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ABSTRACT Due to its extensive applications in different contexts, moving target tracking has become a
hot topic in the last years, above all in the military field. Specifically, missile tracking research received
a great effort, mainly for its importance in terms of security and safety. Herein, traditional solutions, e.g.
Interacting Multiple Model (IMM) based on the Kalman estimation theory, achieve good performance under
the main restrictive assumption of the a priori knowledge of the target model, so neglecting the unavoidable
presence of model uncertainties and limiting the achievable tracking accuracy only by the presence of
the measurement noise. With the specific aim of overcoming this narrowness, this work investigates the
capability of deep neural networks in predicting the missile maneuvering trajectories in a model-free fashion.
The idea is to leverage the Long-Short Term Memory (LSTM) net due to its excellent capability in learning
long-term dependencies of temporal information. Two different LSTM-based architectures have been hence
designed to predict both position and velocity of a missile using raw and noisy measurements provided by
a realistic radar system, exploiting a large database abundant of realistic off-line data. Training results and
theoretical derivations are verified through non-trivial scenarios in order to assess the capability of predicting
unknown and realistic 3D missile maneuvers. Finally, the proposed approach has been also compared with a
performing model-based IMM algorithm, suitably tuned to deal with realistic missile maneuvers, confirming
the excellent generalization abilities of the developed data-driven architectures for different datasets.

INDEX TERMS Tracking problem, ballistic missile, long-short term memory neural-network.

I. INTRODUCTION has known a great effort over the last decades, since it is

The target tracking problem has received great attention
from the research community in the last years, due to its
wide application in both military and civilian fields, such as
space and weather monitoring, traffic control, remote sens-
ing, autonomous vehicles, robotics, and so on [1]. Among
them, the application in a secure field as missile fast-tracking
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crucial to intercept and shoot down a flying enemy missile
successfully.

Since the tracking of a moving target is performed by
processing the measurements of the available sensors, such
as radar, sonar and camera, corruption generated by random
noise is unavoidable. Under the quite restrictive assumption
of regular target motion and white Gaussian distributions
for the process and the measurement noise, most solutions
proposed for this problem are based on the Kalman Fil-
ter (KF) theory [2]. However, when target trajectories have
been characterized by great complexity and diversity and vary
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unexpectedly, classical KF approaches, which are based on
a single dynamical model, do not achieve satisfactory per-
formance [3], [4]. To overcome this issue, different Multiple
Model (MM) approaches have been proposed from the tech-
nical literature and the Interacting Multiple Model (IMM) is
one of the most computationally efficient strategy [5]. The
IMM approach, originally proposed in [6], is a suboptimal
hybrid estimator which consists of a bank of multiple KFs,
each of them matched on a specific target model, that tracks
the target motion through a weighted average KFs estima-
tion using a probability model. To exploit its potentiality,
many studies have been carried out on tracking estimation
through IMM, ranging from the classification of dynamical
characteristics of different targets such as drones, jets, and
civil aircrafts (see references in [3]) to the electric vehicles
for the stable steering control problem [7] until to the multi-
fault diagnosis of lithium-ion batteries in [8].

Focusing on the fast missile tracking problem, different
IMM strategies have been proposed in the technical literature.
For example, in [3] the authors design an IMM, disclos-
ing better tracking performance w.r.t. a KF based on a sin-
gle dynamic model; the Interacting Multiple Model Particle
Filtering IMMPEF, [9]) is applied to track ballistic missile
motion in [10], and, more recently, the same tracking prob-
lem is solved during the boost phase in [11], where a new
modified IMM based on Unscented Kalman Filter (UKF) is
proposed. Moreover, a novel state-dependent IMM based on
Gaussian particle filtering is developed [12] to estimate the
motion information describing the ballistic missile, such as
the phase of flight, position, velocity, and parameters.

