of a single bigger
one. This would enable the activation of different sets of links
in different resource blocks (henceforth assumed frequency
bands) instead of using a fixed configuration.

Prior sections proposed protocols for maximizing the
amount of data that could be simultaneously transferred over
a single frequency band. This section will extend those pro-
tocols to scenarios with multiple bands, but first it will prove
that both sharing the bandwidth and splitting the available
resources into multiple blocks are indeed beneficial in some
cases, but not always. Subsequent simulation results in sub-
section VI-Bwill show that the gains for both are comparable,
i.e. sharing a single band yields similar results to splitting it
into multiple (non-shared) channels. The best results, how-
ever, are obtained when we use multiple shared channels.

As previously mentioned, the information-theoretical
capacity of a link is concave with respect to the signal power
and convex with respect to the interference. Hence, the sum
rate of multiple interfering links is neither convex nor con-
cave. This makes its maximization a non-convex problem.
As with many non-convex problems, the highest objective
value is not achieved with a fixed solution but rather by time-
sharing (or frequency-sharing in our case) multiple configu-
rations. In layman’s terms, this means that rather than having
a fixed set of active links, we can sometimes achieve a higher
overall throughput by cycling through multiple different con-
figurations. The following example proves this claim.
Example 1: Consider the highly simplified scenario

shown in Fig. 1 of four nodes located in the corners of a D×D
square, with quadratic signal attenuation and additive white
Gaussian noise (AWGN). If the two nodes on the left want
to transmit to the two nodes on the right, the question arises:
would it be better to have both nodes transmit simultaneously
or to give each of them exclusive use of half of the channel?
The answer depends on the noise power, the distance between
the nodes, and how they are paired. If the links go along the
sides of the square, the overall capacity for each strategy is
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FIGURE 1. Signal to interference and noise ratio for two pairs of nodes in
the corners of a square and α = 2.

respectively given by

Csim = 2 log
(
1+

2P
N0 + P

)
(32)

Chalf = log
(
1+

2P
N0

)
, (33)

where N0/2 is the noise power and P = PT/D2 denotes the
received signal power, given by the transmit power divided
by the distance squared. When N0 = P we have that Csim >

Chalf, but the inequality inverts when N0 becomes small
enough. Similarly, if the nodes are attempting to transmit
along the diagonals of the square, the overall capacities for
the two strategies are given by

Csim = 2 log
(
1+

P
N0 + 2P

)
(34)

Chalf = log
(
1+

P
N0

)
. (35)

When N0 = P we have the opposite conclusion as in the
previous case: Csim < Chalf, but the inequality once again
inverts if the noise power becomes large enough.

Therefore, we can conclude that there are noise values
and node positions for which it is better to have both links
simultaneously active and others for which it is better to split
the resources. Even in a simplified scenario such as this one,
finding the optimal strategy requires carefully analyzing the
received signal, interference, and noise powers. In a more
realistic situation with a larger number of nodes in arbitrary
locations the problem becomes exponentially more complex.

We now show how the protocols from prior sections can
be extended to a scenario with multiple sub-bands. The
branch and bound algorithm described in Section III can be
seamlessly applied to such scenario by defining the initial
search regions to include the transmit power of each node on
each band. However, the time required for the algorithm to
converge increases exponentially with the dimension of the
search regions, so its execution becomes impractical for all
but a very small number of sub-bands. Instead, we propose
a greedy application of the algorithm where the bands are
optimized sequentially.

The same idea is used to extend the greedy and collabora-
tive algorithms: Algorithms 3 and 4 are repeatedly executed
to decide the transmit powers of every node on each frequency

sub-band, updating their offered loads after each decision
is made. It is important to take into account that the link
capacities must be scaled by the width of each sub-band.
When the offered loads are relatively small comparedwith the
total capacity of the network, this results in a disproportionate
amount of information being transmitted in the first few sub-
bands, leaving the latter ones unused because all the offered
load has been delivered. However, since our performance
metric is the total sum-rate over all networks, we are not
concerned with this load unbalance. On the other hand, when
the offered loads are much larger than the link capacities, this
greedy application of the algorithms results in an identical
configuration of active links for every sub-band. Again, this
is logical, since the system is ignoring the offered load limits
and attempting tomaximize the the transmission rate on every
sub-band.