Most of the approaches based on MM algorithms provide
acceptable tracking performances only when the dynamic
target motion can be described by a small set of models,
otherwise, a degradation appears with the computational
burden increment [13]. Furthermore, being a model-based
approach, the most shortcoming of the IMM algorithm
arises when models used are not representative of the target
dynamics [13], [14]. Indeed, since the system model is only
an approximation of the real plant, practical problems are
inevitably affect by errors modeling, which can significantly
compromise the the estimation quality [4]. This implies that
the estimation accuracy for IMM approaches is limited not
only from measurement errors and noise, but also from the
unavoidable presence of model uncertainties arising from
neglected or simplified dynamics, as well as uncertain param-
eter values. Besides these facts, regardless of the adopted
solution, in order to evaluate the most trustworthy filter, a cru-
cial role in the definition and operation of the IMM algorithm
is assumed by the underlying Transition Probability Matrix
(TPM), whose tuning remains a difficult task to be accom-
plished by leveraging a priori information and/or dedicated
analysis, in addition to base the setting on two strong assump-
tions: i) the time-varying probability of the TPM transitioning
among models are well represented by a constant value;
ii) this constant value is well known a priori [11].
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On the other side, recently, the developments in the Deep
Learning (DL) field have brought significant advantages in
different areas, including computer vision, driverless car,
speech processing, machine health monitoring, signal pro-
cessing, and so on (e.g., the interested readers can con-
sult [15] and the references therein). Within this wide context,
different DL algorithms have been proposed with the aim
of extracting features from complex and abstract data via
general-purpose learning algorithm [15], without artificially
designing feature patterns, as in traditional Machine Learn-
ing techniques [16].

Among the possible approaches, Deep Neural Net-
works (DNNs) have recently proved this claim [17], and,
so, they have been exploited to reach better performance
both with Convolutional Neural Networks, which currently
represents the main approach in tasks as image classifica-
tion [18] or object detection [19], [20], and Recurrent Neural
Networks (RNNs), mainly used to process sequential data,
as temporal series, audio signals, etc. [21].

Since the missile target tracking problem can be seen as a
sequence problem [14], RNNs could be employed to handle
this task [22] and, unlike conventional model-based methods,
allows to learn the correct behavior from the available train-
ing data in a model-free fashion, facing both the issues of
measurement noise and model uncertainties, and without any
a priori knowledge on the probabilistic noise distribution [2].
However, the training of standard RNNs suffers for well-
known problems of vanishing gradient and exploding gradi-
ent, due to the difficulties for the gradients to propagate far in
a lot of time steps consistently with an acceptable range [23],
thus considerably limiting the applicability of these standard
nets. While the exploding gradient can be avoided placing
strong constraints on the gradient norm [24], the vanishing
gradient problem can be deal leveraging the Long Short-
Term Memory (LSTM) networks [25], initially proposed
by Hochreiter and Schmidhuber in 1997 in their seminal
work [26] (without the forget gate) and, after, perfected by
Graves and Schmidhuber in [27] with the introduction of
an additional forget gate, thus realizing the most common
LSTM architecture used nowadays. Note that, the excellent
qualities in learning of the LSTM nets justify their application
in different contexts, including Remaining Useful Life (RUL)
estimation [23], [28], [29], fault detection and isolation [30],
forecasting of vehicles’ emissions [31], prediction of water
table depth in agriculture [32], and stability prediction of a
smart grid [33].

Very Recently, LSTM have been also proposed for solving
a generic target tracking problem with the aim to have a
powerful tool able dealing with the target motion uncertain-
ties, conversely to traditional MM-based approaches, which
suffer from serious degradation in the presence of model
mismatches. More specifically, authors in [14] combine
the theory of DNN and traditional tracking filters, propos-
ing an LSTM-IMM model algorithm, while a bidirectional
LSTM approach was considered in [34]. The authors in [13],

VOLUME 11, 2023



D. G. Lui et al.: LSTM-Based Neural Networks for Missile Maneuvers Trajectories Prediction

IEEE Access

instead, propose two different LSTM-based approaches to
solve the tracking problem of a manoeuvring target, and
a comparison with IMM shows that the proposed systems
achieve better performance.

Inspired by the aforementioned facts in this paper, to the
best of the authors’ knowledge, we investigate for the first
time the capability of an LSTM-based approach to predict
the trajectory of a ballistic missile over a short time inter-
val. Specifically, two alternative LSTM-based systems have
been designed for the online prediction of the position and
velocity of a missile. Moreover, a performance analysis is
carried out for carefully characterizing the suitable LSTM-
NNs systems, by varying their structure, i.e. number of hidden
layers and neurons, activation functions, dimensions of the
parameters hyperspace that define the training data set of
missile trajectories, etc. More notably, in order to account for
the real environment, we consider a careful characterization
of the noisy radar measurements. In this way, the training and
the performance assessment of the LSTM-based systems are
performed by using the raw and noisy data provided by a radar
system and parametric trajectories of a missile movingina3D
space during the re-entry phase.

Finally, a comparative analysis with respect to a state-of-
the-art IMM system has been carried out considering trajec-
tories related to different classes of maneuvers.

The results of this analysis show confirm that data-driven
LSTM approaches are able to tackle and solve the fast missile
tracking problem overcoming the issue of both the measure-
ment degradation and model uncertainties.

Based on the above discussion, the main contributions of
this paper can be summarized as follows:

o first, an LSTM-based model-free approach is proposed
in order to handle the fast-tracking problem of a ballis-
tic missile for different truthful and non-trivial maneu-
vering scenarios, exploiting the raw measurement data
provided by a realistic radar model [35];

« second, the excellent LSTM nets capabilities in learn-
ing long-term dependencies of temporal information are
exploited to develop two different architectures, with the
aim to overcome the traditional model-based drawback
in dealing mainly with the measurement errors, neglect-
ing the unavoidable model uncertainties;

o third, a comparison analysis w.r.t. a traditional model-
based IMM solution, developed to deal with realistic and
non-trivial scenarios considered [35], is provided to bet-
ter highlight the powerful performance of the proposed
data-driven methodology.

The rest of the paper is organized as follows. In Section II the
problem statement is provided. In Section III a background
on the LSTM theory is given to facilitate understanding
of the work, while in Section IV the proposed data-driven
solutions for the missile tracking problem are described.
In Section V the tuning problem of the NNs parameters
is tackled and the training problem is defined. Section VI
is dedicated to the assessment of the performance of the
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FIGURE 1. Schematic representation of the missile fast-tracking problem.
Red solid line: missile trajectory from the launch to the actual position
(red point). Green area: field of detection of the radar system. Blu dashed
line: manoeuvring trajectory to be predicted.

proposed systems, through non-trivial simulations. Moreover,
in Section VII a comparison analysis w.r.t. a classical IMM-
based solution is provided, Finally, conclusions are drawn in
Section VIII.

Il. PROBLEM STATEMENT AND MOTIVATION

The solution of the missile fast-tracking problem requires
the correct online estimate of the states of the mobile target
exploiting real-time measurements gathered from sensors.
More in detail, let’s consider an enemy ballistic missile during
the flight re-entry phase as a moving target to intercept within
the field of detection of the radar system (see Fig. 1). The aim
is to predict in real-time the target trajectory within the radar
field of view over a finite and short time interval by online
processing raw and noisy radar measurements and uploading
the prediction when the new measurements are available.

As also pointed out in the introduction section, traditional
model-based tracking methods base their functionality on
the assumption that the target motion, and corresponding
measurements, can be represented with a sufficient accu-
racy by known mathematical models. Along this line, some
approaches exploit a linear sets of state equations, while in
a more general framework some nonlinear relations among
the kinetic variables have to be exploited for emulating the
underlying moving target trajectories, as well the relations
among measurements. So, in this traditional missile track-
ing framework, the target is commonly assumed to be a
point (e.g., see for instance [36], [37], [38]) whose dynamics
belong to a finite set of m nonlinear models as:

Xkl = Qi Xp + wi Jeell,. ..., m], (1)

where x; is the state vector at the k-th timestep, the process
noise wy is assumed to be additive and ¢, is the nonlinear
dynamics associated to the iy model, while the measurements
are assumed to be model dependent and related to the true
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FIGURE 2. Measurements frames. Red dot and red arrow: position and
velocity vector of the target in the radar frame, respectively. Blue arrows:
target measurements provided by the radar system in terms of range r(k),
inclination (k) and azimuth §(k).

states as:

2k = xe(xr) + vk ()

where z; are the measurements gathered from sensors at
time k, v is the measurement noise and x; characterizes the
sensing system behavior.

Despite model-based approaches could work quite well in
general cases, some open challenges arise when specifically
focusing on the design of a model-based tracking system
for the missile defense. Herein it is necessary to track fast
and unknown objects when no a priori information about the
hostile missile is available. Indeed, without this knowledge,
it is hard to make the model, as in (1)-(2), on which the
design of the estimator is grounded. It follows that model-
based approached do not perfectly fit the missile tracking
problem, where not only accurate nonlinear target models are
usually not available to the tracker, but the target can also
exhibit a very wide and rich variety of nonlinear behaviors,
often resulting in abrupt changes in its trajectory, such as
sudden directional changes of the evasive target. Eventually
they usually suffer from the presence of uncertainties and
neglected or unknown dynamics (e.g., resulting from the very
restrictive point-mass assumption), as well as from the fact
that the very rich dynamical behavior of the underlying target
can not be well approximated by a small set of linear or
nonlinear models.