VI. NUMERICAL RESULTS
This section simulates multiple networks with nodes uni-
formly distributed over a 100 m × 100 m square region and
background noise variance of σ 2

= 10−8. Each network
will be asked to carry a few flows with randomly chosen
sources and sinks. Subsection VI-A focuses on a simplified
scenario with a single frequency band and subsection VI-B
then presents simulation results for networks with multiple
bands and requirements. These results support the validity of
our algorithms and illustrate their performance in a complex
scenario.

Before presenting our results, we briefly discuss the
Kesselheim algorithm given in [10] which will be used as a
framework for comparison. The goal of the algorithm is to
acquire a subset of feasible links under the physical model,
where transmissions are successfully received if and only
if the SINR at the receiver is greater than a given value
β. It starts with an empty set of active links M and then,
it traverses the links in increasing order of length activating
those that satisfy aM(ℓ) ≤ τ , with

aM(ℓ) =
∑
ν∈M

ĝν0ℓd
+ ĝℓoνd

ĝνoνd

(36)

τ =
1

2 · 3α · (4β + 2)
. (37)

After the active links have been selected, their transmission
powers are recursively set as follows. We traverse the active
links in decreasing order of length, assigning power 1 to the
longest link, and scaling the remaining ones according to

p(ℓ) = 4β
∑
ν∈M

ĝν0νd
<ĝℓ0ℓd

p(ν)
ĝν0ℓd

ĝℓ0ℓd

(38)

This guarantees that all active links can successfully transmit
simultaneously with SINR ≥ β.

A. SINGLE-BAND
Before we attempt to study a complex scenario with mul-
tiple frequency bands, we want to analyze the capacity of
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FIGURE 2. Sample links and powers with different algorithms.

our algorithm in a simplified case with only one band. The
problem is reduced to finding the set of links that should be
simultaneously activated and their transmit powers so as to

maximize the total throughput of the ensemble. Specifically,
we implemented our simulations in a scenario with N =
4 networks with ni = 8 nodes each, F = 16 flows (4
per network), path-loss α = 3, and β = 1.2. N and ni
have been chosen arbitrarily to evaluate the behaviour of the
networks with an acceptable computational time. We study
the performance of our algorithm with limited offered rates.
Therefore for each network configuration (i.e., source and
sink positions) we attempt tomaximize the overall throughput
when the flow rates θ are constrained to be below a vector of
values r. The components of this last vector (r) are uniformly
distributed between 0 and a pre-fixed maximum data rate per
flow. Our collaborative algorithm was simulated by cycling
through the networks and dropping one link at a time when
necessary. When updating the interference estimates by (27)
each network took into account the links dropped by its peers.
The reported results correspond to the final configuration
once all networks have converged and are no longer dropping
any links.

Fig. 2 provides some insight into the links and transmission
powers suggested by the four algorithms. It illustrates a sam-
ple of the different configurations, where the colors represent
the different networks and the thickness of an arrow indicates
the power of the link. Each node has associated a letter, r for
receivers and t for transmitters, as well as a number that repre-
sents the network to which it belongs. A visual comparison of
these chosen links and powers shows an important difference
between them: the centralized (optimal), collaborative, and
Kesselheim solution have a lot fewer links than the greedy
solution.

Fig. 3 shows the overall data rate as a function of the
maximum possible offered data rate per link. The results were
averaged over five network instances. The total throughput
increases with the maximum offered data rate per flow for all
algorithms, but the data rates provided by our collaborative
algorithm are almost as good as the centralized (optimal)
ones when the maximum offered rates are below 2. This
makes sense, since at low data rates resources are abundant
and all the flows can be easily delivered. When the offered
rates increase, the gap between our algorithm and the optimal
widens. However, our solutions are always better than the
ones achieved by the greedy or Kesselheim approaches. The
greedy algorithm is severely limited by the high interference
that it causes. Consequently, when the maximum offered rate
increases beyond 1, its performance starts weakening until
it saturates. The Kesselheim algorithm is based on the dis-
tances between the nodes, it is oblivious to the offered rates.
The number of active links and their transmit powers only
depends on how the nodes are placed. It is worth noting that
Kesselheim is a centralized method, the algorithm is applied
as if all nodes were part of a single network, whereas our
collaborative solution evaluates each network independently
without information about the performance of others. Even
with this lack of information, the average data rate with our
algorithm is closer to the optimal. The collaborative algorithm
is heuristic, therefore for some network configurations it may
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FIGURE 3. Overall data rate over a single band as a function of the
maximum possible offered rate per link. The results have been averaged
over five network instances.