For the above reasons, in this study, we tackle the tracking
problem of a ballistic missile by investigating the feasibility
of a fully data-driven solution. In this context, we take into
account that the target is able to perform a wide range of
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maneuvers, also belonging to the following main classes or
any possible combination:

o pull-up pull-down (PUPD): a maneuver performed with
a nonzero lateral acceleration along the zp axis of the
body system reference (see Fig. 2 and Fig. 3);

e cross: a maneuver performed with a nonzero lateral
acceleration along the yp axis of the body system ref-
erence (see Fig. 2 and Fig. 4);

e ballistic: a maneuver performed with null lateral accel-
erations.

Hence, under the main assumption that the target missile is
unknown, we design an LSTM-based strategy able to provide
the short-term prediction of the target by only exploiting real-
time measurements. Namely, the strategy processes in real-
time the noisy information about the missile position and
velocity in a local North, East, Down (NED) reference system
in which the origin is fixed at the radar position (see Fig. 2),
say p(k) € R and ¥(k) € R3, respectively, in order to obtain
a prediction of the next position and velocity of the target over
a short-time interval, say p(k + 1|k) € R3 and v(k + 1]k) €
IR3 respectively.

It is worth noting that the radar system only provides noisy
measurements about the position of an object which moves in
its field of perception, with a given sampling rate T’ [s], and
that this measure is provided in a spherical reference system
whose origin is fixed at the radar position [36] (see Fig. 2) as:

(k) = r(k) + ny(k), (3a)
O(k) = 6(k) + ng(k), (3b)
83(k) = 8(k) + ns(k), 30)

where the normal distribution of the stochastic vari-
ables n,(k), ng(k) and ns(k) are characterized by setting the
corresponding mean values, i.e. (i, g and ug, and standard
deviations, i.e. oy, og and oy.

The noisy measurements of the position in the NED refer-
ence system, i.e. p(k) = [fc(k) y(k) 2(k)]T [m], can be than
obtained from the corrupted spherical coordinates as:

%(k) = F(k)cos 8(k) sinf(k), (4a)
$(k) = (k) sin 8 (k) sin 6(k) , (4b)
Z(k) = —F(k)cosO(k). (4c)

Finally, the velocity information v(k) can be derived from
position as:

ple) —ptk —1)

(k) = T

)
IIl. LONG SHORT-TERM MEMORY NETWORKS:
BACKGROUND

LSTM neurons replace the traditional RNN structure, with
the same repeating chain modules, but with a more com-
plicated function for the presence of three layers and inter-
nal self-loops interacting among them in a specific way to
determine what information should be recalled (see a generic

VOLUME 11, 2023



D. G. Lui et al.: LSTM-Based Neural Networks for Missile Maneuvers Trajectories Prediction

IEEE Access

PU-PD trajectory

—p(k)
—p(k)

Vx [m/s]

1000 _ 20
o~
0 L
£

-1000 x 10
<

0

-2000
0 50 100 0 50 100
= 1
& 2000 o(k) o
= 0
E Bl g
>>- 0 <>-
-2000 -1
0 50 100 0 50 100

[m/s]
o

\

1000 20
<
E o
N -1000 gy
-20 \

-2000
0

50 100 0 50 100
time [s] time [s]

FIGURE 3. PUPD maneuver (Left frame: position. Central frame: velocity. Right frame: missile acceleration. Red: raw target 3D

position data. Blue: noisy radar measurements.
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FIGURE 4. CROSS maneuver (Left frame: position. Central frame: velocity. Right frame: missile acceleration. Red: raw target 3D

position data. Blue: noisy radar measurements.

LSTM module structure in Fig. 5). In so doing, the structure
allows to remember previous information and to process
arbitrary long-time sequences [32], making LSTM nets per-
fect for learning long-time dependencies. It is worth noting
that alternative approaches such as RNNs cannot capture
long-time dependencies in data [28] due to the well-known
“vanishing gradient” problem affecting the backpropaga-
tion process during the training phase. On the contrary,
in LSTM each repeating module has a memory block with
self-connections, designed to store information over long
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time periods, allowing to learn long-term dependencies more
easily than classical RNNs, since the information can flow
more easily. More in detail, the input gate controls the flow
of input activations within the memory cell and is able to
select what information have to be stored in the internal
state, while the output gate determines the output flow of
cell activations into the rest of the network, identifying the
output information. Finally, the forget gate is able to deter-
mine what information needs to be discarded from neuron
states [39].
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FIGURE 5. Schematic of a repeating module in an LSTM. The cell state ¢
let the information to flow unchanged along the module. The forget, input
and output gates (i.e. fy, iy, and o, respectively) control information
flows through the module. The hidden state hy,_; determines how much
information to forget.

The LSTM neuron defines a mapping from an input
sequence xj to output by iteratively evaluating the following
computational process, which allows us to determine the
forget gate f, the input gate i, the output gate oy, the cell
state ¢, and the hidden state Ay at time k, as [40]:

fe =0 Wr - (1, xk ] + by), (6a)
ik = o (Wi - [hg—1, xk] + Do), (6b)
ek =Jfi © ck—1 + ix © tanh(We. - [hg—1, x¢] + be),  (6¢)
o = oWy - [h—1, xx] + bo), (6d)
hy = o O tanh(cy), (6e)

where W, are learnable parameters and denotes the weight
matrices from the forget, input, output and cell gates to the
input (y = f,1i,0,c); b, are the forget, input, output and
cell bias vectors (y = f,1i, 0, c); the ® operator indicates
the element-wise product; o (-) is an element-wise nonlinear
activation function, i.e. logistic sigmoid function. Along the
line of the DL paradigm, which allows capturing more poten-
tial features from input data exploiting a multi-layer network
structure [41], multiple LSTM hidden layers - each composed
by numerous LSTM neurons as in Fig. 5 - can be stacked
to construct a more complex module, named the Deep Long
Short-Term Memory (DLSTM) network so to carry out a deep
data fusion of sensor input. Fig. 6 shows an exemplar DLSTM
architecture.

IV. LSTM-BASED PROPOSED APPROACHES FOR MISSILE
TRACKING

Here we present two alternative LSTM architectures pur-
posely designed with the aim of on-line solving the
fast-tracking problem of an unknown missile during
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FIGURE 6. Exemplar DLSTM architecture. Each node has a structure as in
Fig. 5.

maneuvers, described in Section II, by sequentially on-line
processing the actual noisy radar measurements.

The idea behind the first architecture, named Coupled
Missile Fast-Tracker (CMFT) and depicted in Fig. 7, is to
leverage a single network (6 inputs - 6 outputs) for estimating
and forecasting all the kinematic variables of the unknown
moving target. Namely, given radar data collected at each
sampling instant k, say p(k) and v(k), the single LSTM-
system provides the prediction of both the position and veloc-
ity vectors at the next time step k + 1, say p(k + 1]k) and
vk + 1k).

Conversely, the second architecture, named Decoupled
Missile Fast-Tracker (DMFT), follows a decoupled approach
based on the kinematic separation of the output vari-
ables. This reflects in leveraging two different LSTM-based
modules running in parallel (see Fig. 8). Each module
(6 inputs - 3 outputs) is devoted to provide only one of the
state variables that describe the missile motion. Namely,
exploiting the noisy measurements about the target position
and velocity collected from the radar at each discrete time
instant k, Modules 1 and 2 are designed for predicting the
position and velocity vectors at time k + 1, p(k + 1|k) and
vk + 1]k).

Motivations for investigating the above two alternative
architectures lie in the well-known complexity of the track-
ing problem. The idea is to understand if by exploiting the
kinematic decoupling of the predicted variables, is possible
to achieve a better forecast and gain greater accuracy for the
same complexity of neural networks since the two different
prediction problems are independently solved.

Further details about the design of both the archi-
tecture, such as the selection of a proper structure for
the LSTM-NNs (i.e. number of hidden layers, number of
neurons, activation functions, etc.), as well as about tuning,
training and validation phases are provided in the following
sections.

V. SETUP AND TUNING OF THE DATA-DRIVEN
ARCHITECTURES

The LSTM-NNs structures of both the CMFT and DMFT
architectures have been appropriately defined taking into
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FIGURE 7. CMFT (Coupled Missile Fast Tracker). The architecture
leverages a single network for the fast-tracking and prediction of all the
missile kinematic variables.

LSTM-NN plk+1]k)
p(k) Module 1
radar system #(k)
DLSTM-NN P(k+1]k)
Module 2

FIGURE 8. DMFT (Decoupled Missile Fast Tracker). The architecture
leverages two LSTM-based Modules, each one devoted to the
fast-tracking and prediction of a specific kinematic variable of the missile
motion.

account a trade-off between complexity and performance
with respect to the training time. The iterative procedure has
involved tuning the hyperparameters in search of a combi-
nation that is most consistent and achieves the best model
performance. To this aim, a careful analysis has been carried
out for evaluating the impact on the performance of changes
in the NNs features, i.e. the number of layers and neurons, the
activation functions, and so on.