FIGURE 4. Overall data rate over four sub-bands as a function of the
maximum possible offered data rate per link. The results have been
averaged over five network instances.

delete or keep too many links, leading to situations where the
total data rate diminishes despite the maximum offered data
rate increases. This explains the dip in the curve from Fig. 3
at maximum offered data rate equals to 5.

All the results so far have assumed a constant path-loss
exponent α = 3 and that the trade-off parameter in (30)
was set to λ = 1. We experimented with different path loss
exponents, between 2 and 4, but the results were similar.
This is due to the fact that our system is interference-limited,
with relatively small SINR values.We also experimentedwith
different values for λ, between 0.1 and 10, but the average
data rate was lower.

B. MULTI-BAND
This section illustrates the performance of our algorithms
when multiple frequency bands are considered. It will be
assumed that the same bandwidth available in the previous
subsection has been divided into multiple identical sub-bands
and each network can choose to restrict each link to only
some of those sub-bands. Without loss of generality, it will be

FIGURE 5. Overall data rate as a function of the maximum offered rate
per link for 4 networks with heterogeneous offered loads. The results
have been averaged over 10 ensemble instances.

further assumed that all sub-bands are occupied continuously
in time.

The overall data rates in this section should increase with
respect to the ones in the previous subsection, since the
networks have an additional degree of freedom that they can
choose whether or not to exploit. If the same active links
transmit on all sub-bands, the solution would be identical to
that in the single band case. Fig. 4 shows the average data rate
for the same 5 network instances as in Fig. 3 when the overall
bandwidth has been divided into four sub-bands. The curve
labeled as ‘‘Uniform Partition’’ corresponds to assigning one
sub-band to each network for its exclusive use, as described in
subsection V. This is the typical solution proposed by many
standards. The other two curves correspond to running our
collaborative algorithm with and without multiple sub-bands.
It can be seen that the results with a uniform partition are
similar to those of the collaborative algorithm with a single
band. The rate obtained by the collaborative algorithm with
multiple sub-bands is indeed greater than with a single one,
but the gain decreases quickly as the load increases.

The difference is larger when we study scenarios with
unbalanced loads. Fig. 5 shows the sum rate averaged over
10 instances of 4 networks with 8 nodes each, uniformly
distributed over the same 100m× 100m square area as in the
previous simulations. However, in this case their offered data
rates were scaled by a multiplicative factor of 1

8 ,
1
2 ,

5
4 , and 2,

respectively. The overall offered load is very similar to that
in Fig. 4, but the distribution over the networks is different.
It was assumed that there were m = 4 available frequency
channels for transmission, all of them with equal bandwidth,
unit transmit power, and background noise σ 2

= 10−8. It can
be seen that the uniform partition curve is still similar to that
for the collaborative algorithm with a single band, but both
of them yield significantly lower average rates than the col-
laborative multiband algorithm. This is explained by the fact
that a uniform distribution of resources is clearly suboptimal
when the networks have different loads. The collaborative
algorithm, on the other hand, is able to compensate for the
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unbalance and provides higher average rates. The greedy
algorithm is still the worst performing, since the networks
greedily attempt to transmit in all sub-bands resulting in high
interference levels across the whole bandwidth.

VII. CONCLUSION
This paper studied the problem of collaborative resource
allocation across multiple uncoordinated wireless networks
sharing the same time-frequency resources. It first derived
an efficient branch and bound algorithm to find the opti-
mal resource allocation that maximizes the sum rate over
the whole ensemble. Based on the experimental insights
obtained by running that algorithm on multiple ensemble
instances, the paper then proposed a heuristic collaborative
algorithm that each network can autonomously follow to
reduce interference and increase the overall throughput. The
collaborative algorithm does not require any side information
exchanged between the networks, only the location of peer
networks’ nodes, which can be inferred from interference
powers through triangulation. Numerical simulations show
that the collaborative algorithm significantly outperforms the
non-collaborative greedy approach and the uniform splitting
of resources.
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