The results of this iterative procedure have been summa-
rized in Table 1 for the CMFT, and in Table 2 and Table 3 for
the DMFT. Note that, with respect to the design of the DMFT
architecture, the two LSTM-NN modules are not identical,
since a deeper structure is required to correctly reconstruct
velocity information. Finally, the dropout technique, which is
usually seen as a regularization technique, has been exploited
for reducing the overfitting [13].

The sampling time T has been fixed at 1.0 [s] according to
the characteristic of the radar system [36].

Once the structure has been defined for both the pro-
posed CMFT and DMFT architectures, their related weights
matrices have been optimized during the training phase. This
optimization problem has been defined as minimizing the
prediction error with respect to a set of training trajectories,
and then solved via the Stochastic Gradient with Momentum
method [42] with optional parameters as in Table 4. This
iterative method computes the neural network parameters
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TABLE 1. CMFT: network architecture parameters.

Layer Parameter Value
sequence input layer input size 6
number of neurons 5000

LSTM layer state activation function | hyperbolic tangent
gate activation function | sigmoid

droput layer dropout probability 1%

fully connected layer number of neurons 5000

regression output layer loss fun‘ction mean squared error
output size 6

TABLE 2. DMFT: LSTM-NN Module 1 (position).

Layer Parameter Value
sequence input layer input size 6
number of neurons 5000

LSTM layer state activation function | hyperbolic tangent
gate activation functions | sigmoid

droput layer dropout probability 1%

fully connected layer number of neurons 5000

loss functions mean squared error

regression output layer output size 3

TABLE 3. DMFT: LSTM-NN Module 2 (velocity).

Layer Parameter Value
Sequence input layer input size 6
number of neurons 1200

LSTM layer 1 state activation function | hyperbolic tangent
gate activation function | sigmoid

number of neurons 900

state activation function | hyperbolic function
gate activation function | sigmoid

number of neurons 600

state activation function | hyperbolic function
gate activation function | sigmoid

number of neurons 300

LSTM layer 2

LSTM layer 3

LSTM layer 4 state activation function | hyperbolic function
gate activation function | sigmoid

dropout layer dropout probability 1%

fully connected layer number of neurons 300

loss function mean squared error

regression output layer output size 3

by minimizing the loss function. Namely, at each iteration,
the algorithm evaluates the gradient of the loss function
using a subset of the training data, called mini-batch, and it
updates the optimization variables by taking small steps in the
direction of the negative gradient. Note that, commonly the
stochastic gradient descent algorithm can oscillate along the
path of steepest descent towards the optimum and so adding
a momentum term to the parameter update helps reduce this
oscillation [42].

The training and validation data-sets are composed of dif-
ferent kinds of target motion trajectories ensuring that the
tracking of targets with different motions can be handled with
the proposed LSTM-based architecture (e.g., the coupled or
decoupled architecture, CMFT and DMFT respectively). The
maneuver-based trajectories have been generated by using
an advanced simulation tool for ballistic missiles, which has
been developed and validated by MBDA-Italy [35]. In order
to collect data from a wide range of trajectories, simulations
have been started from different initial data and input signals,
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TABLE 4. Parameters of the Stochastic Gradient with Momentum method.

Parameter Value
maximum number of epochs 250
mini batch size 20
gradient threshold 1
shuffle once
learn rate schedule piecewise
initial learn rate 0.1
learn rate drop period 15
learn rate drop factor 0.5
validation frequency 100
validation patience 50

in order to perform different realistic maneuvers. Specifically,
the trajectories of the data-set are characterized by the follow-
ing dynamic features [35]:

« the missile ballistic coefficient is in the range

[20000, 35000] [kg/m*1;
« starting maneuver altitude is in the range
[25000, 35000] [m];

o the PUPD

are

impact points of the trajectories

IPpypp = [IP: 0 O]T ,

being I[P, € [— 16500 4500] [m];
« the impact points of the cross trajectories are

TP ross = [0 IPy O]T s

being IP, € [—25000 25000] [m],

while initial conditions in terms of position and veloci-
ties (po and vg) are in the following ranges:

« po = [100000 0 70000]" [mi;
o po= [VxO 0 VzO]T,
being

Vo € [—1200, —600] [m/s]
and
Vo € [—1200, —200] [m/s].

A set of 36000 trajectories have been considered, including
12000 ballistic trajectories, 12000 PUPD trajectories, and
12000 cross ones. 30000 out of the considered 36000 trajec-
tories have been included in the training data-set, while the
remaining 6000 constitute the validation data-set. Note that
each trajectory is a discrete-time signal defined by a sequence
of N position, velocity and acceleration vectors (say p(k), v(k)
and p(k), respectively), where k = 0, ..., N, being N the
discrete time instant when the missile hits the ground.
According to the characteristics of the radar system (3),
position and velocity measurements are corrupted by an addi-
tive noise that in spherical coordinates can be expressed as a
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FIGURE 9. Training of the LSTM neural network of the CMFT. Figures show
the time-variation of the root mean squared error and the loos function
during the training.

stochastic signal with zero mean and standard deviations as:

o, =20 [m], (7a)
o9 =6-1073 [rad], (7b)
o5 = 61073 [rad]. (7¢)

Note that, although the radar noise directly affect only the
position measurement, obviously it has also effect on the
measured speed of the missile.

An exemplar three-dimensional cross trajectory is shown
in Fig. 4, and in Fig. 3 is shown a PU-PD trajectory. More-
over, the above stochastic characterization of the radar noise
allows to take into account worst conditions than the typ-
ical ones proposed in the current technical literature, see
for instance [36], [43], allowing to analyze the prediction
performances in a more realistic scenarios, as stated in [35].

VI. VALIDATION

In this section, the effectiveness of the proposed data-
driven approach for fast-tracking of an unknown missile is
assessed, and the performances of both the architectures are
analyzed and compared by leveraging a novel data-set of
300 maneuver-based trajectories, of which 100 are ballistic,
100 are PU-PD and 100 are cross ones.

Validation results have disclosed the capabilities of both
the proposed architecture in predicting the missile maneuvers
without a thorough knowledge of the model and exploiting
only raw and noisy measurement provided by the radar sys-
tem, so confirming the robustness of LSTM approaches w.r.t.
both uncertainty sources. See for example Figs. 10 and 11
where results confirm that, despite the measurement noise,
both CMFT and DMFT are able to identify the dynamic of the
target and correctly predict its position and velocity on a short
time interval. Note that as expected, the maximum prediction
error occurs at the beginning of the missile manoeuvre, where
both CMFT and DMFT take just few samples to identify the
maneuver. Moreover, generally the prediction error decreases
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prediction; Green: DMFT prediction. (a): entire PUPD maneuver. (b): focus on the last 40 seconds of the predicted trajectories.
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FIGURE 11. PUPD maneuver: Target velocity prediction. Black: raw target velocity data; Blue: noisy radar measurements; Red: CMFT prediction;
Green: DMFT prediction. (a): entire PUPD maneuver. (b): focus on the last 40 seconds of the predicted velocities.

after the first time samples, as long as the manoeuvre does not
change again.

A more in-depth characterization of the performance of the
two proposed systems have been performed by processing
all trajectory in the data-set and by analyzing the related
results, choosing the Euclidean norm of the error vectors
as performance index for assessing the tracking accuracy.
In particular, the mean values of the errors for each validation
trajectory were evaluated, and then the distribution of the
errors for all the samples of the 300 trajectories has been
analyzed. The results of this comparison analysis, depicted
in Fig. 12, can summarized as follows.

o Compared to the DMFT, the CMFT discloses a bet-
ter target position prediction capability for 282 of
the 300 trajectories composing the test data-set (see
Fig. 12a). More notably, the mean value of the prediction
error of the CFMT is less than 400 [m] for 262 of the
300 trajectories composing the test data-set. Further-
more, the distributions of the prediction errors of DMFT
is characterized by a greater number of samples in which
the position error is greater than 100 [m], as shown in
Fig. 12c.

o Focusing on the target velocity prediction, again the
CMFT solution shows better performance than the
DMFT one, with a smaller mean error for 286 of
the 300 trajectories composing the test data-set (see
Fig. 12b), that anyway is always below than 40 [m/s]
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for all the trajectories. Also in this respect, the dis-
tributions of the velocity target prediction errors show
that the DMFT is characterized by a greater number of
samples in which the velocity prediction error is greater
than 100 [m/s], despite the latter is characterized by a
greater number of samples in which the prediction errors
is less than 25 [m/s], see Fig. 12d.
It follows that, although both architectures are able to solve
the fast missile tracking problem, the obtained results lead
to prefer the Coupled architecture rather than the Decoupled
one. See, for example, Fig. 13 for an additional illustration of
the prediction capabilities of the CMFT in the case of a 3D
cross maneuver in the validation data-set.

So, to further investigate the potential of data-driven meth-
ods, in the next section the CMFT is compared to a traditional
model-based Interacting Multiple Model (IMM) via Kalman
filters.

VIi. COMPARISON WITH AN IMM BANK OF KALMAN
FILTERS

As already mentioned, prediction systems of the missile
motion are usually based on classical IMM techniques (e.g.
see [38] and references therein). So in this section, we com-
pare the prediction capability of the CMFT system with an
IMM system based on an array of nonlinear Kalman filters
set to work with the same sampling time of the radar system,
i.e. 1.0 [s], and able to take as output signals the predictions at
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position; right frame (b): velocity). Bottom: errors distributions over all the samples of the trajectories of the test data-set (left frame (c) :
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FIGURE 13. Cross maneuver: Target 3D-Position Tracking via CMFT. Left frame: actual trajectory performed by the target
(blue line) v.s. the predicted one (red line). Right frame: time-history of the prediction errors. Note that the highlighted blue
area refers to the set of samples characterized by an altitude ranging from 15 [km] to 35 [km], which have been averaged to
compare the performance of the CMFT and IMM (see Section VII).

the next time instant of the missile position and velocity. Note
that, the comparison analysis of proposed data-driven solu-
tions has been performed with respect to an optimized IMM
algorithm, suitably developed and validate by MBDA-Italy
[35], in order to work in a realistic maneuvering scenarios.
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As a result, the performance of the proposed LSTM-based
architecture and the efficient IMM method are evaluated in
the same real-guidance environment, in order to make the
comparison reliable and to assess the applicability of our
solution in realistic situations.
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The comparison between the two approaches in Fig. 14
has been carried out evaluating the errors in both position
and velocity predictions. By considering the same test data-
set of 300 trajectories exploited in the previous analysis, the
tracking errors have been evaluated in the range of altitudes
of possible interception of the target missile. In particular,
for each trajectory of the data-set, we have averaged the
errors related to the samples characterized by an altitude
between 15 [km] and 35 [km], (see the blue area in Fig. 13).
Results in Fig. 14a) and Fig. 14c) disclose that the CMFT
has better target position prediction capability for 287 of
the 300 trajectories composing the test data-set, while the
distributions of the prediction errors of the IMM system
are characterized by a greater number of samples in which
the position error is greater than 100 [m]. Moreover, also
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in predicting the missile velocity the CMFT exhibits better
capabilities w.r.t. the IMM one for 295 of the 300 trajectories
composing the test data-set, as represented from the mean
values of the prediction errors in Fig. 14b and from the
distribution errors in Fig. 14d.

The very good performance of the CMFT are also con-
firmed by the overall comparison results summarized in
Table 5. Finally, for comparison purposes, in Figure 15
we report the computational time required by both systems
to accomplish the prediction task. The results point out a
comparable time, with the IMM solution that exhibits slight
improvements, however at the expense of the prediction’s
quality. Thus, the LSTM-based structure can be considered
agile, with the possibility to decrease the computational bur-
den by reducing adequately the number of units and retraining
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TABLE 5. Average performance over 300 test trajectories (ballistic, PUPD
and cross).

Metric IMM-system | CMFT-system
ABS Err Position X [m] 76.97 43.06
ABS Err Position Y [m] 48.89 10.95
ABS Err Position Z [m] 59.03 31.92
Position RMSE [m] 118.83 62.10
ABS Err Velocity X [m/s] 17.15 6.70
ABS Err Velocity Y [m/s] 7.42 5.12
ABS Err Velocity Z [m/s] 13.18 5.04
Velocity RMSE [m/s] 25.71 11.61

the network, obviously at the cost of slightly worse perfor-
mance [13].

VIil. CONCLUSION

In this paper, the possibility of addressing the tracking of
uncertain ballistic missile trajectories leveraging data-driven
Long-Short Term Memory nets architectures has been investi-
gated. Comparison results suggest that data-driven algorithms
can be considered as an effective alternative to classical
Kalman-based approaches, such as Interacting Multiple Mod-
els (IMMs) methods. The proposed solution allows overcom-
ing the narrowness of IMM in handling only the measurement
noise that affects the raw radar data, by exploiting the ability
of the LSTM in learning long-term dependencies of temporal
information without any model knowledge, so to take into
account both the measurement noise and the missile motion
uncertainties. The built architectures have been tested in non-
trivial missile motion scenarios and compared with a classical
model-based IMM algorithm to investigate the effectiveness
of the proposed solution in predicting unknown 3D missile
maneuvers. Future works could include the real implementa-
tion of the proposed LSTM architectures on dedicated FPGA-
based accelerators, which allows also to exploit parallelism
and therefore improves the execution time of the proposed
data-driven approach.
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